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ABSTRACT: The pre-clinical characterization of the aryl
piperazinyl urea inhibitor of fatty acid amide hydrolase
(FAAH) JNJ-42165279 is described. JNJ-42165279 cova-
lently inactivates the FAAH enzyme, but is highly selective
with regard to other enzymes, ion channels, transporters, and
receptors. JNJ-42165279 exhibited excellent ADME and pharmacodynamic properties as evidenced by its ability to block FAAH
in the brain and periphery of rats and thereby cause an elevation of the concentrations of anandamide (AEA), oleoyl
ethanolamide (OEA), and palmitoyl ethanolamide (PEA). The compound was also efficacious in the spinal nerve ligation (SNL)
model of neuropathic pain. The combination of good physical, ADME, and PD properties of JNJ-42165279 supported it
entering the clinical portfolio.
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The fatty acid amide hydrolases (FAAH and FAAH-2)1,2

interrupt the actions, through degradation, of a variety of
endogenous lipid signaling molecules.3 FAAH rapidly degrades
several fatty acid ethanolamides, including FAAH’s primary
substrate, AEA (N-arachidonyl ethanolamide or anandamide),4

PEA (N-palmitoyl ethanolamide),5,6 and OEA (N-oleoyl
ethanolamide).7 In contrast, FAAH-2 catabolizes ethanolamides
less efficiently, but will hydrolyze long-chain primary amides.
The likely source of AEA’s analgesic pharmacology is its ability
to agonize the cannabinoid receptor CB1.

8−10 However, AEA is
synthesized on demand and then rapidly broken down locally,
which mitigates the side-effects observed as a result of systemic
CB1 agonism (e.g., Δ9 THC pharmacology).
As AEA is synthesized in a localized manner, one might

hypothesize that inhibiting FAAH could lead to elevated
concentrations of AEA in relevant tissues. Indeed, prior reports
have described an increase in AEA levels in the plasma and
brains11−14 of rats and in the plasma of humans upon inhibition
of FAAH.
Small molecule interruption of FAAH activity has been

examined in numerous laboratories (Figure 1) including those
of Boger,15−20 Piomelli,21−23 Sanofi,24 Pfizer,25,26 Takeda,27 and
us.28 Each of the aforementioned laboratories focused on
molecules that form covalent bonds with Ser241 within the
FAAH active site, though recently Boger reported the
preparation of compounds that could form an additional
covalent bond with Cys269.29 OL-135 forms a reversible
tetrahedral hemiketal intermediate derived from the attack of
Ser241 onto the ketone. FAAH inhibitors prepared in the
laboratories of Piomelli and Sanofi carbamylate the active site
Ser241 of the FAAH enzyme with the ejection of an alcoholic
or phenolic fragment.30 Urea derivatives as prepared by Pfizer,
Takeda, and us operate via a similar mechanism but have

aromatic amines as leaving groups rather than alcohols or
phenols.31 Importantly, OL-135,32 URB597,33,34 JNJ-
1661010,35 JNJ-40355003,36−38 and PF-0445784539 have all
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Figure 1. Some known FAAH inhibitors.
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been found to exhibit analgesic pharmacology in various animal
models without the motor impairment associated with direct
CB1 agonism.
In addition to the many covalent inactivators of FAAH,

several competitive inhibitor classes have been reported by
Abbott,40 Amgen,41 Renovis,42 and Johnson and Johnson.43

Several compounds have been profiled to some degree in the
clinic. Pfizer’s PF-0445784544 was evaluated in phase 2 as an
analgesic in subjects with osteoarthritis pain, but was apparently
ineffective despite evidence of peripheral target engagement.
Ongoing studies with PF-04457845 include evaluating the
potential for treating cannabinoid dependence,45 PTSD,46 fear
conditioning,47 and Tourette’s syndrome.48 Vernal is currently
recruiting for a neuropathic pain trial49 involving V158866, and
Sanofi-Aventis’ SSR411298 for major depressive disorder
(phase II)50 and later for persistent cancer pain. The latter
trial was discontinued for strategic reasons.51

