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Abstract: Infection persists as one of the leading global causes of morbidity and mortality, with
particular burden at the extremes of age and in populations who are immunocompromised or suffer
chronic co-morbid diseases. By focusing discovery and innovation efforts to better understand the
phenotypic and mechanistic differences in the immune systems of diverse vulnerable populations,
emerging research in precision vaccine discovery and development has explored how to optimize
immunizations across the lifespan. Here, we focus on two key elements of precision vaccinology,
as applied to epidemic/pandemic response and preparedness, including (a) selecting robust combi-
nations of adjuvants and antigens, and (b) coupling these platforms with appropriate formulation
systems. In this context, several considerations exist, including the intended goals of immunization
(e.g., achieving immunogenicity versus lessening transmission), reducing the likelihood of adverse
reactogenicity, and optimizing the route of administration. Each of these considerations is accompa-
nied by several key challenges. On-going innovation in precision vaccinology will expand and target
the arsenal of vaccine components for protection of vulnerable populations.

Keywords: adjuvant systems; immune potentiators; immunomodulators; toll-like receptor (TLR)
agonists; emulsions; aluminum salts; nanoparticles; polymers

1. Introduction

For several decades beginning in the 1920s, insoluble aluminum salts were the first and
only adjuvants used to enhance vaccine efficacy against infectious diseases [1]. Since that
period, several additional adjuvants have been included in approved vaccines (Table 1),
from the oil-in-water (OIW) emulsion MF59 to the GSK adjuvant systems (AS). These
developments signify a nearly-100-year timeline of interconnected developments in the
fields of vaccinology and immunology [1,2].

Recently, the notable widespread employment of mRNA, viral vector, and adjuvanted
vaccine technologies have had a profound global impact on reducing the impact of the
COVID-19 pandemic. An estimated 10+ million deaths were prevented globally due
to SARS-CoV-2 vaccinations, with a significant contribution attributed to the speed of
pathogen-specific mRNA vaccine development [3]. However, while this innovation signi-
fies a breakthrough in vaccinology and modern medicine, it also highlights an important
challenge in the field. Different age groups presented with distinct responses to the mRNA
vaccines. In particular, the mRNA vaccines demonstrate waning effectiveness, dimin-
ished protection, and heterogeneous efficacy, a phenomenon that is not restricted to but
is especially pronounced in older adults [4–7]. This is likely a result of several factors,
which include the variability in the magnitude and persistence of antigen expression and
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subsequent clearance from the encoded mRNA [8–10]. Ultimately, these heterogeneous
responses invite further research into the biodistribution and pharmacometrics of this novel
vaccine platform as gene therapies begin to be integrated into vaccinology. Nevertheless,
a diminished protection for older adults is also seen in both non-mRNA vaccines against
SARS-CoV-2 [11] and seasonal influenza vaccines [12,13]. A number of factors appear to be
driving this differential response, from age-specific response to adjuvants [14,15], immune
senescence, to potential diminishing immunization efficacy over time as a result of immune
imprinting [16–18]. Considering these factors to inform rationally designed vaccines that
effectively protect immunocompromised individuals and/or older adults remains an active
area for improvement in current vaccine development streams.

Table 1. An overview of adjuvants included in approved vaccines against infectious diseases in
the United States. A table outlining adjuvants included in approved vaccines in the United States.
Well-evidenced mechanisms of actions found for these adjuvants are included. Several of these
adjuvants demonstrate a multifactorial mechanism of activity that is incompletely characterized,
which is largely applicable to those denoted by an asterisk.

Adjuvant Name Adjuvant Component(s) Known Mechanism of Action

Aluminum Salts or solutions containing aluminum
Depot effect, inflammasome, and

damage-associated molecular patterns (DAMPs)
activation *

AS01b/e Monophosphoryl lipid A (MPL) and QS-21 with
cholesterol liposomes TLR4, Caspase 1, DAMPs activation *

AS03 Squalene, Tween-80, α-tocopherol DAMPs activation *
AS04 MPL + aluminum salt TLR4, DAMPs activation *

CpG 1018 Cytosine phosphoguanine (synthetic DNA) TLR9 activation
Matrix-M Saponins DAMPs activation *

