
483

Progress of Theoretical Physics, Vol. 126, No. 3, September 2011

Precision Spectroscopy of Deeply Bound Pionic Atoms and
Partial Restoration of Chiral Symmetry in Medium

Natsumi Ikeno,1 Rie Kimura,1 Junko Yamagata-Sekihara,2,3

Hideko Nagahiro,1 Daisuke Jido,3 Kenta Itahashi,4

Li Sheng Geng5,6 and Satoru Hirenzaki1

1Department of Physics, Nara Women’s University, Nara 630-8506, Japan
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We study theoretically the formation spectra of deeply bound pionic atoms expected to
be observed by experiments with high energy resolution at RIBF/RIKEN, and we discuss
in detail the possibilities to extract new information on the pion properties at finite density
from the observed spectra, which may provide information on partial restoration of chiral
symmetry in medium. We find that the non-yrast pionic states such as 2s are expected to be
seen in the (d,3He) spectra, which will be helpful to reduce uncertainties of the theoretical
calculations in the neutron wave functions in nucleus. The observation of the 2s state with
the ground 1s state is also helpful to reduce the experimental uncertainties associated in
the calibration of the absolute excitation energy. We find that the nuclear densities probed
by atomic pions are quite stable and almost constant for various atomic states and various
nuclei. Effects of the pion wave function renormalization to the formation spectra are also
evaluated.

Subject Index: 233

§1. Introduction

Properties of hadrons at finite density and temperature are extremely interesting
in the contemporary hadron-nuclear physics because they provide important hints
to explore the relation between the symmetry breaking pattern of QCD and the
observed hadron properties for the study of the QCD vacuum structure.1) One of
the good systems to observe in-medium hadron properties is the deeply bound pionic
atom,2),3) which is a π− atomic bound state hardly observed by X-ray spectroscopy,
such as the 1s or 2p states in heavy nuclei. The deeply bound states have been
experimentally produced in the (d,3He) reactions with Pb and Sn isotope targets at
GSI4)–7) by following theoretical predictions.8)–12) In the latest experiment,7) the
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energy shifts and widths of the 1s states have been precisely measured in three Sn
isotopes and isospin-density dependence of the s-wave pion-nucleus potential has
been deduced. From these observations, reduction of the chiral order parameter 〈q̄q〉
in nucleus was concluded. A recent model independent theoretical analysis supported
the way to extract the in-medium quark condensate from the pionic atom data
and showed a relation connecting the in-medium quark condensate to the hadronic
observables.13) For further studies of in-medium pion properties, new experiments
were proposed to make high precision spectroscopy of pionic atoms systematically
in RIBF/RIKEN.14),15) Thus, the pionic atom can be one of the best systems to
deduce the quantitative results for the meson properties and the partial restoration
of chiral symmetry in medium around normal nuclear density at zero temperature.

On the basis of these theoretical and experimental developments, we think that
we should consider now the possible future directions of the studies of the deeply
bound pionic atoms after 15 years from the discovery of the deeply bound pionic
atoms at GSI.4),5),16),17) We discuss the following points in this article in detail,
(i) Predictions of the pionic atom formation spectra by the (d,3He) reactions on

Sn and Te isotope targets proposed in Refs. 14) and 15) at RIBF/RIKEN,
(ii) Possibility to observe pion properties and to determine the value of the chiral

condensate at different nuclear density from ρ = 0.6ρ0 to obtain information on
the symmetry breaking parameters beyond the linear density approximation,

(iii) Possibility to determine the wave function renormalization factor introduced in
Refs. 13) and 18) from pionic atom observables,

(iv) Uncertainties included in theoretical calculations used to evaluate formation
cross sections,

with paying attention to the advantages of the simultaneous observation of the non-
yrast 2s bound state together with the deepest 1s state for the same nucleus in the
new experiments with better energy resolution.14),15)

In §2, we summarize the theoretical formalism used to connect the pion proper-
ties to the order parameter of the chiral symmetry and the wave function renormal-
ization factor. We also mention the sensitivities of atomic pion to nuclear densities
and the strong correlation between potential parameters. In §3, we show the numer-
ical results and discussions for the structure and formation of deeply bound pionic
atoms. Section 4 is devoted to the conclusion. We summarize the supplementary
formalisms and numerical results in Appendixes.

§2. Formalism

We introduce briefly the formula reported in Ref. 13) in this section as the guide
to deduce the information on chiral symmetry from the pionic atoms observables.
We also mention the sensitivities of atomic pions to nuclear density and the strong
correlation of the potential parameters. The theoretical formula used in this article
to calculate the structure and the formation cross sections of the pionic atoms are
summarized in Appendix A.
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2.1. Chiral dynamics of pionic atoms

The spontaneously broken chiral symmetry in vacuum is expected to be re-
stored partially in nuclear medium. The partial restoration of chiral symmetry takes
place with effective reduction of the chiral quark condensate 〈q̄q〉 in medium.19),20)

Experimental observation of the reduction of the quark condensate is not so triv-
ial, since the quark condensate is not a direct observable. In Ref. 7) Suzuki et al.
made use of in-medium extensions of the two well-known relations, Gell-Mann-Oakes-
Renner (GOR) relation21) and Tomozawa-Weinberg relation (TW),22),23) to connect
the quark condensate and the observables in pionic atoms, after having extracted the
values of the parameters in the optical potential from the observed energy shifts and
widths of the deeply bound atomic states. The b1 parameter of the optical potential
in Eq. (A.5) corresponds to the effective scattering length between pion and nucleus,
which can be expressed by an in-medium extended TW relation:

T
(−)
πA = −4πε1b1 =

ω

2f∗2π

, (2.1)

where f∗π is an in-medium pion decay constant. Assuming that the pion mass does
not change in nucleus, one could have an in-medium GOR relation

m2
πf

∗2
π = −2mq〈q̄q〉ρ, (2.2)

where mq is the isospin-averaged quark mass mq = (mu + md)/2 and 〈q̄q〉ρ is the
in-medium quark condensate. Using these two relations, Suzuki et al.7) could get a
connection between the experimental observation and the in-medium quark conden-
sate through b1 and f∗π .

