
Precision Tracking with Sparse 3D and Dense Color 2D Data

David Held, Jesse Levinson, and Sebastian Thrun

Abstract— Precision tracking is important for predicting the
behavior of other cars in autonomous driving. We present a
novel method to combine laser and camera data to achieve
accurate velocity estimates of moving vehicles. We combine
sparse laser points with a high-resolution camera image to
obtain a dense colored point cloud. We use a color-augmented
search algorithm to align the dense color point clouds from
successive time frames for a moving vehicle, thereby obtaining
a precise estimate of the tracked vehicle’s velocity. Using this
alignment method, we obtain velocity estimates at a much
higher accuracy than previous methods. Through pre-filtering,
we are able to achieve near real time results. We also present an
online method for real-time use with accuracies close to that of
the full method. We present a novel approach to quantitatively
evaluate our velocity estimates by tracking a parked car in
a local reference frame in which it appears to be moving
relative to the ego vehicle. We use this evaluation method to
automatically quantitatively evaluate our tracking performance
on 466 separate tracked vehicles. Our method obtains a mean
absolute velocity error of 0.27 m/s and an RMS error of 0.47
m/s on this test set. We can also qualitatively evaluate our
method by building color 3D car models from moving vehicles.
We have thus demonstrated that our method can be used for
precision car tracking with applications to autonomous driving
and behavior modeling.

I. INTRODUCTION

Precise object tracking is a key requirement for safe

autonomous navigation in dynamic environments. For ex-

ample, tracking is essential when changing lanes in heavy

traffic, in order to ensure that there is sufficient room for

the lane change based on the current and expected future

positions of nearby vehicles. Accurate tracking can also help

an autonomous car predict when another car is about to

enter an intersection; observing that another car is starting

to inch forward often indicates the driver’s intention to

enter the intersection. Detecting such subtle movements is

important for predicting the behavior of other drivers, and

precision tracking is necessary for this and many other

driving scenarios.

In addition to the plethora of online applications of

tracking, precise tracking also enables significant advances

in offline mapping and assists in analyzing the behavior of

dynamic obstacles. For example, accurate offline tracking can

be used to build structural and behavioral models of other

cars. As we show, precisely aligning and then accumulating

multiple observations of moving rigid targets allows us to

generate accurate 3D models from moving objects.

Manuscript received September 16, 2012.
D. Held, J. Levinson, and S. Thrun are with the Computer Science Depart-

ment, Stanford University, Stanford, California 94305 USA {davheld,
jessel, thrun}@cs.stanford.edu

Fig. 1. Two 3D car models created using the color-assisted grid search
alignment method. Note that these cars were moving while the alignment
was being performed.

Often, tracking is a component in a perception pipeline

that also includes segmentation and classification algorithms.

In this paper, we take segmentation and classification as

given and focus solely on the precise tracking and velocity

estimation of objects that have already been segmented and

classified as vehicles. We are specifically interested in ad-

vancing the state of the art in tracking accuracy, with the goal

of tracking the position and velocity of vehicles with lower

error than previously published work. Therefore, we use the

laser point-cloud-based segmentation, data association, and

classification algorithms described in [1] and focus strictly

on precision tracking for the remainder of the paper.

II. RELATED WORK

There have been many efforts at using laser rangefinders

for tracking. In general, these trackers fit 2.5D rectangular

bounding boxes to the 3D point clouds, followed by a

Kalman or particle filter [2], [3] to smooth the results.

Some have explicitly modeled occlusions to improve per-

formance [4], [5], and most recently, others have considered

broader classes of obstacles beyond vehicles [6], [7].



Rather than estimating object boundaries with rectangles,

several laser-based approaches have modeled objects as a

collection of points. Feldman et al. [8] used ICP to track

participants in sports games using single-beam lasers. Van-

poperinghe et al. [9] tracked vehicles using a single-beam

laser in this manner.

Recently, several hybrid systems have been developed that

use both depth and image data for tracking. Initial work by

Wender and Dietmayer [10] used laser scanners to initialize

hypotheses for visual car trackers. Other groups have up-

sampled range data to assign each pixel in an image to a

3D position [11]–[13]. Manz et al. inferred the 3D location

of a vehicle using only a monocular camera but with the

knowledge of a previously-acquired 3D model [14]. Variants

of ICP incorporating color have been explored, such as work

by Men et al. [15].

