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ABSTRACT

The use of prebiotics and probiotics to improve symptoms associated with autism spectrum
disorder (ASD) has varied from study to study, indicating the complex and heterogeneous nature of the
disorder and the behaviors and gastrointestinal symptoms associated with ASD. There is a wide variety in
the severity of symptoms and developmental impediments across the population. Gut microbiome studies
have also shown unique but varied microbial signatures in ASD. While there have been successes in pre-
clinical and clinical trials with prebiotic and probiotic components, the limited population sizes have
promising yet inconclusive results. This study addresses this issue by 1) enrolling an ASD cohort of 296
children and adults and comparing their deep DNA metagenomic sequencing of gut microbiomes to that
of an age-matched neurotypical cohort and 2) individually formulating a precision synbiotic (probiotic and
prebiotic) tailored towards each individual's needs and conducting pre/post evaluations of ASD and Gl
symptoms and longitudinal whole genome microbiome sequencing. At baseline, there was significantly
lower microbiome diversity in the ASD group relative to controls. Microbes, pathways, and gene families
significantly differed between the two populations. The ASD microbiome had higher abundances of
pathogens, such as Shigella, Klebsiella, Mycobacterium, and Clostridium, but lower abundances of
beneficial microbes, including Faecalibacterium. With a 3-month synbiotic supplementation, the
microbiome diversity of the 170 ASD participants completing the study increased and became closer to
the neurotypical controls. Significant shifts in microbial and pathway abundances were also measured at
the second ASD timepoint. In addition to changes in the gut microbiome, there was a significant reduction
in gastrointestinal discomfort. There were also improvements in some ASD-related symptoms; however,
we cannot exclude that these were potentially due to the open-label nature of the study. Changes in the

gut microbiome composition and functional capacity, along with a reduction in gastrointestinal symptoms

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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and potential changes in behavior, highlight the importance of metagenomics, longitudinal studies, and

the potential for therapeutic microbial supplementation in ASD.

Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by
significant impairments in social interaction and communication, repetitive and restricted behaviors, and
deficits in sensory reactivity (Khaleghi et al., 2020). Although there are wide variations in the severity of
symptoms among ASD patients, gastrointestinal symptoms are a common comorbidity. The percentage
of patients with ASD presenting gastrointestinal (Gl) issues varies from study to study. Still, there is a
general trend that ASD patients often suffer from diarrhea, constipation, bloating, gastroesophageal
reflux, and/or abdominal pain (Manokaran and Gulati 2022; D.-W. Kang et al. 2020; Adams, Johansen, et
al. 2011). The high frequency of Gl problems in ASD patients raised a question about the relationship
between autism-related symptoms and the gut microbiome (Alharthi et al., 2022). Many studies have
accumulated evidence that dysbiosis might affect behavioral and gastrointestinal symptoms in children
with ASD (Fattorusso et al. 2019; Sharon et al. 2019; Principi and Esposito 2016; Krajmalnik-Brown et al.
2015a; Qureshi et al. 2020). The bidirectional relationship between the gut and the brain, known as the

gut-brain axis, is a widely accepted concept (Suganya and Koo 2020).

Although most studies conclude that patients with ASD have a distinctive gut microbiome, there is
inconsistency in the taxa reported between these studies. Some studies show no differences between
patients with ASD and neurotypical cohorts. This inconsistency is partially explained by the complexity of
ASD, given the heterogeneity of symptoms and their severity (Fouquier, Moreno Huizar, et al. 2021).
However, there are several more reasons that may explain the differences seemed between studies: 1)
the methodological approach to collect data is drastically different between studies; 2) the diagnosis of Gl
symptoms is not standardized; 3) small cohorts in most studies make reproducibility challenging; 4)
differences in the diet; 5) differences in geographical area/country, including different bacteria in those
regions; and 6) differences in race/ethnicity (Zhang et al. 2022; Fouquier, Moreno Huizar, et al. 2021;
Krajmalnik-Brown et al. 2015b). A non-invasive study analyzed the diet, fecal microbiome, and fecal
consistency of 247 children, where 99 children were diagnosed with ASD (Yap et al. 2021). The authors
concluded that there are negligible associations between the gut microbiome and ASD diagnosis and that
the gut microbiome seen in patients might be associated with dietary preferences. However, the authors
linked ASD restrictive interest with a less diverse diet and lower beta and alpha diversity in fecal

metagenomics.