The experimental observations of the deeply bound pionic states and the at-
tempt to connect the observables to 〈q̄q〉ρ based on the simple extension of the
in-vacuum relations have stimulated theoretical works to give stronger foundations
of the analysis. It was shown based on chiral perturbation theory18) and on a cor-
relation function analysis13) that the in-medium TW relation Eq. (2.1) can be valid
in the linear approximation of the isovector density, which leads to

bfree1

b1
=

(
f t

π

fπ

)2

, (2.3)

with the in-vacuum isovector πN scattering length bfree1 , the in-vacuum pion decay
constant fπ and the time component of the in-medium pion decay constant f t

π. Fur-
ther, it was found in a model-independent argument based on the operator relation
that there is a sum rule for the in-medium quark condensate.13) This sum rule can
be simplified at low density limit and gives a new scaling relation

〈q̄q〉ρ
〈q̄q〉 = Z∗1/2

π

(
f t

π

fπ

)
, (2.4)

where Z∗
π is the wave function renormalization for the in-medium pion (see also

Ref. 24)). The density dependence of the wave function renormalization can be
estimated at low density limit through the πN scattering amplitude:13)

Z∗
π = 1 − βρ, (2.5)
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with β = 2.17± 0.04 fm3. Combining Eqs. (2.3) and (2.4), one obtains a connection
between the in-medium quark condensate and the experimental observables as

〈q̄q〉ρ
〈q̄q〉 = Z∗1/2

π

(
bfree1

b1

)1/2

. (2.6)

The b1 parameter in Eq. (2.6) is obtained by the pionic atom data, and the rest on the
right-hand side, bfree1 and Z∗

π, are evaluated by the πN scattering. For completeness,
it is very good if one can determine also the wave function renormalization from
the deeply bound pionic atoms instead of using the in-vacuum πN scattering. We
discuss the possibility to determine the pion wave function renormalization factor
from the observation of the pionic atom states in §3.3. We also mention here that
the estimation of the higher order effects of the density from experimental data is
also interesting and important to explore the behavior of 〈q̄q〉ρ beyond the linear
density approximation.25)–27) The discussion of the possibility to deduce the higher
order effects from the observation will be given in §3.2.

2.2. Nuclear densities probed by atomic pion and Seki-Masutani correlations

As we will see in detail in §3.2, the pion in atomic states observed by the X-ray
spectroscopy is known to be only sensitive to narrow range of nuclear density, which
is almost independent of the nuclides and the atomic states.28) Hence, the structure
of the pionic atoms is essentially determined by the optical potential strength at the
effective nuclear density ρe probed by atomic pion. Namely, the series of optical
potentials which have the same potential strength at ρ = ρe equivalently provide
almost the same structure of the pionic atoms. As a consequence, we have a certain
relation between potential parameters of the optical potentials which reproduce the
atomic data well. We consider the s-wave part of the optical potential Vs as an
example which includes the important piece b1 to deduce the 〈q̄q〉ρ value and plays
the dominant role for the deeply bound s states.12) The s-wave optical potential for
the symmetric nuclei ρn = ρp is written as

2μVs(r) = −4π[ε1b0ρ(r) + ε2B0ρ
2(r)]. (2.7)

For all b0 and B0 values satisfying the relation

b0 +
ε2
ε1
ρeB0 = constant, (2.8)

the optical potential (2.7) has the same strength at ρ = ρe and provide almost
the same structure of the pionic atoms. Actually the correlations between poten-
tial parameters are found phenomenologically and called the Seki-Masutani (SM)
correlations.29)

The SM correlations are expressed as

b0 + αsB0 = βs = (−0.03 + 0.01i)m−1
π , αs � 0.23m3

π, (2.9)

and
c0 + αpC0

γ
= βp = (0.2 + 0.02i)m−3

π , αp � 0.37m3
π, (2.10)
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where

γ = 1 +
4
3
πλc0ρe. (2.11)

The parameters b0, B0, c0, and C0 determine the strength of the pion-nucleus optical
potential shown in Eq. (A.4). Seki and Masutani found that the series of potential
parameter sets, which satisfy the relations (2.9) and (2.10), reproduce the observed
data by the X-ray spectroscopy reasonably well. Namely, it is very difficult to fix the
unique set of potential parameters from the data taken by the X-ray experiments.
In the modern χ2 analyses of the data, one can expect the unique determination
of the potential parameters and, actually, one may find literatures which report the
unique determination. However, there still remain the strong SM correlations, and
the χ2-values in these analyses have the long deep valley structure along the SM
relations of potential parameters.

We can find from Eqs. (2.8) and (2.9) as

ρe =
ε1
ε2
αs, (2.12)

and the value of αs determined by the analyses of atomic data indicates

ρe � 1
2
ρ0. (2.13)

Hence, it means that the SM correlation found phenomenologically is the consequence
of the fact that the nuclear density probed by various pionic atoms observed by X-
ray is always close to 1

2ρ0. This feature is also found for some of the deeply bound
pionic states,3),28) and thought to be one of the robust features of pionic states. In
the early stage of the exploration of deeply bound pionic atoms, this robustness was
an advantage to deduce the pion properties at ρe � 1

2ρ0, however, to make a step
further, we need to investigate the possibility to deduce the pion properties precisely
not only at ρe � 1

2ρ0 but also at various nuclear densities. If we can determine 〈q̄q〉ρ
for various densities, it is expected to provide important experimental information
for the studies of the chiral condensate beyond the linear density approximation.

§3. Numerical results and discussion

In this section, we investigate how we can deduce the 〈q̄q〉 value at finite density
precisely from pionic atom data. As already mentioned, 〈q̄q〉 was determined in
Ref. 7), however, the recent theoretical work provide a different formula including
the Z∗

π factor as introduced in §2.1. In addition, the 〈q̄q〉 value was determined only
at ρ ∼ 0.6ρ0 because of the limited sensitivity of the observed pionic atom data
to nuclear density, which is related to Seki-Masutani correlations to the potential
parameters as mentioned in §2.2. Thus, we study theoretically these points to find the
proper way to deduce the 〈q̄q〉 value for various densities from the future observations.
We also pay attention to the possible simultaneous observation of the non-yrast 2s
state with the deepest 1s state.14),15)
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3.1. (d,3He) spectra in experiments

We first show the comparison of the theoretical calculations with the latest data
of the pionic atom formation in Sn isotopes. In Fig. 1, we show the calculated results
together with experimental data reported in Ref. 7). The instrumental resolution is
assumed to be ΔE = 394 keV FWHM (Full Width Half Maximum), which is the
same as the data.7) We added the constant background to the calculated results and
then scaled the calculated spectra to reproduce the strength of the resonance peak
of the 1s state formation in the experimental data for this resolution. We also show
the calculated results using the same theoretical model with the improved resolution
ΔE = 150 keV FWHM which is expected to be archived in the planned experi-
ments.14),15) We find that the theoretical calculations reproduce the experimental
data reasonably well and provide the reliable interpretation of the spectra, which is
an essential foundation of the research activity to deduce the pion properties from
the (d,3He) spectra. And as we can see from the figure, we conclude that the pio-
nic 2s state can be observed as a peak structure together with the 1s state in the
experiments with the better resolution ΔE = 150 keV FWHM. This result helps to
propose the new experimental activity and motivate us to proceed the theoretical
analyses reported in this article.

Simultaneous observation of the non-yrast 2s state with the ground 1s state is of
essential importance in the experimental viewpoints. We expect smaller experimental
uncertainty in the energy difference between the two states while larger ambiguities
are usually associated in the calibration of the absolute excitation energy.

In order to resolve the two states 1s and 2s in the excitation spectrum, the
spectral energy resolution ΔE must be improved by a factor of about two from ∼400
keV to ∼200 keV. The resolution is governed by two major contributions, namely
the incident beam energy spread and the energy loss in the target. The latter can be
controlled by changing the target thickness. However, adaptation of thinner target
results in smaller statistical merits or in longer data accumulation periods unless the
beam intensity is increased as compensation.