MF59 Oil in water with squalene TLR-independent MyD88 activation *

A related paradigm also exists for immunizing younger populations. As the immune
system undergoes dramatic changes in the early years of life, significant phenotypic differ-
ences emerge between pediatric and adult immune responses [19–21]. These differences
manifest in a higher pediatric susceptibility and vulnerability to certain infectious dis-
eases [22–24]. In fact, infectious diseases are amongst the leading global causes of pediatric
mortality [25], which is at least partially due to their distinct immune responses. Further,
the more distinct immunological phenotypes of young children as well the impact of
transplacental maternal immunity contribute to significant differences in vaccine response
in early life [26–28]. Thus, an important objective of modern vaccinology is defining safe
approaches to shape immune responses in early life [29–32].

Similarly, individuals with weakened immune systems, such as those living with
metabolic disorders and diabetes, immunocompromised populations, and people living
with chronic viral infection and/or cancer, experience heightened susceptibility to infectious
diseases [33] and suboptimal responses to immunizations [34,35]. While immunocompro-
mised status represents a large and heterogenous population with diverse phenotypes and
severity, there is an unmet need to enhance vaccine efficacy for this diverse group [36].
Defining immune pathways to trigger protective immunity in these populations, including
optimal adjuvants, may be key to protection of these groups.

Overall, our growing understanding of different populations that vary by age, sex,
and disease status coupled with the growing range of biotechnologies accessible to vac-
cinologists provide new opportunities to advance the field. Here, we discuss how these
two streams are being integrated under the paradigm of precision vaccinology to enhance
vaccine efficacy for distinct vulnerable populations. In this article, we focus primarily on
applying these principles to small molecule-based adjuvant systems, the innate immune
pathways they activate, as well as approaches to their formulation and delivery.
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2. Precision Vaccinology Principles in Adjuvant Innovation, Discovery, and Development
2.1. Emerging Tools for Adjuvant Discovery

High-throughput screening (HTS) of small molecules has been leveraged by phar-
maceutical and academic centers to expand our scientific toolbox. HTS has contributed
to ~20–30% of late-stage clinical development candidates at several prominent pharma-
ceutical companies [37]. However, the same analyses suggest that ~60% of early-stage
candidates discovered via HTS fail to reach later-stage applications. Several approaches
have been employed to overcome this modest yield, including (1) developing more curated
and druggable chemical libraries to optimize the source of testable drug candidates [38]
and, (2) optimizing the screening platform itself—finding more applicable or translational
in vitro systems to screen the chemical libraries. From engineered constructs for target-
based screening to broad phenotypic screens for functional discovery, there has been a
significant expansion in available tools to screen compounds. Some notable developments
include the application of organ-on-chip technologies as screening tools and incorporation
of microfluidic screening to enable ultra-high-throughput screening [39,40]. Extending to
vaccine adjuvant discovery, innovation in phenotypic and targeted screens have identified
multiple novel adjuvants [41–43].

The expanded menu of adjuvant discovery tools can advance precision vaccinology.
In regard to the growth in target-based screening technologies, targeted screens can be
steered towards addressing gaps in vaccine efficacy for distinct vulnerable populations.
For example, infant populations often skew towards Th2-like immune responses and
fail to mount sufficient Th1 responses [44,45]. This Th2-skewed response leaves pediatric
populations at higher susceptibility and vulnerability to many serious complications arising
from intracellular pathogens, such as viral respiratory infections [46,47]. Of note, activation
of endosomal TLRs, such as TLR7 and/or -8, can shape the infant immune response towards
a more adult-like Th1 response [48,49], which can enable effective protection against
many respiratory viruses. Thus, with more advanced targeting screening tools for these
endosomal targets, the arsenal of precision adjuvants available to vaccinate this vulnerable
population can substantially advance. This framework can be more broadly applied to
various vulnerable populations as we characterize population-specific immunity [50–52].

The expansion of phenotypic screening tools can enhance translation to advance
precision-adjuvant discovery. With human in vitro models being developed for HTS, it is
now possible to screen for molecules with optimal activity towards distinct populations [53].
Indeed, human primary immune cells have been directly used to screen for adjuvant
discovery [54]. Using human primary cells from individuals from distinct populations
(e.g., by age, sex, and/or co-morbidity), may enable discovery and development of bespoke
adjuvants for vulnerable populations.