The gut-brain axis concept has triggered attempts to modulate the gut microbiome with different

approaches, such as fecal microbiota transplantation (FMT), probiotics, prebiotics, and synbiotics (a
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74  combination of probiotics and prebiotics (Tan et al. 2021). An open-label study of microbiota transfer
75  therapy (an intensive version of FMT) reported substantial improvement in behavioral and gastrointestinal
76  symptoms in 18 children with ASD even after two years after treatment and also found an increase in
77  Bifidobacterium, Prevotella, and Desulfovibrio of the gut microbiome (D. W. Kang et al. 2017; 2019). The
78  results from trials with pre/probiotics have differed from study to study, some with inconclusive findings
79  mainly due to small cohorts. For example, (H. M. R. T. Parracho et al. 2010) showed an increase of
80  Enterococci and Lactobacilli and a decrease of Clostridium when administered a Lactobacillus strain to
81  children with ASD. However, the authors acknowledge the very high dropout of individuals and the
82  statistical weakness of the study. In a cohort of 10 children with ASD, (Tomova et al. 2015)) also found
83 changes in the gut microbiome of children with ASD after four months of administration of a probiotic that
84 included three strains (Lactobacillus, Bifidobacterium and Streptococcus) thrice a day showed a decrease
85 of Bacteroidetes and Firmicutes after treatment but an increase in the Bacteroidetes/Firmicutes ratio.
86 Shaaban et al. 2018 presented a cohort (n=30) with different results; they found an increase in
87 Bifidobacterium and Lactobacilli after a 3-months treatment of probiotics containing these strains
88 (Shaaban et al. 2018).
89
90 Some studies focused on the effects on behavior and Gl symptoms while using probiotics, with
91  inconsistent findings. (Kaluzna-Czaplinska and Btaszczyk 2012) reported no changes in Gl symptoms
92  after a 2-month treatment with Lactobacillus administered twice daily in 22 children with ASD; however,
93 they found lower D-arabinitol levels in their urine after treatment. D-arabinotol is a sugar alcohol that is
94 measured to detect candidiasis. Grossi et al. identified a decrease in abdominal symptoms after
95 administering a 9-strain probiotic to a 12-year-old child for three and ten months after treatment (Grossi et
96 al. 2016a). Eugene et al. also improved Gl symptoms after administering VISBIOME to 13 children with
97  ASD who retained Lactobacillus (Eugene Arnold et al. 2019). Similarly, Santocchi et al. found
98 improvements in Gl symptoms and improvements in adaptative functioning and sensory profiles when 42
99 children with ASD were administered Vivomixx® probiotics and 43 children with a placebo for six months
100  (Santocchi et al. 2020). Liu et al. also found improvements in behavior and anxiety after administering
101  Lactobacillus plantarum PS128 to 35 children with ASD with a placebo group of 36 children (J. Liu et al.
102  2019). A similar size group was assessed, where 37 children were treated with a 6-strain probiotic for
103  four weeks and found a decrease in the Autism Treatment Evaluation Checklist score [ATEC] (Niu et al.
104  2019).
105
106 Two studies used prebiotics exclusively. A cohort of 13 children with ASD showed improvement
107 in Gl symptoms after ingesting hydrolyzed guar gum for 2-15 months (Inoue et al. 2019). Grimaldi et al.
108 had a slightly different approach, analyzing the effects of restricted and un-restricted diets combined with

109 a 6-week Bimuno® galactooligosaccharide treatment in 30 children with ASD (Grimaldi et al. 2018). They
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found that a restrictive diet combined with the prebiotic showed a significant improvement in social

responsiveness (Grimaldi et al. 2018).

Finally, two other studies used synbiotics (a combination of probiotics and prebiotics). One study
administered four probiotic strains (two Lactobacillus and two Bifidobacterium) with fructooligosaccharide
to 16 children with ASD, finding significant improvements in behavioral and gastrointestinal symptoms (Y.
Wang et al. 2020). Similarly, the other study combined Bifidobacterium infantis with bovine colostrum
product and treated eight children with ASD. They were randomly assigned to receive either the
combination or the prebiotic exclusively (Sanctuary et al. 2019). Despite some observations of slight
improvement in Gl symptoms in the treated group, the sample size was too small to be conclusive. In
summary, there have been many studies of a variety of pre/probiotics, with most involving small open-
label studies of small cohorts. Some of the studies found improvement in Gl and ASD symptoms.

However, few studies have evaluated the effect of pre/probiotics on the microbiome.

Since there are wide variations in the microbiome of individuals with ASD, we believe synbiotic
supplementation should be customized for the individual. One company, Sun Genomics, develops
customized probiotics for individuals based on the results of metagenomic analysis from fecal samples
and a personal health and diet survey of each person (https://Floré.com/). Their product, Floré®, is a
personalized combination of typically 1-2 prebiotics and 4-8 probiotics chosen from a list of more than 100
possible ingredients to balance the individual's gut microbiome. The objective of this work was to
investigate the baseline characteristics of a large cohort of children and adults with ASD vs. healthy
controls and to investigate the effect of individually customized probiotics on the Gl and ASD symptoms
of individuals with ASD. Here, we present a novel approach to pre/probiotic treatment for children with
ASD by administering a synbiotic formula customized for each person from a repository of more than 100
ingredients. The gut microbiome was evaluated at baseline by deep whole-genome metagenomic
sequencing and at approximately three months after treatment, including taxonomy, pathways, and
genes. Data on health history, autism-related symptoms, social responsiveness, anxiety, Gl symptoms,
diet, and allergies, were collected before and after treatment. Fecal samples from 123 neurotypical
children were also evaluated with whole-genome sequencing for taxonomy, pathways, and gene family

classification for comparison with the ASD cohort.
Materials and Methods
Participants and sample collection.

