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Abstract— Type 1 Patients with Diabetes (Type 1 PwDs)
have to frequently adjust their insulin dosage to keep their
Blood Glucose concentration (BG) within normal bounds. Meal
intakes represent the most important disturbance that has
to be accounted for. Its effect differs for every individual as
well as for every meal. These specificities are automatically
taken into account in the approach proposed in this paper.
Model parameters are identified for every couple (Patient,
Meal) of interest and optimal control is applied to generate
individualized meal specific insulin profiles. The method does
not require the use of a continuous BG meter, the profiles being
infused in an open-loop manner. Results from a preliminary
clinical study are presented. The concept is shown to be
effective, despite limitations due to the aggressive execution
chosen. Improvements are proposed and a possible pratical
implementation is described.

I. INTRODUCTION

It has been shown that a high average Blood Glucose

concentration (BG) over several years increases the risk of

severe long term complications, among them nephropathy,

retinopathy, cardiovascular diseases or renal failure [1]. On

the other hand, too much insulin can lead to a hypoglycemic

event, which is a potentially lethal condition.

Type 1 Patients with Diabetes (Type 1 PwDs) have to

compensate for events that can be perceived as disturbances

from a control point of view. Meal intakes, physical activity

[2], stress [3] or menstrual cycles belong to the set of

disturbances that have to be accounted for by Type 1 PwDs

in their insulin dosage.

Optimized BG control after meal intake has a high po-

tential for improving the treatment of Type 1 PwDs. During

the day, the BG depends mainly on the quality of the meal

compensations. However, this task is also very challenging

because the patient as well as the meal specificities have to

be accounted for.

Today, most of the Type 1 PwDs estimate their insulin

boluses based on the carbohydrate content of the meal and

the measured BG at meal time. They typically infuse this

bolus just before the meal intake. One of the main limitations

of this strategy lies in the fact that only carbohydrate content

is considered, while each meal has its own specificity and

can lead to very different BG profiles. Typical BG excursions

are shown in Fig. 1. These measurements were taken for

the same patient at two consecutive days, at the same
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Fig. 1. Postpandrial glucose excursions after a fast and a slow meal for
the same patient, meal carbohydrate content, and insulin bolus

daytime, with the same insulin bolus, and with equal meal

carbohydrate content but different meal compositions. For

the so-called fast meals (mainly carbohydrate content), a high

glucose peak is measured approximately 45 minutes after the

meal intake. After this peak, the BG decreases very abruptly.

Very often, an intervention is needed to compensate for

the resulting low BGs. The BG excursion measured for the

slow meal (important fat and protein content) is completely

different: no peak but a drop followed by a slow and large

increase, is observed. BG remains high several hours after

the meal intake. This clearly shows that the standard one-shot

carbohydrate based insulin bolus cannot handle variations

of meal contents, which limits the efficiency of most bolus

calculators [4].

The delivery of exogenous insulin has undergone signif-

icant changes with the introduction of the insulin pump, a

device that allows continuous infusion of fast acting insulin.

Nowadays, most pumps are equipped with ”smart” meters.

These meters have increased computational capacities and

can exchange data with insulin pumps. With such devices, the

one-shot meal insulin bolus can be replaced by a distributed

insulin infusion profile. It makes it possible to shape the

profiles and adapt them to the specificity of each meal. This

possibility has barely been used so far, and is the topic of

this paper.

Today, the research focus is on closed-loop control aim-

ing at a so-called Artificial Pancreas (AP). Two different

types of controllers are considered, either a pure feedback

controller [5], or model predictive controllers (MPC) [6],

[7]. These closed-loop approaches require continuous BG

measurements, which are provided by a Continuous Subcu-

taneous Glucose Monitor (CGM). Such sensors suffer from

severe limitations, among them reduced accuracy, potential

sensor drop-outs or time delays of approximately 20 minutes.



Important safety issues related to the automatically changing

insulin infusion generated by an AP are another drawback.

All these limitations preclude the use of closed-loop con-

trollers, for the time being.

For this reason, an open-loop optimal control strategy is

proposed. It does not require the use of a CGM, but it

could be extended to use continuous measurements. The

strategy provides meal specific distributed insulin profiles.

These may be inspected for their safety before the infusion.