In this paper, we present a novel approach for precision car

tracking by combining a sparse laser and a high-resolution

camera. First, we project the laser points onto the camera

image and use bilinear interpolation to estimate the 3D

position of each pixel. We also estimate which pixels belong

to occluding objects and remove those from the interpolated

point cloud. We then use a color-augmented filtered grid

search algorithm to align successive frames of colored point

clouds. This alignment method enables us to precisely track

a vehicle’s position and velocity, achieving much higher

tracking accuracies than the baseline algorithms. We can

also use this alignment method to build dense color 3D

object models from moving objects. By leveraging the unique

strengths of sparse laser rangefinders and dense 2D camera

images, we can achieve high tracking accuracies.

Finally, we present a novel method for quantitatively

evaluating the accuracy of our tracking algorithm. Despite

the importance of measuring tracking accuracy across a

variety of tracked objects, existing literature largely fails to

do so. Many papers that combine tracking with segmentation

and classification only report the binary accuracy of the

segmentations and/or classifications, with no quantitative

evaluation of the accuracy of the tracks’ distance or velocity

estimates [4], [5], [8]. Of those that do quantify distance or

velocity accuracy, most do so on only one or a few tracks,

either by equipping a single target vehicle with a measuring

apparatus [14], or by hand-labeling objects or points from a

small number of tracks [7], [9].

In contrast, our approach measures accuracy by tracking

parked cars in a local reference frame in which they appear

to be moving relative to the ego vehicle. To our knowledge,

this is the first attempt to quantitatively evaluate the accuracy

of velocity estimates from a tracking algorithm in a fully

automatic framework on a large number of test vehicles. We

achieve these tracking velocity estimates without requiring

human intervention or labeling of data. Consequently, we are

able to present significantly more comprehensive quantitative

results than have been previously published in the tracking

literature.

III. INTERPOLATION

We are initially given the 3D points of a vehicle that we

desire to track. To combine information from our sparse 3D

point-cloud with a high-resolution 2D camera image, we

determine which pixels belong to this object and estimate

their 3D location.

We would like to estimate which pixels belong to the target

vehicle and which might belong to an occluding object. To

do this, we first project all of the 3D points for the target

vehicle onto the image. For every pixel p in the 2D convex

hull of this projection, we find the nearest projected points

in each of the 4 quadrants (upper left, upper right, lower left,

and lower right) surrounding the target pixel. Suppose these

4 points are f1, f2, f3, f4.

Then, we search for potential occluding points. We find

the 3D points from the laser that are located between the

sensor and the target vehicle; these points might belong to

an occluding object. We then project all of these points onto

the 2D image. We find the nearest projected points from this

set in each of the 4 quadrants surrounding the target pixel.

Suppose these projected points, the potential occluders, are

a1, a2, a3, a4.

Fig. 2. Top: Sparse achromatic 3D points obtained using a laser. Middle:
Up-sampling the point cloud by interpolating pixels from a camera image.
The 3D location of each pixel is estimated using bilinear interpolation.
Bottom: Removing pixels corresponding to occluding objects, e.g. a pole.

We then compare ai to fi for i ∈ {1, 2, 3, 4}. Suppose

that, for each projected point ai, the corresponding 3D point

is a′i, and similarly, the corresponding 3D point for fi is



f ′

i . Then if ∃i s.t. d(a′i, f
′

i) > dmax, where d(a′i, f
′

i) is

the 3D Euclidean distance between a′i and f ′

i and dmax is

an appropriately chosen threshold, then we say that a′i is

potentially occluding our target pixel p and we do not include

pixel p in the interpolation.

Although this method for estimating occluded pixels is

conservative, a typical image is very dense, so we can afford

to miss a few object-pixels; the cost of including a pixel

from an occluding object is that it could alter the value of

the color-based energy function and cause us to find a poor

alignment. An example of this occluding object removal is

shown in Figure 2. The thresholds for this step were chosen

using examples from a validation set which was recorded on

a separate day and time from the test set.