Participants were invited to participate in this study if they were new customers of Sun Genomics

and had purchased Floré® but had not yet started treatment. They viewed a study ad and then a written
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consent form that explained the study and their potential role and invited them to participate. The consent
form was signed by the parent of the person with ASD or by the adult with ASD if they did not have a
legal guardian. The study was approved by the IRB of Arizona State University as STUDY00012299 and
registered on clinicaltrials.gov prior to enrolling participants.

The inclusion criteria for the ASD group included the following:

1) A new client of Sun Genomics (has applied for testing and treatment but has not yet begun
treatment)

2) Diagnosis of ASD (documentation of a clinical diagnosis of ASD) was obtained from participants
and then verified by an evaluation of the Social Responsiveness Scale (SRS-2) with a raw score
above 60.

3) Children and adults ages 2.5-75 years

The exclusion criteria included:

1) Antibiotic use in the last two months (not counting topical antibiotics)
2) Any changes in medications, nutritional supplements, or therapies in the last two months or any

plans to change them during the first three months of probiotic treatment.

A total of 296 participants with ASD were included in this study (Table 1). The ASD group was
matched with a group of 123 healthy neurotypical, age-matched controls from the Sun Genomics
customer base to compare their whole-genome sequencing of their fecal sample. Based on their health
and diet survey, the controls were further screened for having no neurodisabilities, serious

gastrointestinal disorders, or disease.

The ASD group completed extensive baseline evaluations regarding dietary and nutritional habits,
behavior, birth and infancy history, allergies, social responsiveness, anxiety-related disorders, and
gastrointestinal symptoms. The surveys collected were 1) Parent Global Impressions of Autism (PGIA), 2)
Screen for Childhood-Related Anxiety Disorders (SCARED), 3) Social Responsiveness Scale (SRS-2), 4)
Gastrointestinal Symptom Rating Scale (GSRS), and 5) nutritional assessment. The PGIA questionnaire
assesses observable behaviors in children with ASD, including language, cognition, play skills, sociability,
hyperactivity, and others. On average, the cohort had moderate severity of symptoms (Table 1). The
SCARED survey assesses five different classes of anxiety, including panic disorder, generalized anxiety
disorder, separation anxiety, social anxiety disorder, and significant school avoidance. Each of the

categories has a scoring threshold that may suggest the presence of an anxiety disorder.
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The nutritional assay asks for the number of servings of different food types consumed daily and
common dietary habits. Each question has a positive or negative value depending on the kind of food
assessed. For example, servings of nuts and seeds have a positive value, while refined grains have a
negative score based on daily consumption. Other questions consider whether the daily diet includes
artificial colors, flavors, or additives and whether the diet is organic. Diet quality was determined by
summing up the score of the survey. Higher scores are associated with excellent or good diet quality, and

lower scores are associated with poorer diets.

Fecal samples were collected via the Floré® research edition kit for metagenomic sequencing.
The Fecal sample was organized by the parent or participant of the study with provided kit instructions.
Fecal samples from the control population were collected with the gut microbiome test kit (Floré®gut
health test kit). Samples are collected in a proprietary stabilization buffer and on a swab and shipped 2-

day at ambient temperature.

As part of the longitudinal study with precision synbiotic supplementation, an additional timepoint
from the ASD population was collected after three months of the supplementation. Different for each
participant, formulations included 4 to 8 probiotic strains and 1 to 2 prebiotics, each at different
concentrations. Participants were instructed to take it daily. On average, there was a 5 to 6-month
difference between the generation of the first baseline timepoint and the second timepoint sample receipt
and processing. Of the ASD cohort, there was a total of 170 participants with a second timepoint. GSRS,
PGIA, SCARED, and SRS2 follow-up surveys were collected again upon the second fecal sample
collection.

Metagenomic sequencing and bioinformatic analysis.

DNA extraction and library preparation methods are previously described in Phan et al. 2021.
Briefly, DNA was extracted and purified with a proprietary process (patents 10428370 and 10837046).
Library prep and size selection was performed with NEBNext® reagents and MagJet® magnetic beads,
respectively. Library quantitation was performed with qPCR prior to normalization. Libraries were
sequenced on an lllumina® NextSeq 550 (lllumina®, San Diego, CA). Once sequenced, reads were quality
filtered and processed to remove human reads. For taxonomic analysis, reads were aligned to a hand-
curated database of 23,000 microbial species. Metabolic pathways and gene families were determined
using HUMANNZ2 with the MetaCyc and UniRef90 databases.

Statistical analyses.
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The downstream statistical analyses in this paper were performed in R. Permutational
multivariate analysis of variance (PERMANOVA) with the “adonis” function from the “vegan” package.
Bray-Curtis dissimilarity was calculated with the “vegan” package and was used for principal-coordinates
analysis. Pearson correlations were used to investigate parametric relationships between variables of
interest. Random forest analysis was performed to identify variables of importance between the two
cohorts in the microbiome, pathways, and gene family datasets. Subsequent significance testing with
FDR corrections was performed on the random forest variables of importance to compare the relative
abundances of microbes from each cohort. The Mann-Whitney U test or Wilcoxon rank sum tests were
performed to determine statistical significance between observations. FDR corrections were used to
control for multiple hypothesis comparisons. The microbial abundance data were rarefied, and the sample
sum was normalized to account for differences in sequencing depth. The pathway and gene family

datasets were sample sum normalized to account for differences in sequencing depth.