Patient and meal specific model parameters are identified that

are subsequently used to compute optimal insulin infusion

profiles. The effectiveness of this method is evaluated in

a preliminary clinical study, where BG is monitored and

compared to BG excursions shown in Fig. 1, for the same

two-meal scenario.

This paper is organized as follows: In section II, the

proposed approach is detailed and the model, the parameter

identification strategy and the optimal control problem are

explained. A possible implementation using existing devices

is also sketched in this section. In section III, clinical results

are presented and discussed. Finally, in section IV, conclu-

sions are drawn and possible improvements are sketched.

II. METHODS

A. Modeling

The optimal control approach chosen in this work requires

a dynamical model of the system. The minimal model, see

[8], has been extended to account for a subcutaneous insulin

infusion and an oral meal intake. The insulin action and

absorption submodel have then been simplified to improve

the identifiability of the parameters. The resulting model is

given in (1) to (6).

dUg,gut(t)

dt
= U̇g,gut(t) (1)

dU̇g,gut(t)

dt
= −2agU̇g,gut(t)− a2gUg,gut(t) +Kga

2

gUcho(t)

(2)

dQ(t)

dt
= −X(t)Q(t)− Sg,zeroQ(t) + Uendo

+
Cg→mmol

M
Ug,gut(t) (3)

dX(t)

dt
= −axX(t) + axX1(t) (4)

dX1(t)

dt
= −axX1(t) +Kxax

Ui,sq(t)

M
(5)

G(t) =
Q(t)

Vga

, (6)

where the states are the gut glucose absorption Ug,gut

in g/min, the time derivative of the gut glucose absorption

U̇g,gut in g/min/min, the glucose amount Q in mmol/kg,

the insulin action X in min−1, and the intermediate insulin

action X1 in min−1.

Model parameters are the patient’s body weight M in kg,

the volume of the accessible compartment per body mass Vga

in L/kg, the unitless bioavailability of the meal of interest Kg ,

the inverse of the time constant of the meal of interest ag in

min−1, the insulin sensitivity Kx in kg/mU, the inverse of the

time constant of the insulin absorption/action ax in min−1,

the glucose effectiveness at zero insulin Sg,zero in min−1,

and the insulin independent endogenous glucose production

Uendo in mmol/kg/min. Cg→mmol converts g of glucose into

mmol.

The only manipulated variable is the subcutaneous insulin

infusion, Ui,sq(t) in mU/min, and the output is the BG G(t)
in mg/dL. The carbohydrate intake rate Ucho(t) in g/min can

be viewed as a predictable disturbance.

The model equations (1) to (6) can be expressed with the

compact equation ẋ = f(x, u, v,θ) where x is the vector

of states, u the manipulated input Ui,sq , v the predictable

disturbance Ucho, and θ represents the vector of model

parameters.

Values for Cg→mmol and M are known or can be mea-

sured directly, while Kg , ag , Kx, ax, Sg,zero, and Uendo have

to be identified. Vga can be assumed constant and equal to

the population mean [9]. Therefore, the vector of parameters

to identify is θid = [Kg ag Kx ax Sg,zero Uendo]
T

.

B. Parameter identification

The model parameters have to be computed for each

couple (patient = P , meal = A) as individualized meal

specific insulin recommendations are looked for. Therefore,

for each meal to be controlled with the proposed approach,

corresponding patient BG measurements, with a maximum

sampling time of about 1 hour (for example Fig. 5), are

needed around the meal time. These measurements can be

performed with a classical strip-based meters and do not

require the use of a CGM.

These data are exploited to compute the parameter values

θ
id,∗
P,A for the couple (P , A) that minimize a Maximum A

Posteriori (MAP) criterion. The necessary a priori knowl-

edge can be computed using experimental data through a

population-based approach, like for example the Iterative

Two Stage (ITS) method described by [10], or it can be

deduced from available knowledge on the physiology (meal

absorption, insulin kinetics). The simple model structure

together with the use of a priori knowledge lead to an identifi-

ability with parameters’ coefficients of variation below 100%

(cf [11]).

For a MAP identification, illustrated in Fig. 2, the follow-

ing optimization problem is solved.