A new experimental approach is thus started15) in the RI beam factory, RIKEN30)

to achieve improved resolution of 200 keV with much higher statistics. The experi-
ment makes full use of the very high intensity deuteron beam of ∼ 1× 1012/second,
which is more than 30 times higher than the previously available intensity in the SIS-
18 accelerator in the GSI. Thus, the statistical merit is still huge even if the adopted
target thickness of 5 mg/cm2 is factor of three smaller than the previous experiments,
and the larger luminosity is essential for systematic study over wide range of nuclei.
The other contribution in the energy resolution, the incident beam energy spread, is
∼ 5 times larger in the RIBF. Elaborate study on the accelerator, the beam transfer
line, and the spectrometer is ongoing to establish a dispersion matching beam optics
where the contribution of the beam energy spread is suppressed in the excitation
spectra.31)

Simultaneous observation of the 2s state with the 1s state is important also
in the theoretical viewpoints. As shown in detail in Appendix B, the uncertainties
of the theoretical calculation of the pionic atom formation cross sections due to
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Fig. 1. The (d,3He) spectra for the formation of the deeply bond pionic states in Sn isotopes as

indicated in the figure. The solid and dashed lines denote the theoretical calculations, which

include only bound state contributions, while the histogram shows observed experimental data.7)

The instrumental energy resolution is assumed to be ΔE = 394 keV FWHM for the dashed

lines and 150 keV FWHM for the solid lines. The calculated results are scaled to reproduce the

strength of the 1s state formation peak in the observed spectra for ΔE = 394 keV FWHM.

the neutron wave function and the nuclear excited levels could be an obstacle to
deduce the properties of pion by the precision measurements. Thus, as a practical
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Fig. 2. Calculated 122Sn(d,3He) spectra for the formation of the pionic bound states at Td =

500 MeV are shown as functions of the reaction Q-value, where the FO factors in Table V

are used. The dominant subcomponents are also shown as indicated in the figure. Instrumental

energy resolution is assumed to be 150 keV FWHM. The vertical line indicates the threshold

Q = −141.6 MeV.

way to reduce the uncertainties and deduce the reliable results, we should make use
of the recoilless kinematics to populate the plural number of pionic states coupled
with the same neutron hole state as dominant contributions in the (d,3He) spectra.
And by comparing the strength of these contributions, we can effectively remove the
ambiguities due to the structure of the target nucleus, the nuclear excited levels,
and the neutron wave functions. In this context, the simultaneous observation of
1s and 2s pionic states coupled with the (3s1/2)−1

n neutron hole is very interesting.
We show the calculated 122Sn(d,3He) spectra in Fig. 2. This reaction is proposed in
Refs. 14) and 15). As we can see form the figure, the 1s and 2s pionic states coupled
with the same (3s1/2)−1

n neutron hole state can be seen as the clear peak structures
with the realistic energy resolution ΔE = 150 keV FWHM. Thus, the 122Sn(d,3He)
reaction can be one of the good reactions for our purpose. The expected spectra for
Te isotopes are summarized in Appendix D.

3.2. Determination of b1 parameter at various nuclear densities

As shown in Ref. 7), the observed binding energies and widths of bound pions
have been used to determine the strength of the s-wave isovector potential parame-
ter (b1). The important points we should address here are to find out the way to
determine b1 value at various densities to know its density dependence beyond the
linear form.

First, we consider the effective nuclear density probed by atomic pion.28) The
effective nuclear density ρe is defined as the nuclear density at the radial coordinate
re as ρe = ρ(re), where the overlapping density,

S(r) = ρ(r) | Rnl(r) |2 r2, (3.1)
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Fig. 3. Calculated peak positions re (upper frame) and the corresponding effective nuclear densi-

ties ρe (lower frame) for the observed pionic atom states by X-ray experiments are plotted as

functions of nuclear mass number A. The quantum numbers of each atomic state are indicated

in the figure.

has the maximum value. Here, Rnl(r) is the radial wave function of the pionic atom
in a state of (nl). The definition of the overlapping density S(r) indicates that it is
expected to evaluate the sensitivity of the iso-scalar s-wave optical potential term to
the energy eigenvalues in the sense of the first order perturbation theory. In Fig. 3,
we show the calculated re and ρe systematically for the pionic atom states which have
been observed by the experiments of the X-ray spectroscopy, so far.32) As shown
in the figure, re increased with the nuclear mass number A monotonically, however
ρe is almost constant (‘saturated’) except for the very light nuclear cases. These
features, which are almost independent of the quantum numbers of the states, can
be understood by the pocket structure of the potential for the atomic pion and the
localization of the overlapping densities there as can be seen in Appendix C. Thus,
all pionic atoms observed by the X-ray experiments probed almost the same nuclear
density nearly independent of the nuclide and the quantum numbers of the pion
except for the pionic states in the light nuclei. Thus, it seems that all observations
of these states only provide pion properties around 0.6ρ0. To obtain pion properties
at various nuclear densities, it will be necessary to observe other states.
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Fig. 4. Peak positions re (upper frame) of the overlapping densities S(r) and the corresponding

effective nuclear densities ρe (lower frame) of 121Sn.

Then, we consider the atomic states in 121Sn up to n = 6 including the deeply
bound and non-yrast states, which cannot be observed in X-ray experiments. When
we use the Coulomb wave functions for bound pions, ρe distributed in relatively
wide range 0.05 � ρe � 0.16 [fm−3] depending on the bound states. As naturally
expected, the states with smaller orbital angular momentum 
 tend to probe the
larger nuclear densities. As the realistic cases, we show the results calculated with
the optical potential in Fig. 4. ρe and re only change inside the smaller range than
those calculated with Coulomb potential only. This behavior can be also understood
by the picture of the potential pocket and the localization of the overlapping densities
at the nuclear surface. Thus, we find that the effective nuclear density is rather stable
(0.08 � ρe � 0.11 [fm−3]) even for the non-yrast states and the deeply bound states.

We mention here that an interesting tendency appeared in Fig. 4 that the states
with higher n for a fixed 
 provide larger ρe values contrast to the usual intuitions.
This is because of the larger tunneling effects to the central soft core for more lightly
bound states. Thus, the sensitivity of pion in the higher n states moves to higher ρ,
however at the same time, the absolute magnitudes of the strong interaction effects
are reduced rapidly as n increases. For example, we may think that it is better to
observe the 4s and 4f states to probe pion properties in different nuclear densities
from Fig. 4. This will be wrong since the strong interaction effects are too small for
both states and the p-wave interaction plays dominant role in f states12) and hides
the b1 effects even they may provide information for different ρ.

Hence, we find that the observation of the binding energies of the pionic atoms
will provide the pion properties near ρ ∼ 0.6ρ0. Thus, to deduce the density depen-
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Fig. 5. Contour plots of the binding energies (left) and widths (right) for the 1s (upper) and 2s

(middle) states, and the difference of 1s and 2s states (lower) in 121Sn in the b0-Re(B0) plane.

The dashed lines depicted by SM are the parameter sets satisfying the Seki and Masutani

correlation.29) The numbers in the figure indicate the values of the binding energy and width

of contour lines in unit of keV.

dence of the b1 parameter, we require the extremely higher energy resolution data
as we will see later in the discussion with energy contour plots in this section.