2.2. Innovations through Advanced Adjuvant Compositions

One of the largest bottlenecks in advancing novel lead candidates from discovery to
clinical consideration is optimizing the function of the compounds via medicinal chemistry.
Altering compound structure can improve on-target efficacy of compounds in addition to
their pharmacodynamic and pharmacokinetic properties [55–57]. These types of medicinal
chemistry approaches can correspondingly be applied to develop more ideal adjuvant
compositions [58,59]. Evolving objectives for these optimized compounds include improv-
ing potency, efficacy, safety, and biological clearance. Additionally, an emerging focus of
adjuvant medicinal chemistry involves ligating chemical bridges onto novel adjuvants
to optimize integration into antigen formulation [60,61]. Thus, characterizing the active
moiety of a molecule and adding bridges, such as phosphonate groups for alum absorption,
that do not interfere with this moiety can be a powerful tool for translation/application.
This impact is heightened with emerging drug-delivery technologies that enable targeting
of and integration for specific tissues and even cells [62–64]. Thus, the inherent functionality
of novel small-molecule adjuvants can be optimized and they can be accommodated into
sophisticated delivery technologies.
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In addition to improving the functionality of compounds, another important focus of
medicinal chemistry effort for novel adjuvants is to remove any off-target effects, sometimes
referred to as “wasted immunity”. Many discovered leads are compounds with pleiotropic
activities. This can be the basis of drug-repurposing efforts that have come to define the
growing field of polypharmacology. More often, however, this pleiotropic nature, which is
notably linked to larger and unrefined biologics [65–67], accompanies adverse side-effects
and safety concerns that contribute to the high attrition rates seen in the drug-development
pipeline [68]. Indeed, several early- and late-stage vaccine adjuvant candidates, such
as water in oil/squalene or poly(I:C), demonstrate potential adverse reactogenicity [69].
Potential reactogenicity can be addressed by reengineering biologic or chemically altering
small molecule candidates to yield more precise functionalities [70,71]. Indeed, a precision
medicine approach is key for discovery and development of safe and effective vaccines for
distinct populations that vary in susceptibility to vaccine-associated adverse events [71].

3. Exploration of Immunization Sites to Unleash Maximal Effects in Target Populations

While significant research has been focused on expanding the tools available to for-
mulate a vaccine, equally important is defining the immunogenicity needed to achieve
protection [72]. To this end, all licensed vaccines have targeted routes of administration that
maintain a localized and controlled antigen presentation, thereby avoiding the potential
dangers of a systemic vaccine and the added potential benefit that some vaccines provide
via depot effects [73–75]. Depending on route of administration, vaccines can unleash
unique benefits reflecting distinct immunity mounted by different target tissues.

3.1. Intradermal, Subcutaneuous, Intramuscular—A Layered Lesson in Precision Vaccinology

The layers of tissue from skin to muscle provide several targets for immunization.
Considering the different immune cell compositions found at each tissue layer, there are
characteristic differences in immunity induced between intradermal (ID), subcutaneous
(SC), and intramuscular (IM) vaccination [76].

ID injections enable preferential access to dermal dendritic cells (DCs) and Langerhans
cells (LCs). Targeting these dermal sentinels facilitates highly-effective antigen presentation
to skin resident and lymph-node-resident memory T cells via migration to lymphoid
organs [77,78]. Furthermore, with >20 times the myeloid DCs and double the T cells
spanning the human dermis compared to circulating blood [79], ID injections are an
attractive approach to optimize vaccine immunogenicity. In fact, at an equivalent antigen
dose, ID vaccination often induces greater immunogenicity than IM or SC vaccination [80].
Further, LCs are maintained as a steady-state cellular population, rendering them a highly
promising target for precision vaccines for both older and younger populations [81,82].
However, the drawback of this route of administration is the inherent difficulty of physically
injecting at the proper depth, further compounded by the heterogeneity of the dermal
thickness across age groups, body types, and demographics [83–86]. As innovations
move the field from the canonical needle-and-syringe approach to standardizable novel
systems, such as dermal patches or laser-guided injection systems that can precisely deliver
vaccine components, ID immunizations become an even more appealing option in precision
vaccinology [87–89].