Results

Subject demographics and behavioral, gastrointestinal, and nutritional survey summaries

A total of 296 study participants with ASD and 123 neurotypical subjects were included in this
study (Table 1). All subjects in the ASD cohort obtained and submitted clinical diagnosis documents for
participation in the study. ASD and control cohorts were age-matched, with mean ages of 10.41 and
10.74, respectively. The percent male in the ASD cohort was 79.7%, while the control was 52.0% (Table
1). An initial analysis found no significant differences in microbial alpha or beta diversity between sex in

either cohort, so the control group was not restricted to match the gender of the ASD group.

Using the information collected from the surveys, 26% of the ASD population may have an
anxiety disorder, as assessed by the SCARED survey (Table 1). As for each specific anxiety disorder,
17% to 42% of the study participants may have the presence of at least one of the anxiety disorders
(Table 1). The SRS2 survey indicates that 64% of the ASD cohort has severe difficulties in social
responsiveness (Table 1). A smaller proportion of the cohort has mild to moderate and moderate
difficulties, with 6% and 29%, respectively (Table 1).

From a rating scale of no discomfort to very severe discomfort, the ASD cohort, on average, had
slight to mild discomfort as assessed with the GSRS survey (Table 1). Abdominal pain had a higher
average subtype score with mild to moderate discomfort, while reflux syndrome was lower with no to
slight discomfort (Table 1). The nutritional survey found that approximately 60% of the ASD cohort had

below average or poor diets, 22.6% had average, and 17.5% had excellent or very good diets (Table 1).
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255 Higher scores calculated from the nutritional survey are associated with good diets and lower scores are
256 associated with poor diets (also explained in Methods).

257

258  Microbial diversity differed in the ASD cohort relative to controls and improved after probiotic treatment
259

260 To compare microbial diversity between the ASD and control cohorts, alpha and beta diversity
261  metrics were calculated. The ASD cohort had a significantly lower Shannon score and microbial

262  evenness than the control cohort (Figure 1a). However, the difference was small compared to the wide
263  variation within each group. There was no significant difference in beta diversity as calculated by a

264 PERMANOVA based on a Bray-Curtis dissimilarity matrix (p value 0.065 and R = 0.00319). The

265 microbiome beta diversity was also displayed with principal coordinates analysis. There were significant
266 differences in the PCO1 and PCO2 coordinates of the ASD and NT baseline cohorts (Wilcoxon test, p
267  value = 0.0102 and 4.68e-12, respectively, Figure 1).

268

269 The analysis included 170 ASD participants with data for baseline and after three months of
270  supplementation with Floré®. In the paired samples, there was a significant increase in the three

271  assessed alpha diversity indexes (Shannon, richness, and evenness) in timepoint two relative to

272  timepoint one at baseline (Figure 1), and the microbial alpha diversity of ASD timepoint 2 was not

273  significantly different compared to the neurotypical cohort (Figure 1d). There was a significant difference
274 between the PCO1 and PCO2 axes between both timepoints of ASD and the NT baseline (Wilcoxon test,
275 p.adj < 0.05, Figure 1). There was no significant difference between ASD timepoints 1 and 2 (Figure 1b
276 and 1c).

277

278 Species evenness and richness correlated negatively with anxiety and positively with daily servings of
279  fruit

280

281 To investigate whether differences in microbial alpha diversity in the ASD cohort were related to
282  any of the observed behaviors, nutrition, gastrointestinal discomfort, social responsiveness, or anxiety,
283  Pearson correlations were calculated to find significant trends. Microbial evenness was inversely

284  correlated to the SCARED total score, such that lower evenness was associated with higher anxiety
285  (Table 2). Alpha diversity was not correlated with the nutritional assessment, PGIA, SRS2, or GSRS
286  surveys at baseline. Of the food groups assessed by the nutritional assessment survey, microbial

287 richness was significantly positively correlated to the number of daily fruit servings (Table 2). The

288 nutritional assessment survey was inversely correlated to the PGIA scores (Table 2), such that individuals
289  with lower (worse) nutrition had higher (worse) ASD severity.

290
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Differentially abundant microbial, pathway, and gene family abundances suggest differences in functional

capacity

Microbial features represented by microbial species, pathways, and gene families significantly
differed between the ASD and control cohorts. The top 50 variables of importance were determined by
random forest. With additional significance testing with corrections for multiple hypotheses testing, we
identified microbial features associated with the ASD or control cohorts. The mean decrease Gini values
from the random forest model for the microbiome composition, pathway, and gene families are illustrated
in Supplemental Figure 1. Microbes higher in abundance in the ASD cohort included Achromobacter,
Aeromonas, Bacillus sp., Burkholderia, Clostridium, Cronobacter, Klebsiella, Micrococcus,
Mycobacterium, Rhodococcus, Shigella, and Streptomyces species, some of which are pathogenic
(Figure 2a). Microbes lower in abundance in the ASD cohort included Bacillus subtilis, Faecalibacterium,
Fibrobacter, Fusicatenibacter, Lachnosphira, Lactococcus, Paenibacillus, Pseudoflavonifractor,

Ruminococcus, and Vigibacillus species, some of which are beneficial microbes (Figure 2b).