M∗ =argmin Jid(M) (7)

s.t. Jid(M) =

Ng
∑

i=1







(

Ĝ(ti,θ
id
P,A, v, u)−G(ti)

)2

σ2
i







+

Nθ
∑

j=1

M2

j

θid
P,A = exp(AM +B),

where G(ti) are the Ng glucose measurements used for

the identification. Measurement errors are supposed to be
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Fig. 2. MAP parameter identification

normally distributed and σi are the corresponding standard

deviations. Ĝ(ti,θ
id
P,A, v, Ui,sq) are model predictions, Nθ is

the number of parameters to identify, and Mj are the Nθ

normalized Gaussian variables described in the Appendix.

C. Optimal profile generation

Once the parameters have been identified for a couple (P,

A), a model-based optimal control problem is solved. The

manipulated input, i.e. the subcutaneously infused insulin

Ui,sq , is parameterized with a piecewise constant function

with constant sampling time T . The control horizon is

defined by the start time th,s and the end time th,e.

With such an input parameterization, Ui,sq(t) = U(π),
∀t ∈ [th,s, th,e], i.e. Ui,sq(t) can be generated using a

vector of scalar parameters π =
[

π1 . . . πNπ

]T
, which

corresponds to a sequence of infusion rates. Nπ is the number

of sampling intervals for the period [th,s, th,e]. Thus, the

optimization problem reads:

π∗ =argmin Jopt(π) (8)

s.t. Jopt(π) =

∫ th,e

th,s

(

Ĝ(t,θid,∗
P,A, v,π)−Gtg,A(t)

)2

dt

0 ≤ π ≤ πmax,

As seen, the square of the difference between a meal de-

pendent target profile Gtg,A(t) for meal A and the predicted

blood glucose concentration Ĝ(t) is minimzed. πmax is the

insulin pump’s maximum infusion rate.

The target profiles for the two meals of interest in the

preliminary clinical study are plotted in Fig. 6.

Patient’s BG measurement at time th,s as well as informa-

tion on infused insulin before th,s are used to compute the

values of the model states at th,s. Therefore, the computed

optimized insulin profile will automatically correct for an

initially too low or too high BG. It will also account for the

pre-meal insulin infusion history (so called insulin on board),

as illustrated in Fig. 3.
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Fig. 3. Overview of the optimization process

D. Practical implementation

A possible implementation strategy of this method is

sketched in this section.

Today, some insulin pumps are coupled to a ”smart” meter.

The Accu-Chek R© Combo system from Roche is a good

example. The glucose meter has been extended and offers

additional functionalities. It communicates with the pump

and can be used to program a bolus or change the basal rate.

On the clinician side, a data management software like Accu-

Chek R© 360◦ can be used to collect and process the patient

data from the pump and meter. The Accu-Chek R© Combo

together with the software Accu-Chek R© 360◦ is used as an

example for the implementation of the method proposed in

this article.

The implementation is divided in 4 main steps. They are

described in what follows and are illustrated in Fig. 4.

1) Based upon his BG history, the PwD and his Health

Care Provider (HCP) identify the meals that have been

badly controlled since the last visit. Among these

”problematic meals”, those who can be potentially

improved by the method presented in this paper are

selected. The HCP data management software is used

to assist the HCP in the selection process. A BG

measurement schedule as well as the list of problematic

meals are uploaded to the PwD’s smart meter.

2) The PwD will follow this BG measurement schedule

(e.g. in Fig. 5) for the selected meals. A reminder is

implemented in the smart meter to ensure compliance

with this schedule. The data collected during theses

sequences are stored in the smart meter.

3) During the PwD’s next visit to his HCP, model pa-

rameters values are identified as shown in II-B for the

meals for which the BG measurement schedule has

been followed. The computed model parameters are

uploaded to the smart meter which is able to perform

insulin profile optimization. Typically, the identifica-

tion strategy is implemented as a module of the HCP

data management software. In Fig. 4, it is assumed that

the model parameters have been computed for the two
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meals A and B.

4) The next time one of these two meals is eaten, the

PwD’s smart meter computes an optimal insulin pro-

file, on the basis of the pre-meal BG, the insulin

infusion history, and the identified model parameters

for this meal as described in 4. The resulting profile is

automatically injected by the insulin pump.

It should be noted that the PwD’s safety is of highest

importance and needs to be guaranteed before any out-patient

implementation.