Once we have determined that a pixel is likely part of

the target object, we estimate its 3D location. We perform

bilinear interpolation using the projected points f1, f2, f3, f4
found above. Suppose that f1 and f2 are the two upper

projected points and f3 and f4 are the two lower projected

points, as shown in Figure 3. We first linearly interpolated

between f1 and f2, and then we linearly interpolate between

f3 and f4. Finally, we linearly interpolate between these two

interpolated positions to estimate the final 3D position of the

pixel p.

To do this, we first compute the fraction s1 and s2 of

the horizontal distance between pixel p and each of the

neighboring pixel pairs, as

s1 =
pu − f1,u
f2,u − f1,u

s2 =
pu − f3,u
f4,u − f3,u

where the u subscript denotes the horizontal coordinate for

a pixel (u,v) in image space. Then we perform bilinear

interpolation as

pt = f1 + s1(f2 − f1)

pb = f3 + s2(f4 − f3)

s3 =
p− pb
pt − pb

pinterpolated = pb + s3(pt − pb)

where s1, s2, and s3 are computed in pixel-space whereas

the interpolated points pt, pb, and pinterpolated are computed

in both pixel space and separately in 3D coordinates. The

resulting pinterpolated is close to p in pixel space, and the

corresponding 3D location of pinterpolated is used as the

estimated 3D location of pixel p. This is shown schematically

in Figure 3.

If there are less than 4 projected points surrounding pixel

p, then this pixel is near the 2D contour of the tracked

object (in the 2D image) and we are not able to accurately

estimate its 3D position; thus we ignore these border pixels as

well. Last, as a sanity check, we verify that the interpolated

location of this pixel lies within the 3D convex hull of the

original object points recorded from the laser; if it does not,

then we ignore the pixel. Finally, we also include the 3D

�
�

�
�

�
�

�
�

�

�
�

�
�

Fig. 3. Diagram of the bilinear interpolation used to estimate the 3D
position of an image pixel p, shown in green. The 4 nearest surrounding
laser points projected onto the image are shown in blue. First, the top 2
nearby laser points are linearly interpolated to get pt. Next, the bottom
2 laser points are linearly interpolated to get pb. Finally, pt and pb are
themselves interpolated to get the final 3D position estimate for the pixel
p.

positions of each of the original laser points from the target

object, colored by their projected location onto the image.

These interpolation steps result in a dense color 3D point

cloud, as shown in Figure 2.

IV. ALIGNMENT

To estimate the velocity of the target object, we find the

best alignment of the object’s dense color 3D point cloud

from one time step to the next. This alignment directly gives

the translation and rotation of the target vehicle between two

sensor readings. If the times of the readings are known, then

the vehicle’s velocity can be precisely determined.

To find the optimal alignment, we perform a pre-filtered

grid search optimization. First, we list a number of candidate

alignments for a coarse search in the 6D space of possible

alignments. In our implementation, the candidate alignments

are centered around the alignment that causes the two object

centroids to coincide. Around this initial guess we first

determine the most likely 2D positions in the ground plane.

We initially propose a 2D array of positions spanning 2 m

in each direction, spaced 10 cm apart.

Next, we use an occupancy grid to filter each of these

candidate locations. Because this is just a coarse pruning

step, we can significantly downsample the original point

cloud to speed up this step. In our implementation, we down-

sampled the point cloud to contain about 150 points before

performing this step. To create the 2D occupancy grid, we

then take our model point cloud (from the previous time

step) and record whether each square was occupied by some

point in the model when projected onto the ground plane.

We use this occupancy grid to score each of our candidate

locations based on the percentage of points that land either

in or adjacent to an occupied square. Any location that has a



score less than 0.9 times the maximum score can get pruned

away. This simple heuristic often allows us to reduce the

original search space by 1 or 2 orders of magnitude.

We can similarly prune the vertical search space (perpen-

dicular to the ground plane). We form a set of candidate

translations in the vertical direction spanning 1 m, spaced

10 cm apart. We create a 1-dimensional occupancy grid

and project points onto the vertical-axis to prune the search

space in the vertical direction. As before, we prune away any

vertical translation that has a score less than 0.9 times the

maximum score.