We, then, consider the contour plots of the binding energies B.E. and widths Γ
of 1s and 2s pionic states in π−−121Sn system. By the contour plots of eigenenergies,
we can see the difference of the sensitivities to the nuclear density as the deviations
from the SM correlation and we can see the required energy resolution to distinguish
the pion properties at different ρ. The contour plots of the differences of the binding
energy and width of 1s and 2s states are also shown, which could be used to deduce
the systematic errors due to the calibration of the absolute binding energies and the
uncertainties of the neutron distribution of 121Sn. We mention here that the binding
energies and widths of the 1s states in Sn isotopes were precisely determined in the
last experiment.7) For example, the binding energy and width of the 1s state in
123Sn are B.E.= 3.744 ± 0.018 [MeV] and Γ = 0.341 ± 0.072 [MeV].7)

We show the numerical results in Fig. 5 in the b0-ReB0 plane together with the
SM correlation line Eq. (2.9). We find that the contour lines for the binding energy
of 1s state are almost parallel to the SM line. Since the slope of the contour lines
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Fig. 6. Contour plots of the binding energies (left) and widths (right) for the 1s (upper) and 2s

(middle) states, and the difference of 1s and 2s states (lower) in 121Sn in the b1-Im(B0) plane.

The numbers in the figure indicate the values of the binding energy and width of contour lines

in unit of keV.

in the b0-ReB0 plane provides the information of the nuclear density probed by the
atomic pion as shown in Eqs. (2.9) and (2.12), this feature indicates that the nuclear
density mainly probed by the 1s state is very close to αs as shown in Eq. (2.12), and
that the precise measurements of the 1s state provide the medium effects of pion at
αs. In addition, it is very hard to determine the unique parameter set (b0, ReB0) on
the SM line only from the observation of 1s state.

On the other hand, the contour lines of the 2s state show the slightly different
slope from that of the SM line. This behavior indicates that the properties of the
2s state are determined by the pion properties at slightly different nuclear density
from αs as indicated by the result shown in Fig. 4. And we may be able to find the
unique parameter set (b0, ReB0) by using the both B.E. of 1s and 2s states with
high precision. The plots of the difference of the binding energies of 1s and 2s states,
which is expected be observed with high precision without systematic errors due to
the absolute energy calibration, show the similar behavior to that of the 1s state
because the larger binding energy values of the 1s states dominate the behavior of
the plot. We may also expect that the uncertainties due to the neutron distribution
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are partly cancelled in the plots of the energy differences.
In principle, to determine the b1 value for different ρ by observing the atomic

states, we need to distinguish the nuclear density observed by these states, which will
be equivalent to fixing the unique set of {b0, ReB0} by data, and then to determine
b1 value independently for each state. Thus, the experimental data with very high
precision are necessary to obtain b1 values at various ρ as indicated in Fig. 5.

The contour plots of the widths show different behavior from those of the binding
energies, and the contour lines are not parallel to the SM line for all three cases shown
in the right panels in Fig. 5. To understand this behavior intuitively is a little difficult
since this is the effect to the imaginary eigenvalues from the modifications of the real
part of the potential. However, we can naively expect that the ρ2 behavior of the
imaginary potential can provide the different sensitivity of the widths of the pionic
states from that of the binding energies. The contour plots of widths indicate that
the precise determinations of the pionic widths will provide the constraints to the
potential parameters, though the determinations of the widths are more difficult in
general than those of the binding energies.

In Fig. 6, we show another contour plot in the b1-ImB0 plane. The b1 parameter
is one of the most important parameters and has the very close relation to 〈q̄q〉, and
the ImB0 parameter is the leading term to determine the width Γ in the s-states.
The contour of the binding energy indicates the reasonable independence of B.E. on
ImB0, while the contour of the width indicates the complexity of the behavior of
the width which depends strongly both on ImB0 and b1. The contour of the binding
energy shows a clear relation between the accuracy of the binding energy data and
the b1 parameter determination.

One possible way to deduce the b1 values for different ρ is the parameter search
using the most precise experimental data of the atomic s states, which are most
sensitive to the s wave potential parameters,12) allowing the different value of b1
for each states. Since this procedure, in principle, requires to distinguish the nu-
clear densities observed by the atomic states to determine the different b1 values for
these states independently, the precisions of the data should be so high that we can
clearly determine the b0 and B0 parameter uniquely and, thus, the feasibility of this
procedure highly depends on the precision of the pionic atom data.

3.3. (d,3He) spectra and observation of Z∗
π

The purpose of this section is to investigate the possibilities to determine the
wave function renormalization factor Z∗

π shown in §2.1 from the observation of the
formation cross section of the deeply bound pionic atoms. The basic idea is to observe
the change of the cross section due to the modification of the pion wave function φlπ

as
φlπ(r) → φR

lπ(r) = Z∗1/2
π φlπ(r), (3.2)

due to the renormalization factor Z∗
π originated from the energy dependence of the

pion selfenergy. The modification of the wave function causes the change of the cross
section as shown in Appendix A. Z∗

π is associated with the pion selfenergy in nuclear
medium and, hence, has the ρ(r) dependence as shown in Eq. (2.5) in contrast to
that appeared in the standard textbook of field theory. Due to the ρ(r) dependence
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Fig. 7. Pion radial density distributions |Rπ(r)|2 are shown as functions of the radial coordinate

r for 1s and 2s states in 121Sn. Solid and dotted lines show the pion density evaluated by the

radial part of the renormalized (φR) and unrenormalized (φ) wave functions defined in Eq. (3.2),

respectively. The vertical line indicates the nuclear half radius R = 5.4761 fm.

Table I. The calculated effective numbers of [(1s)π ⊗ (3s1/2)
−1
n ] and [(2s)π ⊗ (3s1/2)

−1
n ] subcompo-

nents by renormalized and unrenormalized pion wave functions defined in Eq. (3.2) in PWIA.

The ratios of the effective numbers of 1s and 2s pionic states are also shown.

pion wave function Neff(1s) Neff(2s) Neff(1s)/Neff(2s)

φR
lπ (r) 1.36 × 10−1 2.92 × 10−2 4.66

φlπ (r) 1.41 × 10−1 3.00 × 10−2 4.70

Table II. Same as Table I except for the results in DWIA.

pion wave function Neff(1s) Neff(2s) Neff(1s)/Neff(2s)

φR
lπ (r) 2.05 × 10−2 4.09 × 10−3 5.01

φlπ (r) 2.08 × 10−2 4.17 × 10−3 4.99

of Z∗
π, we can expect to have different effects of Z∗

π for the formation cross sections
of different subcomponents [
π ⊗ j−1

n ] in general.
We show in Fig. 7 the pion radial densities of 1s and 2s states in 121Sn calculated

by φR and φ in Eq. (3.2). Because Z∗
π is one outside the nucleus, the pion densities

are modified only inside the nucleus 0 ≤ r � 8 fm as can be seen in Fig. 7. In Fig. 8,
we show the contributions of (3s1/2)−1

n neutron-hole state to the 122Sn(d,3He) spectra
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Fig. 8. Contributions of the (3s1/2)
−1
n neutron hole state to the 122Sn(d,3He) spectra for the for-

mation of the pionic bound states are shown as functions of the reaction Q-value. The FO and

FR factors are fixed to be 1. The solid line shows the calculated results with the renormalized

pion wave function (φR) and the dotted line that with the unrenormalized wave function (φ)

defined in Eq. (3.2). The vertical line indicates the threshold Q = −141.6 MeV.

for the formation of pionic atoms and we find the effects due to Z∗
π factor are tiny.