III. PRELIMINARY CLINICAL STUDY

A. Study design

A clinical study was performed to test the proposed

method on 12 Type 1 PwDs. Both fast and slow meals, as

depicted in Fig. 1, were considered. For conciseness reasons,

only results for 2 patients are discussed.

During the first in-patient period, referred to as ”first

block”, the patients had to eat the two meals on two

consecutive days at 9:00 a.m. and to control their BG using

the standard therapy. As illustrated in Fig. 5, eight different

BG measurements were made around the meal intake with a

sampling time of 1h. The first one was made 1 hour before

the meal intake and the last one 7 hours after. The dataset

was used to identify the parameters for each couple (P, A)

using the strategy discussed in subsection II-B. The a priori

knowledge was generated using ITS (cf II-B). σi has been

chosen independent of the model and equal to 0.05G(ti).
This describes the assumption that glucose measurements

Meal Intake

6 [h]1 [h]

Glucose measurements

Fig. 5. BG measurement schedule

Fig. 6. Glucose target profiles

exhibit a standard deviation equal to 5 % of the measured

glucose value. This value is of particular importance when

the number of measurements is low and the weight of the

Bayesian term in the objective function is not negligible.

The second in-patient period, referred to as ”second

block”, took place approximately 2 months after the first

one. During this period, the optimization routine described

in subsection II-C was used to compute optimized insulin

profiles. th,s was set to 1 hour before meal intake and th,e
to 6 hours after meal intake. A sampling period T of 10

min was fixed. This led to Nπ = 42 decision variables to

optimize. The two target profiles depicted in Fig. 6 were used

for the fast and slow meals. It can be noted that these target

profiles exhibit similar shapes, but the peak of the profile

used for the slow meal is shifted by an hour. The resulting

optimized insulin profiles were infused to the patients, while

their BG was measured every 10 min from intravenous blood

draws to assess the performances of the proposed approach.

B. Study results

The results of the study for the two patients are shown

in Fig. 7 to 10. On the left hand side, the infused insulin

profiles for the two blocks are plotted. The green and the

blue curves represent the one-shot boluses and the optimal

insulin profiles, respectively. On the right hand side, the BG

excursions measured in the two blocks are plotted. The green

and blue lines represent the measured BGs in the first and

second block, respectively. The dotted blue line gives the

expected BG excursion for the second block. The prediction

capabilities of the model can be studied by comparing the

plain blue line with the dotted blue line.

Similar conclusions can be drawn for the two patients.

At the beginning of the optimization horizon (before meal

intake), the optimization computed large insulin amounts.

It can be seen in the four figures that these corrections

were efficient. For the fast meals, this large initial amount
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Fig. 7. Clinical results, patient 1, fast meal
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Fig. 8. Clinical results, patient 1, slow meal

also compensates for the effect of the meal, as nearly no

additional insulin injection was needed after meal intake.

For the slow meals, a second insulin injection was necessary

between 1 and 4 hours after the meal intakes. The shapes of

the BG predictions and measurements were similar, for the

fast as well as for the slow meals.

Table I gives the values of the objective function Jopt for

the two blocks. Except for the couple (patient 1, fast meal),

the optimized insulin profiles led to significant reductions of

Jopt. These reductions are particularly important for the slow

meals. The insulin infused between 1 hour and 4 hours after

the intake of the slow meals prevents from the hyperglycemia

that was observed during the first blocks.

For the couple (patient 1, fast meal), the BG excursion

measured at the first block was close to the target profile

except for a hypoglycemic event that occurred 4-5 hours after

the meal intake. To avoid this, the optimization recommended

a smaller insulin infusion. However, this correction was too

important and led to a higher value for Jopt.

As already mentioned, the BG model predictions for the

second block (plain blue line) exhibit shapes in accordance
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Fig. 9. Clinical results, patient 2, fast meal

Learning:   4.7   (U)
Optimized: 16.4 (U)

−1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

In
su

lin
 In

fu
si

on
 (1

00
m

U
/m

in
)

Time (h)
−1 0 1 2 3 4 5 6B

lo
od

 G
lu

co
se

 C
on

ce
nt

ra
tio

n 
(m

g/
dL

)

240

220

200

180

160

140

120

100

80

Time (h)

Fig. 10. Clinical results, patient 2, slow meal

TABLE I

VALUES OF Jopt FOR THE 1
st AND 2

nd BLOCK AND THEIR RELATIVE

VARIATION. BG MEASUREMENTS AFTER HYPOGLYCEMIA EVENTS WERE

NOT TAKEN INTO ACCOUNT FOR THE COMPUTATION OF Jopt .