Next, we take the remaining candidate translations and

score each alignment according to an energy function. The

energy function is given by
∑

i

[

(d̂i − d̂j)
2 + w1(vi − vj)

2

]

+ w0 · n0

where we iterate over each of the current points i and find

the closest point j in the model that is within the range of

our step size (initially 10 cm as described above). For each

pair of points we compute the Euclidean distance (d̂i − d̂j)
and the color-distance in value-space (vi − vj). The value

color space was chosen based on a number of experiments

on a validation set to be the most useful color space for car

alignment; cars often have large dark areas (e.g. tires) or light

areas (e.g. the body or hubcaps) for which the hue angle is

not well-defined but the value is very informative. We weight

the value by w1, chosen to be 10 using a validation set.

Next we compute the number of points n0 that did not

have a match to our model within our search radius. We

weight this by w0, chosen to be 10 ·752 using our validation

set. This parameter roughly corresponds to the fact that the

value distance vi − vj will probably be within 75 for a pair

of matched points. This parameter was also chosen using our

validation set.

Using this energy function, we choose the candidate

location with the highest score from our initial coarse search.

Finally we iteratively reduce the step size and find the new

best location, still using the above energy function. After

our initial coarse optimization we assume that the energy

function is locally convex in the 6D alignment space, so

for the fine-grained search steps we vary each dimension

independently (though we continue to search the ground

plane directions jointly, as they generally correspond to the

largest directions of motion for a vehicle). All rotations are

taken about the centroid of the tracked object. After finding

the optimal alignment, we record the optimal transformation

and divide by the time difference between the sensor readings

to determine the tracked vehicle’s velocity.

Importantly, our contribution assumes nothing about the

tracked object’s motion model. In order to highlight both the

precision and generalizability of our scan alignments, all of

our results are derived from raw scan alignments, without

the benefit of the smoothing that arises from filtering with

a motion model. Consequently, our results are applicable

even to erratically moving objects, and they do not suffer

from any biases that result from motion assumptions. At the

same time, our algorithm could easily be incorporated as part

of the measurement model into traditional Bayesian filtering

techniques, such as Kalman or particle filters.

V. SYSTEM

The raw 3D point cloud for each frame is directly sensed

using a Velodyne HDL-64E S2 rotating 64-beam LIDAR

that spins at 10 Hz, returning 100,000 points per spin over

a horizontal range of 360 degrees and a vertical range of

26.8 degrees. As a result, the points associated with distant

objects will be relatively sparse. We combine these points

with the high-resolution camera images obtained from 5

Point Grey Ladybug-3 panoramic RGB cameras which use

fish-eye lenses to capture 1600x1200 images at 10 Hz. The

laser is calibrated using the method of [16], and the camera

is calibrated to the laser using the method of [17]. We use

the Applanix POS-LV 420 inertial GPS navigation system

to obtain the vehicle pose. As explained in section VI-A,

we also use this navigation system to obtain ground truth

estimates for tracking.

VI. RESULTS

As explained above, in this paper we use the laser point-

cloud-based segmentation, data association, and classifica-

tion algorithms described in [1]. Our precision tracking

algorithm takes as its input the tracks output from [1] that are

classified as vehicles. Note that the segmentation algorithm

used in [1] is not particularly accurate and often over-

segments a single vehicle into multiple pieces. Our method

will nonetheless work directly with these segments, showing

that our method is robust to a range of segmentation errors.

A. Quantitative Evaluation Method

To quantitatively evaluate the results of the tracking al-

gorithm, we present a novel approach based on tracking

parked cars in a local reference frame. In a local reference

frame, a parked car appears to be moving, and tracking the

car in this local reference frame is equivalent to tracking a

moving car in a world reference frame. However, because we

have logged our own velocity, we can compute the ground-

truth relative velocity of a parked vehicle and quantitatively

evaluate the precision of our tracking velocity estimates.