The MetaCyc Metabolic Pathway Database was used to annotate the functional pathway
potential of the microbiome of the ASD and neurotypical cohorts. Metagenomic pathways higher in
abundance in the ASD cohort were pathways involved in 1) biosynthesis of amino acids; cofactor, carrier,
and vitamins; fatty acid and lipids; nucleotides; and tetrapyrrole; 2) degradation of carboxylates; and 3)
fermentation of pyruvate and alcohols and fermentation to short-chain fatty acids (Figure 3a). Pathways
lower in abundance in ASD were carbohydrate degradation, sulfur oxidation, and thiamine biosynthesis
(Figure 3b).

The UniRef (UniRef90 201901b) database was the reference database for the gene families
detected in the metagenomic data. To reduce the computational burden for the statistical analyses of the
gene family dataset, the sum threshold was > 1000 reads per kilobase (RPK) per gene family. Out of the
top 50 gene family variables of importance, six gene families were detected with higher abundance in the
ASD cohort. In comparison, 44 gene families were detected with lower abundance in the ASD cohort
based on calculated mean values (Figure 4). Two annotated gene families higher in ASD were ispD and a
DNA polymerase Il subunit alpha (Figure 4a). Most gene families lower in ASD were annotated from
Ruminococcus spp., Fusicatenibacter saccharivorans, and Faecalibacterium prausnitzii, which reflects the

lower abundance of those microbes detected in the ASD cohort relative to the controls (Figure 2b).

There were several microbes and pathways that significantly changed across timepoints in the
ASD cohort (Figure 5). Bacillus subtilis and Pseudoflavonifractor sp. An85 increased in abundance at
timepoint 2, becoming more similar to the relative abundance of the neurotypical cohort (Figure 5a).

Pathways of L-aspartate and L-asparagine biosynthesis, unsaturated fatty acids biosynthesis, purine
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deoxyribonucleosides degradation, and purine nucleotide salvage decreased in abundance at timepoint
two relative to timepoint one and became more similar to that of the controls (Figure 5b). Petroselinate
biosynthesis decreased in relative abundance between ASD timepoints 1 and 2 and was no longer
significantly different than the control at timepoint 2 (Figure 5b).

Behavioral and gastrointestinal symptom improvement with follow-up surveys

In follow-up surveys, there was reported improvement in overall autism-related symptoms and a
reduction in gastrointestinal discomfort (Figure 6). For the PGIA, 62% of the subjects reported some
improvement, while 30% reported no change, and 6% had slightly worsened symptoms in the question on
Overall Autism and Related Symptoms (Figure 6). There was also reported improvement by at least 50%
of participants in receptive language and comprehension, expressive language and speech, cognition and
thinking, and gastrointestinal problems (Figure 6). The GSRS mean score significantly decreased from
timepoint 1 to timepoint 2, indicating a reduction in the severity of gastrointestinal symptoms (Figure 6).

There was no significant change in the SRS2 or SCARED evaluations (Figure 6).

Discussion

As there has been growing evidence of the importance of the microbiome in the gut-brain axis
and gut issues in ASD, identifying key microbial players may influence targets for therapeutic
interventions. Although the relationship between the microbiome and ASD is multifactorial and complex,
collecting behavioral, anxiety, social responsiveness, gastrointestinal, and nutritional surveys from ASD
participants along with large-scale deep metagenomic sequencing may uncover signatures that may
guide therapies. To our knowledge, this high-resolution method allowed for elucidating microbes,
metagenomic pathways, and gene families differentially abundant between the two cohorts that are novel.
Interestingly, there was no significant difference in beta diversity in any of the datasets, and most of the
differences were associated with significant alpha diversity changes. In addition, there was a significant
correlation or anti-correlation between species richness and daily fruit servings, the SCARED score and
microbial evenness, and PGIA and nutritional assessment scores. These results indicate there are
microbial features associated with ASD, in addition to the complex relationships between dietary habits,

the microbiome, and ASD phenotypes.