In the course of preparing aryl piperazinyl ureas, one
compound, JNJ-42165279, stood out with regard to selectivity
and ADME properties. The optimized preparation (Scheme 1)

of JNJ-42165279 involved a reductive amination of 2,2-
difluorobenzo[d][1,3]dioxole-5-carbaldehyde with piperazine
under continuous flow hydrogenation conditions. The resultant
product (1) was then added to a freshly prepared solution of
phenyl (4-chloropyridin-3-yl)carbamate (2) to yield JNJ-
42165279 in good overall yield.
The ability of JNJ-42165279 to inhibit recombinant human

and rat FAAH was then quantified 1 h postincubation with the
enzyme and the apparent IC50s found to be hFAAH = 70 ± 8
nM and rFAAH = 313 ± 28 nM.52 The expectation was that
JNJ-42165279 would be a covalent inhibitor of FAAH and that
the apparent IC50 would be dependent on the length of time it
was incubated with the enzyme, and indeed, this was the case.
Interestingly, JNJ-42165279 was not a completely irreversible
inhibitor of FAAH as dialysis (Figure 1S) of rFAAH pretreated
with JNJ-42165279 overnight at 20 °C yielded a partial return
of enzymatic activity.
JNJ-42165279 exhibited high selectivity against a panel of 50

receptors, enzymes, transporters, and ion-channels at 10 μM, at
which concentration it did not produce >50% inhibition of
binding to any of the targets. Fortunately, JNJ-42165279 also
did not inhibit CYPS (1A2, 2C8, 2C9, 2C19, 2D6, 3A4) or
hERG when tested at a 10 μM compound concentration.

JNJ-42165279 possessed good physical properties,53 but
exhibited some hydrolytic instability at pHs 2−10 at both 22
and 2 °C on a time scale of 1−4 weeks. The products of
hydrolysis were 1 and 3-amino-4-chloropyridine.54 Additionally,
JNJ-42165279 underwent slight degradation under fluorescent
light (but not UV A) in the solid form. As hydrolytic instability
would make development of JNJ-42165279 challenging,
identifying formulations in which it was stable for the full
duration of toxicological and clinical studies (weeks) was of
paramount importance. Fortunately, a simple suspension of the
free-base of JNJ-42165279 in 0.5% Methocel was developed,
and the results from a preformulation assessment supported a
>30-day shelf life of the formulated product when stored
refrigerated and protected from light.
Preliminary characterization of the metabolic profile of JNJ-

42165279 (10 μM) was conducted in vitro using liver
microsomes (1 mg/mL) in the presence of NADPH,
UDPGA, and GSH and in hepatocytes (1 million cells/mL).
Five species (mouse, rat, dog, monkey, and human) were used
for microsomal studies, and four species (rat, dog, monkey, and
human) were used for hepatocyte studies. A catalogue of the
detected metabolites is summarized in the Supporting
Information (Table 1S), and a proposed biotransformation
scheme for JNJ-42165279 is depicted in Figure 2. Multiple

metabolites were observed in all species. Unknown metabolites
M1, M2, M3, and M6 involve the loss of the chloro substituent
at the pyridine ring. Mono-oxidation of JNJ-42165279 resulted
in four metabolites, three localized to the substituted pyridine
ring (M8, M10, and M11) and one localized to the piperazine
linker (M14). M14 likely represents an N-oxide based on its
longer retention time compared to parent. Sequential
oxidations of these metabolites formed the dioxidation

Scheme 1. Synthesis of JNJ-42165279a

aConditions: (a) 4 equiv of piperazine, 18 h; (b) two cycles through
an H-Cube 20% Pd(OH)2/C, 1 atm. H2 (10% excess), 70 °C, 6 mL/
min, 83%; (c) 0.95 equiv of PhOCOCl, 1.20 equiv of pyridine,
toluene, 2−5 °C, 7 h; (d) 1.0 equiv of 1, 1.5 equiv of K2CO3, water, 15
h, recrystallized from hot i-PrOAc, 50% over two steps.