To determine which cars from our logfile are parked, we

compute the displacement of the centroid for each track

in the fixed world reference frame. Because of occlusions

and viewpoint variation, we estimate that the centroid of

the 3D points on a parked car may appear to move by as

much as 3 m. Thus we iterate over all tracks and check

this criterion until we obtain a list of tracks associated with

potentially parked cars. However, some of these tracks might

still correspond to moving vehicles, so we manually filter out

the moving vehicles from this set. The remaining parked cars

will be used for our quantitative evaluation.

Next, we attempt to track each parked car in a local

reference frame in which it appears to be moving relative

to the ego vehicle. During our logfile, we drive past each

of these parked cars. However, in a local reference frame,



we appear to be stationary, and the parked cars appear to

be moving past us. Thus by tracking parked cars in a local

reference frame, we are simulating the situation of tracking

moving cars in a global reference frame. The importance of

this approach is that, because we know the true velocity of

a parked car in a global reference frame (i.e. 0 m/s) we

can use a reference frame transform to obtain the ground

truth for the perceived velocity of the parked car in a

local reference frame. Thus we can quantitatively evaluate

the accuracy of our tracking method, without requiring any

human annotations that are likely to be noisy, inaccurate,

and time-consuming. In contrast, our quantitative evaluation

is accurate and can be tested on a large number of vehicles by

comparing the tracked velocity to the ground truth recorded

by our vehicle.

Nonetheless, it should still be noted that although we can

use parked cars in a local reference frame to quantitatively

evaluate our performance, there are some differences be-

tween tracking cars in this manner compared to tracking

actual moving cars in a world reference frame. On the one

hand, the segmentation and tracking issues of cars in a

parking lot are often even more severe than in normal driving

situations. Parked cars are often occluded by other nearby

parked cars, causing frequent undersegmentations or difficult

occlusions for alignment. Despite these difficulties, we are

able to use our tracking method to accurately track cars in

this scenario.

On the other hand, the background and illumination

changes due to shadows do not change significantly as we

drive past a parked car, making tracking parked cars in some

ways a bit easier than tracking moving cars. Still, reflections

on parked cars can vary as we change our position to the

parked car relative to the sun. Additionally, viewpoint and

occlusions can both vary as we drive past a parked vehicle.

To obtain ground truth data for evaluation, we must

compute the relative velocity of a parked car in a local

reference frame. Using our navigation system, we obtain

ground truth knowledge of our own instantaneous velocity,

v = (vtx, vty). The relative velocity of the tracked car in

our local reference frame resulting from this translation is

simply given by vt = (−vtx,−vty)

Next, we must add the effect of our rotational velocity on

the relative position of the tracked car. If we rotate by ∆θ,

and we are tracking a parked car located at position (x, y)
in our local reference frame, then the perceived change in

position of the tracked car as a result of our rotation is given

by

∆xθ = r(−∆θ)(− sin θ)

∆yθ = r(−∆θ) cos θ

where r =
√

x2 + y2, θ = arctan(y/x), and ∆θ is the yaw

of the ego vehicle. This is shown schematically in Figure 4.

If the yaw of the ego vehicle occurs over ∆t seconds,

then the total relative velocity of the tracked vehicle can be

computed as:

vx = −vtx +∆xθ/∆t

vy = −vty +∆yθ/∆t

However, the direction of this velocity is in the orientation

of the world coordinates, whereas the estimated velocity

from tracking is in a local reference frame. To compare

the estimated velocity to the ground truth, we rotate the

estimated velocity into the orientation of the world reference

frame.

Fig. 4. Relative motion of a tracked vehicle resulting from yaw of the ego
vehicle.

B. Tracking performance

From a 6.5 minute log file, we drive past 558 cars parked

in nearby parking lots or on the side of the road. We track

cars that are oversegmented into multiple pieces, but we do

not attempt to track cars that are undersegmented together

with lamp posts or other nearby cars. We also eliminate

tracks for which the colors are washed out by lens flare.

In a real autonomous driving scenario, a hood can be placed

over the camera to block out most of the direct sunlight

and avoid lens flare most of the time. We also evaluate our

performance with the color weighted at w1 = 0 to determine

the performance of our method when color is not available,

such as in lens flare, at night, or in other poor visibility

weather conditions.