The present finding of lower microbiome diversity in the ASD population compared to controls
was consistent with some studies (D.-W. Kang et al. 2018; S. Liu et al. 2019; D.-W. Kang et al. 2013),
while also contrary to some others (De Angelis et al. 2013; Zurita et al. 2020). The results of the present
study indicated significantly lower levels of gut microbial alpha diversity and evenness in ASD subjects

compared to neurotypical age-matched children and young adults. Still, the difference was small
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compared to the wide variation in alpha diversity within each group. In the De Angelis study, children
were from ltaly, aged 4 to 10 years old. In the 2013 Kang study, many participants had gluten and casein-
free diets with nutritional supplements and probiotics (D.-W. Kang et al. 2013). In the current study,
approximately a third of the participants practiced casein-free, gluten-free, or gluten and casein-free diets,
while nearly 65% of the ASD patrticipants took additional nutritional supplements. However, there was no
significant difference in microbiome beta diversity based on a gluten-free diet. We also found diversity
differences in pathways and gene families in ASD. Heterogeneity is also seen across geographic regions,

even when controlled for DNA extraction and sequencing methods (Fouquier, Huizar, et al. 2021).

Because diet is known to contribute to microbial diversity, we investigated whether diet may be a
driving force in microbial diversity in the ASD cohort. The data collected from this cohort showed no
correlation between nutritional assessment and microbial diversity, similar to what was reported by (Yap
et al. 2021). The nutritional evaluation showed 16.9% of the ASD cohort had excellent or very good
nutrition, 21.8% had average, and 61.3% had below average or poor nutrition. Our nutritional assessment
found that the majority of children with ASD had poor diets, consistent with previous findings (Zurita et al.
2020; Shmaya et al. 2015). Interestingly, we found a correlation between nutritional assessment and
baseline PGIA score; but it is unclear if worse ASD symptoms result in poor diet and/or the reverse. Some
habits and tendencies are characteristic of subjects with ASD, including aversions to specific types of
foods and dietary intolerances (Mari-Bauset et al. 2014; Chistol et al. 2018). Sensitivities and behaviors
may be correlated to nutritional choices. Chistol et al. found that autistic children with oral sensory

sensitivity refused more types of foods and ate fewer vegetables.

There are similarities and differences in the gut microbiome composition of ASD found in the
present study compared to the current literature. Studies have demonstrated autism gut microbiome
associations with increased Clostridiales and Akkermansia and lower abundances of Bifidobacterium,
Prevotella, and Firmicutes (Ho et al. 2020; De Angelis et al. 2013; D.-W. Kang et al. 2018; Kushak et al.
2017; L. Wang et al. 2011; H. M. Parracho et al., n.d.; Williams et al. 2011). We found higher abundances
of Shigella, Cronobacter, Klebsiella, Clostridium, and other common pathogens and lower abundances of
Faecalibacterium, Ruminoccus, Fusicatenibacter, and other beneficial microbes in ASD (Figure 4). These

results indicate a higher abundance of pathogens and a lack of beneficial bacteria.

Microbial functional potential and metabolomics are also different between ASD and neurotypical
controls. Consistent with Laue et al., we also found aspartate and asparagine biosynthesis super pathway
to be higher in abundance in the ASD population (Laue et al. 2020). Metabolomics studies showed lower
acetic acid and butyrate and a higher level of valeric acid in ASD (S. Liu et al. 2019). Other studies show
that SCFA is higher in ASD subjects than controls, specifically acetic, butyric, isobutyric, valeric, and

isovaleric acids (L. Wang et al. 2012). However, results have also been inconclusive based on direct
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measurements (J. Wang et al. 2019). Adams and Johansen et al. found lower levels of SCFA in ASD vs.
controls (Adams, Johansen, et al. 2011). While we did not directly measure SCFA in stool, metagenomic
pathways of fermentation to SCFA were higher in ASD than in controls (Figure 3b). Differences in
microbial associations detected in the present study compared to previously published studies may be
due to differences in size and sample population, as also seen in Fouquier et al. with study-site effects
(Fouquier, Huizar, et al. 2021). Diet, therapies, autism severity, gastrointestinal discomfort, and other
factors may also influence the differences in the gut microbiome seen across the ASD population.
Stratification of the ASD population based on certain characteristics may give insight into whether there

are specific microbial associations.

The effect of precision synbiotic supplementation on autistic symptoms showed an overall
positive response. After three months of supplementation, we obtained a second microbiome sample and
collected follow-up surveys. The PGIA follow-up survey questionnaire showed an improvement in certain
behaviors and the GSRS survey showed a significant decrease in Gl symptom severity (Figure 6).
However, this is an open-label study, and the improvement magnitude is in the placebo effect range. We
estimated the placebo effect for the PGIA by comparing against the PGIA scores of a placebo group in a
3-month randomized, double-blind, placebo-controlled trial of a vitamin/mineral supplement for children
and adults with ASD (Adams, Audhya, et al. 2011). The Adams et al. study used an earlier version of the
PGIA, called the PGI-R, which contained only 11 of the items on the newer PGIA. The comparison found
in the Adams et al. study was that the supplement group had a PGI-R average score of 0.67 +/- 0.34 and
the placebo group average score of 0.34 +/- 0.54 (Adams, Audhya, et al. 2011). The present study’s
average PGIA score was 0.36 +/- 0.55. Preclinical and clinical studies administering prebiotics and
probiotics to autistic children have also demonstrated gastrointestinal and symptom improvement but
have used the same single ingredient or a mix of ingredients across all participants (Santocchi et al.
2020; Y. Wang et al. 2020; Mensi et al. 2021; Eugene Arnold et al. 2019; Shaaban et al. 2018; Grossi et
al. 2016b). The present results suggest that personalized synbiotics resulted in an overall change in the
microbiome and its functional capacity and may contribute to improvement in autism and gastrointestinal
symptoms. Although the survey to measure those improvements are comparable to a placebo effect
based on the PGIA average scores, the limitations in the study, such as the lack of information on
behavioral phenotypes of the control group, may also have contributed to the placebo effect. This should
be controlled for in future studies. Consideration for other surveys such as CARS-2 or DSM-V may
additionally clarify these results. Impactfully, 50% or more of participants reported improvement in
receptive language and comprehension, expressive language and speech, cognition and thinking, and
gastrointestinal problems are promising and may indicate that a synbiotic supplementation is a valuable