To estimate the effects of Z∗
π to the observables, we show the calculated effective

numbers for the dominant subcomponents [(1s)π ⊗ (3s1/2)−1
n ] and [(2s)π ⊗ (3s1/2)−1

n ]
in Tables I and II. We find that the ratios Neff(1s)/Neff(2s) of Neff of pion 1s and
2s states formation, which are expected to be good quantities to deduce the pion
properties independent of the uncertainties of the neutron wave function as discussed
in Appendix B, change only around 1% for PWIA and 0.4% for DWIA for results
with φR and φ. These numbers seem to be too small to observe experimentally at
present. Actually, the variation of the ratio of effective number Neff(1s)/Neff(2s) due
to the uncertainties of neutron wave function is larger and is around 10% as discussed
in Appendix B. Hence, it seems difficult to deduce new information on Z∗

π from the
observed spectra by simply using the ratio of 1s and 2s states formation strength.
We mention here that the effects of Z∗

π in the ratios of Neff are suppressed because
the pionic 1s and 2s states probe almost the same nuclear density as described in
§3.2 and the Z∗

π effects for both states are cancelled out in the ratio. The idea to
extract new information on Z∗

π from observables is considered to be still relevant.
Finally, we also investigate the sensitivity of the neutron pick-up reactions to the

optical potential parameters which satisfy the Seki-Masutani correlation Eq. (2.9).
Since the effective numbers calculated by Eq. (A.10) have different φlπ dependence
from the overlapping density Eq. (3.1), we may have chance to distinguish the
potential parameters with Seki-Masutani correlation by the formation cross sec-
tions. We consider three sets of b0 and ReB0 parameter which are, {b0, ReB0}
= {−0.0185,−0.05}, {−0.0300, 0.00}, and {−0.0415, 0.05}, where parameters are in
pion mass units, and we find that there appear some discrepancies in the radial part
of the integrand of Eq. (A.10) around 0 ≤ r � 4.5 fm. Since the nuclear half radius
is taken to be 5.4761 fm in this case, the discrepancy only exists deep inside the nu-
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cleus which will be significantly suppressed by the distortion factor. Thus, we expect
that the effects to the formation rate are extremely small. We have confirmed the
expectation by numerical calculation which shows that the variation of the ratios of
the effective numbers of 1s and 2s states for these potential parameter sets is less
than 1%.

§4. Conclusion

In this article, we have shown the newly calculated (d,3He) spectra on the 122Sn,
122Te, 126Te targets for the formation of the pionic atoms.14),15) On the basis of these
results, we have investigated the possibilities to deduce the new information on the
〈q̄q〉 value at various nuclear densities and on the wave function renormalization
factor Z∗

π paying attention to the recent theoretical and experimental developments
of the studies of the pionic atoms.

We have found that the formation spectra on the 122Sn target are suited for the
observation of the pionic states because of the simple neutron level structure and
large occupation probability of 3s1/2 neutron state. However, the (d,3He) reaction
on Te isotopes could include the extra difficulties due to the complex neutron level
structure and should be considered carefully for the experiments.

We have also found that the nuclear density probed by the atomic pion is dis-
tributed only inside the narrow region around ρ = 0.6ρ0 even for the deeply bound
pionic states and the non-yrast states. This feature had an advantage in early stage
of the exploration, however, it requires now the experimental data with excellent
precision to deduce the information on 〈q̄q〉 at various nuclear density as shown in
the contour plot studies in §3.2.

As for the uncertainties of the calculated cross sections and the determination
of Z∗

π, we have found that the ratio of the subcomponents coupled with the same
neutron hole state is a good index relatively free from the systematic errors due to the
neutron wave function. This observation is possible in experiments in RIBF/RIKEN.
However, the renormalization factor Z∗

π changes the pion wave function inside the
nucleus slightly and the effects to the cross section are masked by the distortion
factor. Since the nuclear densities probed by atomic pions are around 0.6ρ0, the
effects of Z∗

π for various pionic atoms are almost the same and are cancelled out
in the ratio of the formation cross sections. Hence, the observation of Z∗

π is rather
difficult at present. However, the idea to deduce Z∗

π information from observables is
important and the further studies are required.

We think that we need to consider the pionic atoms in exotic nuclei to obtain
the pion properties at various nuclear densities and the information on pion wave
function renormalization. For example, the existence of the pionic nuclear states due
to the strong Coulomb attraction33) and due to the thick neutron skin effects34) were
predicted theoretically. Pionic atoms in unstable nuclei were studied in various cases
in Refs. 35)–37). In these systems with exotic nuclei, we may have the different sen-
sitivities of pions to nuclear densities and the different effects of the renormalization
factor to the formation spectra. We will leave the study of these systems as future
works.
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Appendix A
Theoretical Formula for Structure and Formation of Pionic Atoms

The theoretical formula to calculate the structure and formation of the pionic
atoms2),3),8)–12) are summarized in this appendix. The energy spectra and wave
functions of the pionic atoms can be obtained theoretically by solving the Klein-
Gordon equation,

[−∇2 + μ2 + 2μVopt(r)
]
φ(r) = [E − Vcoul(r)]

2 φ(r), (A.1)

where μ is the pion-nucleus reduced mass, E the eigen energy written as E = μ −
Bπ− i

2
Γ with the binding energy Bπ and the width Γ of the atomic states. The Vcoul

is the Coulomb potential with a finite nuclear charge density distribution ρch(r):

Vcoul(r) = −e2
∫

ρch(r′)
|r − r0|dr

0. (A.2)

The charge density distribution is written by the Woods-Saxon form as,

ρch(r) =
ρch0

1 + exp[(r −Rch)/ach]
. (A.3)

The parameters of the charge distributions are taken from Ref. 38) and summarized
in Table III for the nuclei considered in this article.

The Vopt in Eq. (A.1) is the pion-nucleus optical potential, which we assume to
be of the Ericson-Ericson type,39)

2μVopt(r) = − 4π[b(r) + ε2B0ρ
2(r)] + 4π∇ · [c(r) + ε−1

2 C0ρ
2(r)]L(r)∇, (A.4)

with

b(r) = ε1[b0ρ(r) + b1[ρn(r) − ρp(r)]], (A.5)
c(r) = ε−1

1 [c0ρ(r) + c1[ρn(r) − ρp(r)]], (A.6)

L(r) =
{

1 +
4
3
πλ[c(r) + ε−1

2 C0ρ
2(r)]

}−1

, (A.7)

where ε1 and ε2 are defined as ε1 = 1 +
μ

M
and ε2 = 1 +

μ

2M
with the nucleon mass

M . As a standard parameter set, we use the potential parameters listed in Table IV,
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Table III. Radius parameters Rch of the charge distributions taken from Ref. 38). The diffuseness

parameters are fixed to be ach = t/4ln3 for all nuclei with t = 2.30 fm.

nuclide 116Sn 120Sn 122Sn 124Sn 122Te 126Te

Rch [fm] 5.4173 5.4588 5.4761 5.4907 5.5368 5.5617

Table IV. Pion-nucleus optical potential parameters29) used in the present calculations.

b0 = −0.0283m−1
π b1 = −0.12m−1

π

c0 = 0.223m−3
π c1 = 0.25m−3

π

B0 = 0.042im−4
π C0 = 0.10im−6

π

λ = 1.0

which are taken from Ref. 29). We use the Woods-Saxon form for the distributions
of proton and neutron centers and assume the same shape for the both distributions,

ρ(r) = ρp(r) + ρn(r) =
ρ0

1 + exp[(r −R)/a]
, (A.8)

where R and a are the radius and diffuseness parameters, which are determined
from the parameters Rch and ach of the charge distributions ρch by the prescription
described in Ref. 40). For the calculations of the bound states, we use the distribution
parameters R and a same as the target nuclei of the (d,3He) formation reaction.
The ρ0 is obtained by the correct normalization of the mass number of the daughter
nucleus.