Our implementation runs at a quarter of real-time speeds

on a single threaded i7 Intel processor, taking about half a

second per frame. However, a GPU implementation, multi-

threading, or a faster processor could all significantly reduce

the runtime. Additionally, a slightly less accurate but real-

time version of the algorithm is also presented in which the

interpolation step is skipped entirely, which simultaneously

saves time from interpolating and immediately results in

a significantly down-sampled point cloud compared to the

interpolated version. The offline version is still useful for

accurate behavior modeling, while the online version can be

used for real-time tracking and autonomous driving.



TABLE I

TRACKING ACCURACY

Tracking Method Frames with > 50 points All frames

RMS error (m/s) Mean absolute error (m/s) RMS error (m/s) Mean absolute error (m/s)

Color-augmented grid search with interpo-

lation

0.47 0.27 0.86 0.40

Color-augmented grid search (no interpolation
- real time)

0.54 0.32 0.88 0.45

Color-augmented ICP with interpolation 0.60 0.25 1.00 0.41

Grid search with interpolation (no color) 0.67 0.31 1.05 0.46

ICP with interpolation (no color) 0.77 0.38 1.10 0.55

Centroid difference 1.00 0.61 1.27 0.77

Fig. 5. Car models built using our interpolation and color-augmented grid search method, obtained from both moving and stationary cars.

We show performance of our method for frames with

any number of points, and separately we show our per-

formance considering only frames that contain at least 50

raw laser points (before interpolation), for which there is

enough information to obtain better tracking accuracies. In

our logfile, 75% of all frames contain at least 50 raw laser

points. Although our method sometimes works with fewer

than 50 points, the accuracy of our approach depends on the

color and shape variation of the frames being aligned. To

run this method on frames with fewer than 50 points, it is

recommended to incorporate a motion model prior, since the

data will be less informative. However, in cases with more

than 50 points, the data is sufficient to accurately determine

the velocity, and no motion model is needed.

After eliminating tracks with lens flare or under-

segmentation issues, we obtain velocity estimates from

19,526 frames and 465 separate tracked vehicles if we only

include frames with at least 50 raw laser points. If we include

frames with any number of points, then we have estimates

from 26,254 frames and 466 separate vehicles.

The results can be seen in Table I. Our full method using

interpolation and color-augmented grid search has an RMS

(root mean square) error of 0.47 m/s and a mean absolute

error of 0.27 m/s for frames with at least 50 points. The

remaining errors are mostly a result of down-sampling and

early pruning of correct alignments as well as ambiguities

resulting from heavy occlusions. If color is not available,

due to lens flare, nighttime, or poor weather conditions, the

algorithm can be run with w1 set to 0. The result is a small

drop in accuracy to 0.67 m/s RMS error and 0.31 m/s mean

absolute error. The simplest baseline approach is simply to

align the centroids of successive frames, which achieves 1.00

m/s RMS error and 0.61 m/s mean absolute error.

Although the above algorithm takes an average of 2.9

seconds per frame and is thus not real-time, real-time results

can be achieved to obtain an online algorithm by skipping

the interpolation step. The resulting algorithm takes only 86

ms per frame, on average. This simplification results in only

a small decrease in accuracy, with 0.54 m/s RMS error and

0.32 m/s mean absolute error, which is comparable to the

full offline algorithm. This indicates that while interpolation

clearly boosts performance, the sensor fusion of combining

shape and color is perhaps the biggest contributor to the

accuracy of our results.

Another approach is to use ICP with interpolation. ICP

is a relatively popular method for point cloud alignment.

Although there are many variations of ICP, it is fundamen-

tally a hill-climbing approach that is susceptible to getting

stuck in local minima and relies on good initializations.

On the other hand, the pre-filtered grid search methods

presented here were both faster and more reliable than the

ICP implementation that we tested with.

We used the ICP implementation from the PCL library of

[18] and allowed it to run for 50 iterations, which is 7 times



slower than real-time (including the time for interpolation),

in order to ensure convergence. We tested both the standard

ICP algorithm as well as a color-augmented version, in which

nearest neighbors are computed in (x, y, z, value) space. The

standard ICP algorithm performed considerably better than

just aligning the centroids, achieving an RMS of 0.77 m/s

for frames with at least 50 points. The color-augmented ICP

with interpolation performed even better, with 0.60 m/s RMS

error and 0.25 m/s mean absolute error. While the mean error

for the color-augmented ICP algorithm is lower than any of

the the other methods tested, the high RMS error indicates

how ICP can easily go off-track and get stuck in a local

minimum that is far from the optimal alignment.