option for children and adults with ASD.
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Of the 296 patrticipants, 126 of the subjects dropped out of the study after consenting. Not all
participants provided a reason for dropping out of the study, but the two primary reasons for dropping out
were price (21%) and a lack of perceived benefit (34%). Three complaints were received during the study
related to customer service, and the third regarded lack of perceived benefit from the supplementation.

The present study design has several strengths and limitations. Some strengths include
metagenomic analysis of gut bacteria, a large sample size, an age-matched control group of healthy
children and adults, two timepoints for a subset of ASD participants, and a pilot open-label treatment
study. Limitations include the neurotypical control group having a different gender balance (although
gender did not affect microbiome diversity) and no data on the neurotypical controls' dietary habits,
gastrointestinal symptoms, or behavior phenotypes. Without these data, we could not identify whether
supplementation may or may not have altered the control cohort's microbiome diversity, behavior, or
gastrointestinal symptoms and compare the changes to the ASD cohort. However, we did uncover
potential metagenomic marker genes/pathways that may influence the improvement of autistic and
gastrointestinal symptoms. Overall, revealing microbiome differences in our population enables the
identification of specific targets for therapeutic intervention that may aid in alleviating gastrointestinal
symptoms and possibly phenotypes associated with ASD. For future studies, we plan to continue
investigating the longitudinal effects of synbiotic supplementation on the microbiome and phenotypes

associated with ASD.

Tables and Figure Legends

Table 1. Study cohort demographics. Listed are the number of subjects, age, and gender of each cohort
and the summaries of surveys taken by ASD study participants. The PGIA survey is the parental global
impressions of autism. SCARED is the screen for childhood related anxiety disorders. SRS2 is the social
responsiveness scale. GSRS is the gastrointestinal symptom response scale. The nutrition survey
assesses dietary habits and the number of daily servings of various food categories. Values within the
parentheses indicate SD from the mean. Percentages indicate the population proportion that falls within a

subcategory (SCARED) or indicate a specific condition or phenotype (SRS2 and nutritional assessment

surveys).
I N N
N 296 123
Age 10.41 (7.14) 10.74 (8.71)
% Male 79.7% 52.0%
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Shannon Index

PGIA

SCARED

SRS2

GSRS

Nutrition

Table 2. Pearson correlations between total survey scores and alpha diversity measurements. R and p
values were calculated for each of the comparisons between surveys taken by the ASD population and

Overall

Overall

Panic Disorder

Generalized Anxiety Disorder
Separation Anxiety

Social Anxiety Disorder
Significant School Avoidance
Overall

Mild to Moderate

Moderate

Severe

Overall

Abdominal pain

Constipation

Diarrhea

Ingestion Syndrome

Reflux Syndrome

Overall

Excellent/Very Good
Average

Below Average/Poor

3.90 (0.48)*
2.81(0.87)

19.34 (15.46), 26.11%
19.34 (15.46), 17.83%
4.04 (4.44), 19.11%
4.42 (3.74), 42.04%
5.49 (4.12), 29.30%
1.52 (1.87), 27.39%
80.08 (10.36)

6%

29%

6%

2.25 (0.97)

3.37 (1.26)

2.69 (1.61)
2.01(1.22)

2.39 (1.8)

1.69 (1.16)

21.07 (14.71)
17.5%

22.6%

59.8%

4.04 (0.38)*
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the microbiome diversity Shannon Index, evenness, and richness. Only significant correlations between

different survey scores are listed (nutritional assessment and PGIA).

Shannon 0.037
Nutritional Evenness 0.015 0.87
CERESEENE Richness 0.13 0.15
PGIA -0.19 0.025
Shannon 0.087 0.35
Nutrition - Fruit Evenness 0.063 0.5
Richness 0.2 0.031
Shannon 0.014 0.83
PGIA Evenness 0.0096 0.89
Richness 0.037 0.58
Shannon 0.046 0.51
SRS2 Evenness 0.039 0.58
Richness 0.069 0.33
Shannon -0.052 0.45
GSRS Evenness -0.046 0.5
Richness -0.076 0.27
Shannon -0.17 0.051
SCARED Evenness -0.17 0.045
Richness -0.097 0.26

Figure 1. Diversity comparisons between ASD and neurotypical cohorts and paired longitudinal ASD
subjects. A) Shannon index, richness, and evenness across microbiome composition, metagenomic
pathways, and gene families between the two cohorts. B) PCO of the ASD and neurotypical cohorts.