We can calculate the pionic atom formation cross sections in the effective number
approach8),9) using the pionic atom wave function φlπ , the binding energy Bπ, and
the width Γ obtained by solving the Klein-Gordon equation Eq. (A.1). The (d,3He)
reaction cross section in the laboratory frame is expressed as

(
dσ

dΩdE

)
dA→3He(A−1)π

=
(
dσ

dΩ

)
dn→3Heπ

×
∑

[lπ⊗j−1
n ]

Γ

2π
1

ΔE2 + Γ 2/4
Neff , (A.9)

with

Neff =
∑

JMms

∣∣∣
∫
drdσχ∗

f (r)ξ∗1/2,ms
(σ)[φ∗lπ ⊗ ψjn(r, σ)]JMχi(r)

∣∣∣2. (A.10)

Here,
(

dσ
dΩ

)
dn→3Heπ

indicates the elementary differential cross section at forward an-
gles for the d+ n→ 3He + π− reaction in the laboratory system, which is extracted
from the experimental data of the p+ d→ π+ + t reaction assuming charge symme-
try.8),9) ΔE is defined as ΔE = Q + mπ − Bπ + Sn − 6.787 MeV for the (d,3He)
reaction with the pion mass mπ, the pion binding energy Bπ, the neutron separation
energy Sn, and the reaction Q-value. Γ denotes the width of the bound pionic state.

For the neutron wave function ψjn , we adopt the harmonic-oscillator (HO) wave
function in this article for simplicity. We also use the calculated neutron wave
function with Woods-Saxon type potential to check the theoretical uncertainties of
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the cross sections in Appendix B. We have used the oscillator parameter given by
�ω = 40A− 1

3 MeV for the harmonic-oscillator wave functions, with A the nuclear
mass number. The spin wave function is denoted as ξ1/2,ms

(σ), and we take the spin
average with respect toms so as to take into account the possible spin direction of the
neutrons in the target nucleus. χi and χf express the initial and final distorted waves
of the projectile and the ejectile, respectively. We use the Eikonal approximation
and replace χi and χf according to

χ∗
f (r)χi(r) = exp(iq · r)D(z, b), (A.11)

where the distortion factor D(z, b) is defined as

D(z, b) = exp
[
− 1

2
σdN

∫ z

−∞
dz′ρA(z′, b) − 1

2
σhN

∫ ∞

z
dz′ρA−1(z′, b)

]
. (A.12)

Here, the deuteron-nucleon and 3He-nucleon total cross sections are denoted as σdN

and σhN . The functions ρA(z, b) and ρA−1(z, b) are the density distributions of
the target and daughter nuclei at beam-direction coordinate z with impact para-
meter b. The effective number approach is sometimes called the distorted wave
impulse approximation (DWIA), and also called the plane wave impulse approxima-
tion (PWIA) in case we neglect the distortion effects in Eqs. (A.11) and (A.12) as
putting D(z, b) = 1.

In order to predict the spectrum of the (d,3He) reactions, we need to take into
account the realistic ground-state configurations of the target nuclei, the excitation
energies, and the relative excitation strengths leading to the excited states of the
daughter nuclei. To obtain a realistic total strength for the neutron pick-up from
each orbital, we need to normalize the calculated effective numbers using the neutron
occupation probabilities in the ground state of the target nucleus. The occupation
probabilities are obtained from the analyses of the AZ(d, t)A−1Z reaction data and
are not equal to one in general.

As for the excited levels of the daughter nuclei, we use the experimental exci-
tation energies and strengths obtained from the AZ(d, t)A−1Z reaction. Since the
single-neutron pick-up reaction from a certain orbital in the target can couple to sev-
eral excited states of the daughter nuclei, we need to distribute the effective numbers
among these excited levels of the daughter nuclei in proportion to the experimen-
tal strengths. Thus, the effective number for the pionic state (
π) formation with
the N -th daughter nucleus excited state coupled to a single neutron pick-up from a
neutron orbit jn is written

Neff(
π ⊗ (jn−1 )N ) = Neff(
π ⊗ jn−1 ) × FO(jn) × FR((j−1
n )N ), (A.13)

where Neff(
π ⊗ jn−1 ) is the effective number defined in Eq. (A.10), FO the nor-
malization factor due to the occupation probabilities of the neutron states jn in the
target nucleus, and FR is the relative strength of the N -th excited states in the
daughter nucleus coupled to the single neutron pick-up from the state jn. The FO

and FR of some medium heavy nuclei are compiled in Tables V, VI, IX, and X given
in Appendixes B and D, and also in Refs. 11) and 12).
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Appendix B
Nuclear Structure Dependence of Formation Cross Section

of Pionic Atoms

We discuss in this appendix the uncertainties of the effective number approach
used to calculate the cross sections. As we can see from the data in Ref. 7) and the
theoretical prediction in Ref. 12), the effective number approach works well to predict
the shape of the (d,3He) spectra, however, it fails to predict the absolute magnitude
of the cross sections correctly. Thus, it is important to know the limitation of the
applicability of this approach. This is also important to apply this approach to
deduce Z∗

π from experimental data as discussed in §3.3.
We show first the dependence of the calculated cross sections on the neutron

wave functions ψn in targets. As mentioned in Appendix A, we adopted the HO
wave functions for simplicity in this article. We calculate here the formation spectra
using another set of ψn obtained by a theoretical potential Set OB in Ref. 41).
The both neutron wave functions in 3s1/2 state in 120Sn are shown in Fig. 9 as
an example. The 120Sn target nucleus was used in the latest experiment7) and
considered in the theoretical calculations11),12) before. The 3s1/2 neutrons have
dominant contributions to the cross section coupled with pionic s-states. We can
see in Fig. 9 that the both wave functions show similar behavior, however the wave
function calculated by the potential in Ref. 41) has a little longer tail than that of the
HO. Because of the distortion effects, the long range tail part of the wave function
can be important for evaluating the formation rate.