ICP also does especially poorly when including frames

with segmentation errors, for which the RMS error is 0.73

m/s (for frames with at least 50 points). In the same scenario,

the pre-filtered grid search has an RMS accuracy of 0.50 m/s.

Thus our method is also much more robust to segmentation

errors than ICP, which again is sensitive to the initialization

and can get stuck in a local minimum.

We can also view the effect of distance on accuracy in

Figure 6, considering frames with any number of points.

The color-augmented grid search performs the best at all

distances, with RMS errors dropping to 0.14 m/s for cars

within 5 m. At distances of 20 m or greater, the color-

augmented grid search with no interpolation, which runs in

real-time, has only slightly worse performance. The method

that uses only centroids performs significantly worse at all

distances.

Fig. 6. Tracking accuracy as a function of distance to the tracked car.

C. Model Building

In addition to quantitatively evaluating our tracking per-

formance in Section VI-B, we can also qualitatively evaluate

our performance by building car models using our tracking

algorithm. One disadvantage of the quantitative evaluation

of Section VI-B is that we can evaluate only on parked cars

tracked in a local reference frame (in which they appear to

be moving relative to the ego vehicle). On the other hand,

we can qualitatively evaluate our method by viewing the car

models built from tracking both stationary vehicles (in a local

reference frame in which they appear to be moving) as well

as moving vehicles (which are actually moving in world-

coordinates). This allows us to demonstrate that our tracking

method will work in real-world scenarios for estimating the

velocity of other moving vehicles.

The alignment method described in Section IV can be used

to accumulate point clouds from moving objects to build full

3D models. Rather than just aligning to the previous frame,

we align to the accumulated model built from all previous

frames. These models are obtained automatically using the

track extraction and classification pipeline from [1] and the

alignment method from this paper. See Figures 1 and 5 for

examples of car models built using this method. Some of

the models in Figure 5 are obtained from tracking moving

cars, whereas other models are obtained from tracking parked

cars in a relative reference frame in which they appear to be

moving.

Our tracking method is accurate even in the difficult eval-

uation scenario of tracking parked cars in a local reference

frame with heavy occlusions from nearby parked cars. We

expect that our method will be even more accurate in a

scenario in which the tracked objects are moving, which

may result in fewer segmentation errors. The models shown

in Figure 5 demonstrate that this method works well for

tracking moving vehicles. While we do not have any direct

quantitative measure of our tracking accuracy from moving

vehicles, the quality of these models demonstrates that the

method works well for tracking moving cars. Additionally,

the evaluation in Section VI-B gives an estimate on what

kinds of quantitative accuracies one might expect in this case.

VII. CONCLUSION

We have demonstrated that our interpolation and color-

augmented grid search algorithm provides significantly more

accurate velocity estimates compared to previous methods.

This method runs in near-real time and can be used for

offline behavior modeling. An online version that is nearly

as accurate is also presented that can be used for real-time

tracking and autonomous driving.

We have also developed a novel method for quantitatively

evaluating the accuracy of our tracking method, by tracking

parked cars in a relative reference frame. This method allows

us to evaluate our approach on a large test set of 466 sep-

arately tracked vehicles and quickly determine the accuracy

of our velocity estimates without any human annotations.

The alignment method can also be used to automatically

generate a collection of color 3D object models. These object

models can be used for other fine-grained classification tasks,

and our precise velocity estimates can be used to learn

accurate behavior models for vehicles in various driving

scenarios.

ACKNOWLEDGMENTS

We would like to thank Dave Jackson for his insight into

the reference frame transform and for his encouragement

throughout this research. We would also like to thank Jake

Lussier for his research into previous tracking methods.