Figure 2. Proposed biotransformation scheme for JNJ-42165279 in
mouse, rat, dog, monkey, and human. For metabolites not found in all
species, the species of metabolite detection is denoted in parentheses.
Ms, mouse; R, rat; D, dog; Mk, monkey; H, human. The locations at
which biotransformations occurred was narrowed through the use of a
MS−MS analysis of secondary ions. The boxed area is where the
biotransformation took place.
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metabolites (M8 and M13). The dioxidation metabolite M9
was detected in human hepatocytes only.
In vivo, metabolites involving the loss of the chloro

substituent from the pyridine ring were only found in rat
(M2 and M5) and monkey (M2). Similar to in vitro findings,
all four mono-oxidation metabolites (M8, M10, M11, and
M14) were identified in rat, dog, and monkey plasma samples.
Based on UV chromatograms at 254 nm, M10, M8, and M11
appear to be the major circulating mono-oxidation metabolites
in rat (Figure 3S), dog (Figure 4S), and monkey (Figure 5S),
respectively. Sequential oxidation metabolites were detected in
dog (M13) and monkey (M12 and M13) but not in rat plasma
samples. Monkey and dog plasma samples also had detectable
levels of the glucuronide M7 derived from the mono-oxidative
metabolite M8, M10, or M11.
A GSH adduct of JNJ-42165279 detected in rat liver

microsomes and in rat plasma samples involved oxidative
dechlorination and GS addition. This adduct was unique to the
rat and not detected in vitro or in vivo in other species (Table
S1).
JNJ-42165279 exhibited relatively rapid clearance in the

course of rat pharmacokinetic experiments, manifesting as a low
AUC and Cmax;

55 however, sufficiently high exposures were
obtainable to support preclinical animal models. In a
subsequent higher dose (20 mg/kg) oral PK experiment,
compound concentrations were determined both in the plasma
and brain of rats (Figure 2S). JNJ-42165279 reached a
maximum plasma concentration of 4.2 μM after 1 h, falling to
about 130 nM at 8 h and decreasing to below the LLQ by 16 h.
Observed concentrations in the brain were somewhat elevated
relative to plasma at the Cmax (6.3 μM at 1 h), but those
differences diminished by the 8 h time-point (167 nM).
In addition to measuring compound concentrations in the

above experiment, the time at which the levels of FAAs in rat
brains were maximal was determined. AEA levels increased >4-
fold over the basal concentrations, reaching their maximal
elevation 2 h postdose. As seen previously in dose−response
FAA elevation studies, PEA and OEA concentrations increased
to a much greater extent than AEA,56 with elevations reaching
almost 10-fold and 12-fold over their respective basal levels.
OEA and PEA reached their maximal fold elevation at 4 h
postdosing. By the 24 h time-point, the concentrations of all
three FAAs had returned to baseline levels.
The analgesic properties of JNJ-42165279 in the rat spinal

nerve ligation (SNL or Chung) model of neuropathic pain were
examined. In this model, long lasting tactile allodynia is induced
in rats by performing tight ligations of the L5 and L6 lumbar
spinal nerves. Tactile allodynia is measured by testing the
sensitivity to von Frey filaments introduced to the hind paw.
Animals developed robust tactile allodynia that was dose-
dependently reversed by JNJ-42165279. In this stringent
model, where reversion to preinjury paw withdrawal threshold
constitutes the maximal possible effect (MPE), the greatest
degree of reversal of allodynia at a dose of 60 mg/kg was seen
30 min after compound dosing and was about 59% of MPE
(Figure 3, top). In a time-course study, peak efficacy was seen
30 min after dosing but significant efficacy was maintained for
at least 2 h (Figure 3, bottom). The ED90 was 22 mg/kg, which
corresponds to a plasma concentration of 2.5 μM at 30 min, the
time at which efficacy measurements were taken. In
comparison, the reference analgesic gabapentin produced a
similar degree of efficacy (∼65% of MPE) in this model, but the
ED90 for gabapentin was calculated to be 97 mg/kg.

The combination of good physical, ADME, and PD
properties of JNJ-42165279 led to it being advanced to the
clinic where it has completed several studies and continues to
be evaluated for a variety of neurological conditions.57−61

Additional data supporting the entry of JNJ-42165279 into the
clinic will be reported elsewhere.
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