Using these wave functions, we have calculated the 120Sn (d,3He) spectra for the
pionic atom formation and showed the results in Fig. 10. The FO and FR factors
appeared in Eq. (A.13) are taken from Table IV in Ref. 12). We found that the cross
sections calculated with ψn of Ref. 41) are about factor 3 larger than those with the
harmonic oscillator. The theoretical calculations in Refs. 11) and 12), which adopted
the same harmonic oscillator wave functions for ψn with different parameterization
of proton and neutron density distributions in Vopt, show the similar values for
cross sections with the present case of HO wave functions, while the experimental
result in Ref. 7) shows the smaller strength than theoretical calculations. We think
that the tail part of the wave function is significantly important to evaluate the
formation cross sections because the inner part of the wave function is masked by
the distortion effects. And at the same time, it will be very difficult to obtain the
tail of ψn precisely and to make the accurate predictions of the absolute values of the
formation cross sections. On the other hand, the shape of the spectra is relatively
robust and is insensitive to ψn as shown in Fig. 10. Thus, it is better to use the ratio
of the formation rates of 1s and 2s, for example, to deduce the information of Z∗

π

than to use the absolute peak height of each state to reduce the uncertainties due
to ψn. The variation of the ratio of the effective numbers for the subcomponents
[(1s)π⊗(3s1/2)−1

n ] and [(2s)π⊗(3s1/2)−1
n ] due to the different neutron wave functions

is around 10% for the case in Fig. 10.
We then consider the uncertainties due to the neutron occupation probability

(FO) in the target nucleus and the relative strength of the excited levels (FR) of the
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Fig. 9. Neutron distributions of jn = 3s1/2

state in 120Sn by the harmonic oscillator

wave function (dashed line) and the calcu-

lated wave function by the potential (set

OB) in Ref. 41) (solid line).

Fig. 10. Expected spectra of the 120Sn(d,3He)

reaction for the formation of deeply bound

pionic atoms at Td = 500 MeV plotted as

functions of the reaction Q-value. The har-

monic oscillator (dashed line) and the theo-

retical (solid line) neutron wave functions41)

are used. Instrumental energy resolution is

assumed to be 150 keV FWHM. The verti-

cal line indicates the threshold Q = −141.9

MeV.

daughter nucleus. We summarize FO and FR together with the excited energies (Ex)
in Tables V and VI. FR and Ex of 119,123Sn can be found in Table IV of Ref. 12).
We show three sets of FO values in Table V to estimate the uncertainties of the FO

values. Within these neutron states, it is known that the s1/2 and d5/2 states have
dominant contributions to the (d,3He) spectra in recoilless kinematics for the pionic
atom formation. As we can see from Table V, the calculated results by RMF model
with and without including the possibility of nuclear deformation (F d

O and F s
O) show

qualitatively the same results. This fact indicates that these Sn isotopes are almost
spherical nuclei. In addition, FO obtained from experimental data also show similar
results. On the other hand, the results of Te isotopes show significantly different
and complicated features as shown in Appendix D. Thus, the uncertainties due to
FO for Sn isotopes, which are roughly 20–30%, are much smaller than those for Te
isotopes. This ambiguity, however, does not affect the ratio between subcomponents
with the same neutron hole state.

As for the excited states of the daughter nuclei of the (d,3He) reaction, the
relative strength FR is listed in Table VI for 121Sn and in Table IV of Ref. 12) for
119,123Sn. It is difficult to evaluate the systematic errors of these numbers. We
can say, however, that the strengths of the excited states of Sn isotopes are suited
for the pionic atom formation because of their simplicity. The only 2d5/2 excited
level of 119,121,123Sn isotopes has a little complex structure including a few levels,
however, there is a clear dominant level with the largest value of FR even for the
d5/2. On the other hand the excited levels in 121,125Te include several levels of the
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Table V. Normalization factors, which correspond to the occupation probability of each neutron

state for the ground state of the target nucleus, are shown for 120Sn, 122Sn, and 124Sn nuclei.

The normalization factors indicated by FO are evaluated by experimental data.12), 42) F s
O and

F d
O are obtained by the theoretical calculations of RMF model.43) F s

O is calculated by assuming

the spherical shape of nuclei, and F d
O by including the deformation effects. The numbers with

asterisk for 1g7/2 and 1h11/2 states are estimated so as to satisfy the normalization of total

neutron number in the valence shells by assuming the same occupation probabilities for both

states.

FO

Neutron

orbit

120Sn 122Sn 124Sn

3s1/2 0.70 0.73 0.80

2d3/2 0.50 0.51 0.69

2d5/2 0.94 0.86 0.94

1g7/2 0.70 0.67∗ 0.70∗

1h11/2 0.42 0.67∗ 0.70∗

F s
O

Neutron

orbit

120Sn 122Sn 124Sn

3s1/2 0.54 0.65 0.78

2d3/2 0.64 0.77 0.85

2d5/2 0.93 0.95 0.96

1g7/2 0.95 0.98 0.97

1h11/2 0.28 0.33 0.47

F d
O

Neutron

orbit

120Sn 122Sn 124Sn

3s1/2 0.53 0.67 0.78

2d3/2 0.68 0.76 0.85

2d5/2 0.94 0.95 0.96

1g7/2 0.97 0.97 0.97

1h11/2 0.24 0.35 0.45

Table VI. Excitation energy (Ex) and relative strength (FR) of each excited level in 121Sn deter-

mined from the experimental data of Ref. 42).

121Sn

Neutron hole orbit Ex [MeV] FR

3s1/2 0.06 1.00

2d3/2 0.00 1.00

2d5/2 1.11 0.65

1.37 0.35

1g7/2 0.90 1.00

1h11/2 0.05 1.00

same quantum numbers with comparable strength as shown in Appendix D, which
makes the reaction spectra rather complicated and prevents us from deducing the
information on pion. Thus, we can say that the Sn isotopes are more suited as the
targets of the (d,3He) reactions for the formations of the pionic atoms.

Appendix C
Structure of Pionic Atoms in 121Sn and the Effective Nuclear Density

Probed by Atomic Pion

We show the calculated binding energies and widths in Table VII for π− atoms
in 121Sn nucleus, which are expected to be observed in near future at RIKEN
/RIBF.14),15) We find, as the previous works2),3),11),12) showed, that the optical
potential acts as the soft repulsive core and moved pionic wave functions outwards.
This effect makes the widths of the bound states smaller to be quasi-stable states.
As we can see from Table VII, the eigenenergies of pionic bound states are spread
in wide region such as 250 � B.E. � 3800 [keV] and 10−3 � Γ � 320 [keV] for the
states with principal quantum number n = 1 ∼ 6, and the shapes of pion densities
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Table VII. Calculated binding energies B.E. and widths Γ of π−−121Sn atom in units of keV.

B.E.FC indicates the binding energies calculated with a finite-size Coulomb potential only.