REFERENCES

[1] A. Teichman, J. Levinson, and S. Thrun. Towards 3d object recognition
via classification of arbitrary object tracks. In Robotics and Automation

(ICRA), 2011 IEEE International Conference on, pages 4034 –4041,
May 2011.

[2] D. Streller, K. Furstenberg, and K. Dietmayer. Vehicle and object
models for robust tracking in traffic scenes using laser range images.
In Intelligent Transportation Systems, 2002. Proceedings. The IEEE

5th International Conference on, pages 118 – 123, 2002.
[3] D. Ferguson, M. Darms, C. Urmson, and S. Kolski. Detection,

prediction, and avoidance of dynamic obstacles in urban environments.
In Intelligent Vehicles Symposium, 2008 IEEE, pages 1149 –1154, june
2008.

[4] Anna Petrovskaya and Sebastian Thrun. Model based vehicle detection
and tracking for autonomous urban driving. Autonomous Robots,
26:123–139, 2009.

[5] N. Wojke and M. Haselich. Moving vehicle detection and tracking in
unstructured environments. In Robotics and Automation (ICRA), 2012

IEEE International Conference on, pages 3082 –3087, may 2012.
[6] A. Azim and O. Aycard. Detection, classification and tracking of

moving objects in a 3d environment. In Intelligent Vehicles Symposium

(IV), 2012 IEEE, pages 802 –807, june 2012.
[7] R. Kaestner, J. Maye, Y. Pilat, and R. Siegwart. Generative object

detection and tracking in 3d range data. In Robotics and Automation

(ICRA), 2012 IEEE International Conference on, pages 3075 –3081,
may 2012.

[8] Adam Feldman, Maria Hybinette, and Tucker Balch. The multi-
iterative closest point tracker: An online algorithm for tracking multi-
ple interacting targets. Journal of Field Robotics, pages n/a–n/a, 2012.

[9] E. Vanpoperinghe, M. Wahl, and J.-C. Noyer. Model-based detection
and tracking of vehicle using a scanning laser rangefinder: A particle
filtering approach. In Intelligent Vehicles Symposium (IV), 2012 IEEE,
pages 1144 –1149, june 2012.

[10] S. Wender and K. Dietmayer. 3d vehicle detection using a laser scanner
and a video camera. Intelligent Transport Systems, IET, 2(2):105 –112,
june 2008.

[11] J. Dolson, Jongmin Baek, C. Plagemann, and S. Thrun. Upsampling
range data in dynamic environments. In Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on, pages 1141 –1148,
june 2010.

[12] Derek Chan, Hylke Buisman, Christian Theobalt, and Sebastian Thrun.
A noise-aware filter for real-time depth upsampling. In Andrea
Cavallaro and Hamid Aghajan, editors, ECCV Workshop on Multi-

camera and Multi-modal Sensor Fusion Algorithms and Applications,
pages 1–12, Marseille, France, 2008.

[13] A. Harrison and P. Newman. Image and sparse laser fusion for dense
scene reconstruction. In Proc. of the Int. Conf. on Field and Service

Robotics (FSR), Cambridge, Massachusetts, July 2009.
[14] M. Manz, T. Luettel, F. von Hundelshausen, and H.-J. Wuensche.

Monocular model-based 3d vehicle tracking for autonomous vehicles
in unstructured environment. In Robotics and Automation (ICRA),

2011 IEEE International Conference on, pages 2465 –2471, may 2011.
[15] Hao Men, B. Gebre, and K. Pochiraju. Color point cloud registration

with 4d icp algorithm. In Robotics and Automation (ICRA), 2011

IEEE International Conference on, pages 1511 –1516, may 2011.
[16] Jesse Levinson and Sebastian Thrun. Unsupervised calibration of

multi-beam lasers. In Proc. 12th IFRR Int’l Symp. Experimental

Robotics (ISER’10), New Delhi, India, December 2010.
[17] Jesse Levinson and Sebastian Thrun. Automatic calibration of cameras

and lasers in arbitrary scenes. In Proc. 13th IFRR Int’l Symp.

Experimental Robotics (ISER’12), Quebec City, Canada, June 2012.
[18] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library

(PCL). In IEEE International Conference on Robotics and Automation

(ICRA), Shanghai, China, May 9-13 2011.


