Abstract Submitted for the DNP08 Meeting of The American Physical Society

Precision Test of the Isobaric Multiplet Mass Equation in the A = 32, T = 2 Quintet R. FERRER, A.A. KWIATKOWSKI, G. BOLLEN, C.M. CAMPBELL, C.M. FOLDEN III, D. LINCOLN, D.J. MORRISSEY, G.K. PANG, A. PRINKE, J. SAVORY, S. SCHWARZ, National Superconducting Cyclotron Laboratory, Michigan State University — Masses of the radionuclides ^{32,33}Si and ³⁴P and of the stable nuclide ³²S have been measured with the Low Energy Beam and Ion Trap (LEBIT) Penning trap mass spectrometer. Relative mass uncertainties of 3×10^{-8} and better have been achieved. The measured mass value of 32 Si differs from the literature value [1,2] by four standard deviations. The precise mass determination of ³²Si and ³²S have been employed to test the isobaric multiplet mass equation for the A = 32, T = 2 isospin quintet. The experimental results indicate a significant deviation from the quadratic form. This work has been supported by Michigan State University, the NSF under contract number PHY- 0606007, and the DOE under the contract DE-FG02-00ER41144. References: 1. G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A729 (2003) 337 2. A. Paul, S. Röttger, A. Zimbal, and U. Keyser, Hyperfine Interact. 132 (2001) 189

> Anna Kwiatkowski National Superconducting Cyclotron Lab., Michigan State University

Date submitted: 13 Aug 2008 Electronic form version 1.4