π−−121Sn

state B.E.FC [keV] B.E. [keV] Γ [keV]

1s 6227.7 3829.2 320.6

2s 1913.9 1415.6 76.8

3s 909.2 732.5 29.3

4s 528.3 446.6 14.1

5s 344.7 300.5 7.8

6s 242.4 215.8 4.8

2p 2321.2 2262.7 116.7

3p 1034.9 1013.6 39.6

4p 582.5 572.9 17.5

5p 372.8 367.7 9.2

6p 258.8 255.8 5.4

3d 1037.8 1040.5 2.5

4d 584.0 585.6 1.5

5d 373.6 374.6 9.0×10−1

6d 259.3 259.9 5.6×10−1

4f 581.8 581.8 5.6×10−3

5f 372.5 372.5 4.8×10−3

6f 258.7 258.7 3.5×10−3

are changed significantly for different states.
We, then, consider the effective nuclear density probed by atomic pion, which

was proposed in Ref. 28) and was one of the good quantities to know the nuclear
density sensitively observed by pion in atomic states. The definition of the effective
nuclear density ρe and the overlapping density S(r) are given in §3.2 and Ref. 28).
We show as an example calculated pion densities |R|2, nuclear density ρ, and the
overlapping densities S for 1s and 2s states in 121Sn−π− atoms in Fig. 11. We
find the same tendency as found in Ref. 28) for different systems. Namely, the peak
positions of the overlapping density S(r) and, thus, the effective density ρe values are
almost same for 1s and 2s atomic states even their eigenenergies and wave functions
are much different. We can interpret this tendency by considering the fact that the
repulsive optical potential and the attractive Coulomb potential make the potential
pocket at nuclear surface, where the overlapping densities are localized.

Appendix D
Numerical Results for Te Isotopes

We show in this appendix that the calculated results for Te isotopes, which are
candidate nuclei of the future pionic atom experiments in RIBF/RIKEN.14),15) In
Table VIII, we show the calculated results of the binding energies and widths of the
pionic states in 121Te and 125Te. We find that the level spacing is larger enough than
the level widths and the states are quasi-stable as other deeply bound pionic atoms.

In Table IX, we show the occupation probabilities (FO) of the target nuclei
122Te and 126Te. The factor FO evaluated with the experiment is listed together
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Fig. 11. Overlapping densities (lower frame) of the π− densities (upper frame) with the nuclear

density (middle frame) in pionic bound 1s and 2s states in 121Sn. The vertical broken line

shows the half-density radius of the nuclear density of 121Sn.

with theoretical values, F s
O and F d

O. As you can see in the tables, the occupation of
3s1/2 depends significantly on the evaluation method. Since F d

O is much smaller than
F s

O for the 3s1/2 level, we can expect that both 122Te and 126Te are largely deformed.
However, the experimental FO based on Ref. 44) are closer to the spherical nuclear
value F s

O. This feature seems somehow inconsistent, and these numbers could include
large errors. Actually larger deformations for Te isotopes than Sn isotopes were
reported in Ref. 45). In Table X, we show the relative strength FR for excited levels
of daughter nuclei 121Te and 125Te. Here, we can see that the level structures of both
nuclei are a little complicated. Especially, the 2d5/2 state splits into several levels,
which include plural levels with similar strength. These structures may cause extra
difficulties to deduce the pion properties from the formation spectra of the pionic
atoms.

We show in Fig. 12 the calculated (d,3He) spectra for the 122Te and 126Te targets.
We find that the shape of the calculated spectra strongly depends on the choice of FO

as we expected. The results with FO and F s
O show qualitatively the same behavior,
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Table VIII. Calculated binding energies B.E. and widths Γ of π−−121Te and π−−125Te atoms in

units of keV.

π−−121Te π−−125Te

state B.E. [keV] Γ [keV] B.E. [keV] Γ [keV]

1s 4096.3 372.5 4037.1 342.4

2s 1522.0 93.3 1507.3 84.1

3s 789.1 36.2 783.4 32.5

4s 481.6 17.6 478.9 15.7

5s 324.2 9.8 322.7 8.8

6s 233.0 6.0 232.1 5.4

2p 2445.2 141.9 2432.7 133.7

3p 1095.8 48.4 1091.4 45.4

4p 619.4 21.5 617.5 20.1

5p 397.6 11.3 396.6 10.5

6p 276.7 6.6 276.1 6.2

3d 1126.6 3.3 1126.7 3.4

4d 634.1 2.0 634.1 2.1

5d 405.5 1.2 405.6 1.2

6d 281.4 7.5×10−1 281.4 7.6×10−1

4f 629.5 8.0×10−3 629.5 8.5×10−3

5f 403.0 6.9×10−3 403.1 7.3×10−3

6f 279.9 5.1×10−3 279.9 5.4×10−3

Table IX. Normalization factors, which correspond to the occupation probability of each neutron

state for the ground state of the nucleus, are shown for 122Te and 126Te nuclei. The normalization

factors indicated by FO are evaluated by experimental data.44) The normalization factors

F s
O and F d

O are obtained by the theoretical calculations of RMF model.43) The factor F s
O is

calculated by assuming the spherical shape of nuclei, and F d
O by including the deformation

effects.

FO

Neutron

orbit

122Te 126Te

3s1/2 0.34 0.50

2d3/2 0.31 0.47

2d5/2 0.65 1.00

1g7/2 0.43 0.59

1h11/2 0.22 0.42

F s
O

Neutron

orbit

122Te 126Te

3s1/2 0.41 0.69

2d3/2 0.58 0.80

2d5/2 0.90 0.95

1g7/2 0.96 0.97

1h11/2 0.33 0.51

F d
O

Neutron

orbit

122Te 126Te

3s1/2 0.02 0.05

2d3/2 0.36 0.85

2d5/2 0.95 0.98

1g7/2 0.98 0.99

1h11/2 0.41 0.56

however, the results with F d
O show the much different behavior. This is due to the

smallness of F d
O for 3s1/2 neutron state, which can have dominant contribution to

the spectra coupled with the pionic s-states in the recoilless kinematics. The lack of
the 3s1/2 neutron contribution deformed the shape of the spectra drastically. In the
spectra calculated with F d

O, the contributions of many subcomponents compose the
total spectra and, hence, they make it difficult to deduce pion information clearly
from the total spectra in this case.

Thus, we can conclude here that the expected spectra of the (d,3He) reaction
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Table X. Excitation energy (Ex) and relative strength (FR) of each excited level in 121Te and 125Te

determined from the experimental data of Ref. 44).

121Te

Neutron hole orbit Ex[MeV] FR

3s1/2 0.00 1.00

2d3/2 0.21 1.00

2d5/2 0.48 0.37

0.59 0.28

0.92 0.09

1.17 0.15

1.32 0.05

1.36 0.06

1g7/2 0.45 0.71

1.15 0.29

1h11/2 0.29 1.00

125Te

Neutron hole orbit Ex[MeV] FR

3s1/2 0.00 1.00

2d3/2 0.04 1.00

2d5/2 0.64 0.35

1.05 0.19

1.14 0.19

1.27 0.15

1.43 0.11

1g7/2 0.64 0.73

1.74 0.27

1h11/2 0.00 1.00

Fig. 12. Calculated 122Te(d,3He) (left) and 126Te(d,3He) (right) spectra for the formation of the

pionic bound states at Td = 500 MeV are shown as functions of the reaction Q-value. Each line

indicates the result with the different normalization factors (FO, F s
O, F d

O) shown in Table IX.

The vertical line indicated the threshold Q = −142.6 MeV (left) and −141.9 MeV (right).

on the Te isotope targets for the pionic atom formation mentioned in Ref. 14) could
include large uncertainties due to nuclear structure which should be considered care-
fully before experiments.
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