SC vaccinations, while historically considered a safe and efficacious route of adminis-
tration, have been questioned of late. Concerns about safety and poor mobilization and
ultimate presentation of antigen have highlighted some shortcomings of this route [90–92].
Further, new lines of research indicate that other routes may be more efficacious. Using
the recent monkeypox public health emergency as a case-study, the Vaccinia Ankara vac-
cine was deployed for vulnerable populations. Historically, this vaccine was given with a
two-dose regimen via SC immunization. However, it was retooled as a single dose ID immu-
nization at 1/5th of the antigen dose and still maintained comparable protection [93–96].

IM injections remain the most common way to deliver vaccines. With a lower density
of pain fibers compared to ID or SC layers and ample blood flow, IM is an ideal candidate
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for many types of formulations [97,98]. While the IM route may not proffer the same
density of immune cells that ID layers do, the resiliency of muscle may enable a higher
threshold of tolerance for a range of vaccine formulations.

3.2. Nose to Gut—Mucosal Immunity

While the IM, SC, and ID routes of vaccine delivery are effective for inducing systemic
immunity to prevent severe illness, they may be suboptimal in preventing infection at
the site of invasion. These considerations highlight a significant area for improvement
in current vaccine development efforts, which has become growingly visible due to the
ongoing COVID-19 pandemic: mucosal immunity [72,99,100]. Mucosal layers cover much
of our respiratory, gastroenterological, and genital tracts and serve as a barrier against
respiratory, enteric, and genital infections, respectively. Establishing mucosal vaccination
approaches that can potentiate protection at this layer and can prevent infection from
occurring in the first place is a key area for research and translation. From a public-health
framework, developing a mucosal vaccine can be a future tool to better curb transmission
of highly virulent strains and even eradicate the presence of malignant viruses. Pertinently,
this is an even higher priority precision-vaccine objective, when routinely protecting
vulnerable populations via this approach is still mostly technocritical.

There have been many modern advancements in mucosal vaccines, in both oral- and
nasal-delivery systems. There have been several mucosal vaccine candidates with exciting
preclinical results [101,102] and even some promising indications in clinical trials [103–105].
However, most of the candidates have mixed to moderate levels of protection, with ob-
served variability across different age groups [106–108]. As a result, there are less than
10 licensed enteric vaccines and less than five licensed nasal vaccines, which includes two
recently approved intranasal candidates against SARS-CoV-2 [109,110].

One of the major challenges in developing mucosal vaccines, which may explain
the limited number of approved candidates, is ensuring a sufficiently immunogenic and
durable response. Considering that the mucosal layer constitutes unique subsets of immune
sentinels and a distinct mechanism of protection [111], growing research is focused on
establishing important targets to stimulate in this context. Novel adjuvanted approaches
have been described that may be unique or optimal to mucosal immunizations and as we
better understand the correlates of protection and mucosal triggers, the efficacy of these vac-
cines will substantially improve [112]. Similarly, vaccine immunogenicity, especially that of
mucosal vaccines, is effected by our microbiome in complex ways [113–115]. Characterizing
how the microbiome impacts vaccine immunogenicity, may inform precision vaccination
approaches. Overall, developing effective mucosal adjuvants may enable overcoming
generally poor immunogenicity and heterogeneity of mucosal vaccines across different
age groups.

However, adjuvanted approaches for mucosal vaccines, especially via a nasal route,
need to be accompanied with a particular emphasis on safety. Intranasal influenza vaccine
with Escherichia coli heat-labile toxin as a mucosal adjuvant has been associated with
higher risk of developing Bell’s palsy [116]. While the association may be specific to this
adjuvant, not with the specific route of administration, with the evidence that Bell’s palsy
is also associated with parental SARS-CoV-2 mRNA vaccine administration [117], it is of
heightened concern in intranasal contexts, considering its proximity to cranial nerves and
the larger central nervous system.