Yellow dots represent ASD, and blue dots represent NT. The boxplots along each axis represent the
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distribution points within the PCO. The Wilcoxon test for comparisons between cohorts resulted in a p-
value = 0.0102 for PCO1 and p-value = 4.68e-12 for PCO2. C) PCO of paired ASD timepoint 1 and 2 and
neurotypical timepoint one samples. For PCO1, ASD T1vs NT_T1 p.adj = 0.006, ASD_T2vs NT_T1
p.adj = 0.0165. For PCO2, ASD_T1 vs NT_T1 p.adj = 2.43e-9, ASD_T1vs NT_T1 p.adj = 2.62e-8.
Principal coordinates were calculated based on a Bray-Curtis dissimilarity matrix. D) Alpha diversity at
baseline (timepoint 1) for ASD and neurotypical and the subsequent timepoint 2 for the ASD cohort.
Wilcoxon rank sum tests were performed for all tests with Benjamini-Hochberg post-hoc corrections for

multiple comparisons. * p-value < 0.05; ** p-value < 0.01; **** p-value < 0.0001; ns not significant.

Figure 2. Differential abundance of microbes between ASD and NT cohorts at baseline. The top 50
microbes were selected from the variables of importance from a random forest model. Microbes listed in
A) were detected at higher abundances in the ASD cohort, while microbes in B) were detected at lower
abundances in the ASD cohort relative to the neurotypical cohort. Wilcoxon rank sum tests with
Benjamini-Hochberg post-hoc corrections for multiple comparisons were used to determine a significant
differential abundance of microbes between ASD and NT cohorts. The shading of color along the bars
indicates the distribution of the data across the x-axis. Of the datapoints, 95% of the data fall within the
lightest shade, 80% of the data fall within the medium shade, and 50% of the data fall within the darkest
shaded bar. The different colors represent the two cohorts. The value to the right of the bars is the

adjusted p-value for each test.

Figure 3. Differential abundance of pathways between ASD and NT cohorts at baseline. The top 50
pathways were selected from the variables of importance from a random forest model. Pathways listed in
A) were detected at higher abundances in the ASD cohort, while pathways in B) were detected at lower
abundances in the ASD cohort relative to the neurotypical cohort. Wilcoxon rank sum tests with
Benjamini-Hochberg post-hoc corrections for multiple comparisons were used to determine a significant
differential abundance of pathways between ASD and NT cohorts. The shading of color along the bars
indicates the distribution of the data across the x-axis. Of the datapoints, 95% of the data fall within the
lightest shade, 80% of the data fall within the medium shade, and 50% of the data fall within the darkest
shaded bar. The different colors represent the two cohorts. The value to the right of the bars is the

adjusted p-value for each test.

Figure 4. Differential abundance of gene families between ASD and NT cohorts at baseline. The top 50
gene families were selected from the variables of importance from a random forest model. Gene families
listed in A) were detected at higher abundances in the ASD cohort, while gene families in B) were
detected at lower abundances in the ASD cohort relative to the neurotypical cohort. Wilcoxon rank sum
tests with Benjamini-Hochberg post-hoc corrections for multiple comparisons were used to determine a

significant differential abundance of gene families between ASD and NT cohorts. The shading of color
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along the bars indicates the distribution of the data across the x-axis. Of the datapoints, 95% of the data
fall within the lightest shade, 80% of the data fall within the medium shade, and 50% of the data fall within
the darkest shaded bar. The different colors represent the two cohorts. The value to the right of the bars
is the adjusted p-values for each test.

Figure 5. Longitudinal microbiome trends. Longitudinal assessments were made from the top 50
variables of importance obtained from the baseline comparisons of the microbiome composition, pathway
abundance, and gene family datasets. ASD-paired samples, where subjects had both timepoints, were
compared to the baseline neurotypical cohort. A) Microbes and B) metagenomic pathways listed were
significantly different between baseline timepoint one and timepoint two in the ASD cohort. Wilcoxon tests
with Benjamini-Hochberg post-hoc corrections were calculated. * p value < 0,05; ** p value < 0.01; **** p

value < 0.0001; ns not significant.

Figure 6. Longitudinal survey assessments. A) PGIA timepoint two survey questions regarding
gastrointestinal issues and overall autism-related symptoms and the proportion of the population that saw
improvement, no change, or worsening symptoms. B) The average score of the remainder of the PGIA
timepoint two survey questions. The scale is -3 much worse, -2 worse, -1 slightly worse, 0 no change, +1
slightly better, +2 better, and +3 much better. The total or mean scores of the C) GSRS survey, D)
SCARED survey, and E) SRS2 surveys from paired ASD samples. Paired Wilcoxon tests were

performed.

Figure S1. Significant correlations between surveys and microbial diversity. Pearson correlations
between a) the number of fruit servings and species richness, b) the SCARED total score and microbial

community evenness, and c) the nutritional assessment and PGIA scores.
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