With effective mucosal vaccines, we can strongly reduce the incidence and spread of
pathogens, while protecting individuals before infection can manifest as disease. This can
directly protect both infant and aged populations, which are more susceptible to multiple
types of respiratory infections. Additionally, these vaccines can help overcome the dura-
bility and consistency challenges present for intramuscular vaccinations in these groups.
Additionally, these vaccines can more directly target enteric diseases, a particular threat
to global pediatric populations [25,118]. Thus, discovery and development of mucosal
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vaccines with optimized functionality remains an important aim for precision vaccine
development [112,119].

3.3. Crossing the Aisle—Heterologous Vaccines

While steering the immune response towards either mucosal or systemic immunity
draws upon distinct mechanisms, the two can be combined via heterologous vaccination
such as via intramuscular (IM) prime for systemic protection and intranasal (IN) pull for
mucosal protection. For example, an IM prime with an mRNA-LNP vaccine followed
by an IN pull with unadjuvanted spike protein generated robust mucosal and systemic
immunogenicity [120]. In contrast, IM + IM or IN + IN schemes lacked effective coverage
in at least one of the forms of immunity. As a proof of concept, this shows the immense
potential in converging these two streams for polyfunctional immunization schemes. Simi-
larly, while IM + IN schemes have been the key focus in heterologous schemes [121,122],
future research should explore combining other routes of administration (e.g., intradermal,
subcutaneous, and enteric). Considering how some of these other routes may provide
more robust and/or durable protection in certain antigen/adjuvant combinations, other
combinations may prove more effective.

From a precision medicine perspective, these heterologous schemes can be ideal for
immunizing vulnerable populations by inducing both mucosal and systemic protection.
One possible limitation of mucosal vaccines is the partly compartmentalization of the
mucosal immune response from the larger systemic response [123], as the distribution
of the responses depends on the actual route of induction. This separation of immune
apparatuses leads to gaps in potential protection, which can be further unleased via
heterologous schemes. Future studies should investigate novel heterologous combinations,
including the role of adjuvantation to optimize immunogenicity and protection.

4. Putting It Together—Formulating Vaccine Compositions
4.1. Back to Basics: Alum, Polymers, and Lipids

A key aspect of vaccine development is matching an appropriate antigen and adjuvant
combination with a formulation for optimal delivery and efficacy. Interestingly, the most
common historical vaccine platforms (alum, polymerized formulations, and oil-in-water
combinations) can be inherently immunogenic, while also enhancing the delivery efficiency
of the vaccines [124–126]. This translates to a significant enhancement in vaccine efficacy
and durability via established models that can be coupled with other novel adjuvants to
boost responses, generating combination adjuvant platforms such as GSK’s adjuvantation
systems [127,128].

The framework of matching antigen, adjuvant and formulation can be directly com-
bined with precision medicine approaches to create novel combinations that enhance
responses from targeted populations. As disruptive technologies and innovations such
as artificial intelligence and multifactorial immune-monitoring systems elucidate insights
into systemic immune responses [129–131], this information can help guide precision and
rational vaccine design [132]. In fact, many established adjuvant-delivery systems have
already been combined with novel candidates to overcome hypo-responsiveness from
both early- and later-life populations [133–135]. These efforts are developing in parallel to
existing efforts to modulate the chemo–physical properties of these canonical platforms
for improved immunogenicity [125,136]. Further, the functionality of certain adjuvants is
only unleashed when directly combined with appropriate immune enhancers, antigens,
and/or other adjuvants. Thus, rational combinations of novel with existing systems can
help integrate novel adjuvant discoveries, thereby accelerating vaccine development for
vulnerable populations.

4.2. Strength in Numbers: Multimeric Antigenic Systems for Precision Vaccines

One of the key innovations in recent vaccine research includes advances in structure-
based antigen design which can enhance immunogenicity of otherwise weak immunogens,
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such as fusion glycoprotein of respiratory syncytial virus [137–139]. Structure-based antigen
optimization has been widely applied for vaccines against SARS-CoV-2, most commonly
by stabilizing spike protein in trimeric prefusion conformation to improve immunogenic-
ity [138,140]. More recently, high-density, multimeric antigens displayed onto protein or
synthetic nanoparticles have demonstrated the advantage of enhancing antigen trafficking
to draining lymph nodes and promoting clustering and activation of the B cell receptor, thus
strengthening the magnitude and breadth of immunogenicity [141–143]. This is of particu-
lar importance as waning immunity is a significant concern, especially for younger children
and older adults [6,144]. Thus, developing novel multimeric antigenic vaccines can be a
powerful strategy to enhance and elongate protection for many vulnerable populations.

While structure-based antigen optimization is a promising approach to enhance vac-
cine efficacy especially in vulnerable populations, vaccines comprised of optimized antigen
alone are generally insufficiently immunogenic. Clinical and preclinical studies which em-
ployed a self-assembling, two-component SARS-CoV-2 receptor-binding protein nanopar-
ticle antigen demonstrated limited immunogenicity in the non-adjuvanted group while
adjuvants such as AS03 (GSK) conferred robust protection [145,146]. Although it is possible
to generalize desirable properties for an adjuvant, a proper match between an adjuvant and
a specific antigen must be empirically evaluated. Evaluation of candidate antigen–adjuvant
combination in pre-clinical models, such as huma in vitro and animal models, that take into
account population (e.g., age, sex, and co-morbidity)-dependent vaccine immunogenicity
may enable down-selecting and prioritizing adjuvanted RBD antigen-based vaccines [147].

4.3. Adjuvantation via mRNA Delivery Systems—Welcoming LNPs into the Club

While mRNA vaccines do not contain an adjuvant per se, they appear to be self-
adjuvated. Indeed their lipid nanoparticle (LNP) delivery system not only aids in stability
and delivery of the vaccine, but also stimulates innate immune responses that boost the
immunogenicity of the encoded mRNA [148–151]. However, in addition to the LNP
adjuvant, additional adjuvants can be utilized in mRNA-LNP vaccines to boost vaccine
efficacy. From canonical adjuvants, such as cGAMP, to manganese nanoparticles, the
stimulator of interferon genes (STING) pathway has been a key target to boost the innate
immune response of an mRNA-LNP vaccine [152–154]. Further, more advanced LNP
platforms containing encoding key immunological agents such as IL-12 have been used
to enhance onco-immunology treatments [155,156]. These developments can be applied
to enhance vaccines against infectious disease in the near future. Further, both biologic
and small-molecule adjuvants can be tethered to mRNA-LNP platforms without loss of
function of antigen or adjuvant recognition [157]. Thus, traditional adjuvant strategies can
be powerfully combined with novel mRNA-LNP technologies to magnify quantity and
quality of immune responses and extend durability of protection for vulnerable populations.
Thus, as the novel mRNA-LNP technology becomes more broad ly applied to immunize
against different pathogens, further adjuvantation is a practical possi bility to enhance these
vaccines for populations that were less responsive to the original vaccine composition. For
key components of LNPs, such as ionic lipids and pegylated polymers, rational design,
including, as may be needed, optimization of these vaccine components, not just for their
antigen delivery capacity but also for their inherently self-adjuvanting nature, can inform
future vaccine design [128,158].

5. Conclusions

From discovery to development, there are multiple emerging insights and technologies
in the vaccine-development space. This growing infrastructure is moving in parallel to a
growing understanding of the distinct immune systems across age, sex, immune status, and
co-morbidity suggesting that the traditional one-size-fits-all model of vaccine development.

As illustrated (Figure 1), these insights and technologies can be combined to advance
the objective of developing precision vaccines that offer highly effective protection against
infectious diseases for vulnerable populations with distinct immunities.
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Figure 1. A precision-vaccinology approach to discovery and development of adjuvanted vaccines
targeted to distinct vulnerable populations. Focusing discovery and innovation efforts to better
understand the phenotypic and mechanistic differences in the immune systems of diverse populations,
emerging research in vaccine development has explored how to optimize immunizations across the
lifespan. Key elements of the precision-vaccinology approach, as applied to epidemic/pandemic
response and preparedness, include (A) selecting robust adjuvants optimized for a target population,
(B) modifying the chemical structure of lead adjuvants for defined functionality, (C) optimizing
antigen and adjuvant compositions with the appropriate formulation systems, and (D) selecting
appropriate route of administration for targeted protective correlate(s).
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