Standard Optimized Relative

1
st block 2

nd block variation

Patient 1 fast meal 4776 7921 +65.89%
Patient 1 slow meal 19323 6000 -69.95%
Patient 2 fast meal 24440 12143 -50.31%
Patient 2 slow meal 36874 10858 -70.55%

with the expected BG excursions (dotted blue line). However,

it should also be noted that the optimization procedure led

to too aggressive corrections between the 2 blocks. The size

of the different boluses can be found in Table II. As seen,

they differ significantly.

Obviously, the model is not able to predict BG with

a good confidence when the insulin profile used for the

identification differs too much from the insulin profile used

for the computation of the predictions. The limitations of

the predictions capabilities of the model can have different

reasons, some of them are listed below:

• The choice of the model structure was mainly driven by

the identifiability of the parameters and by the accuracy

of the fits. It is known that glucagon, free fatty acids

or growth hormones, as well as many other molecules,

influence the BG. They have been intentionally ne-

glected, as it would have been impossible to quantify

their contribution with only a few BG measurements.

Therefore, the model used for this implementation is

an oversimplification of the glucose metabolism. This is

the main reason for the limited prediction capabilities.

• The model parameters for a couple (P,A) were identified

on a single dataset collected during the first block.

As mentioned earlier, several disturbances like stress,

physical activity or menstrual cycles have not been con-

sidered. These disturbances should, at least, be filtered

TABLE II

TOTAL INFUSED INSULIN (U)

Standard Optimized

Patient 1 fast meal 6.1 3.3
Patient 1 slow meal 6.1 18.7
Patient 2 fast meal 4.7 6.1
Patient 2 slow meal 4.7 16.4



to minimize their influence on the model parameters

identified. This could be done, e.g., by using more than

one dataset to identify the parameters for a couple (P,A).

• Insulin absorption exhibits nonlinearities with respect

to the amount of injected insulin. However, the model

used in this work is linear. Therefore, the identified

parameters should not be used to compute predictions

for insulin infusion profiles that differ too much from

the profiles used for the identification.

• Physiological parameters of a PwD change over time.

As the second block was performed approximately 2

months after the first one, the identified model param-

eters may not be accurate enough anymore.

IV. CONCLUSION AND OUTLOOK

The results presented in this paper are promising. An

optimized distributed insulin profile led to a reduced BG

peak after a fast meal intake. It also corrected for the

hyperglycemic events observed during the first block a few

hours after the slow meal intakes. However, corrections were

shown to be potentially aggressive and future work should

include the following improvements:

• Small step strategy: The difference between two con-

secutive insulin profiles for the same meal should be

penalized in Jopt, as proposed in [12]. Indeed, the pre-

liminary clinical results have shown that the extrapola-

tion capabilities of the model are too limited to allow big

variations between two consecutive insulin profiles. By

introducing this penalty term in Jopt, several iterations

will be necessary to converge to an optimal insulin

profile for a couple (P, A), but safety will be improved.

• No meal-dependent target profile: The proposed ap-

proach requires meal-dependent target BG profiles as

shown in Fig. 6. It assumes that some a priori knowl-

edge is available on the absorption dynamics of each

meal. In practice, this is very difficult to conceive.

Instead, a constant target profile could be used for all

of the meals and a new objective function Jopt should

be used. This new Jopt would penalize deviation from

target in an asymmetrical manner. BGs below target

would have a much stronger contribution to Jopt than

BGs above target to avoid hypoglycemia. An objective

function ins red by the metric defined in [13] could be

used advantageously.

• Robust identification: Some of the model parameters

(Kx, ax, Sg,zero, and Uendo) do not depend on the meal

but only on the patient. In this paper, all the parameters

are identified for each couple (P, A). Results could be

improved if the patient dependent parameters would be

identified using datasets from different meals.

• Learning horizon reduction: The learning horizon

should be reduced to 4h for practical reasons. Indeed,the

time between two consecutive meal intakes is frequently

smaller than 6h.

However, the main limitation of the proposed approach lies

in the simplicity of the model used for optimization. This

is clearly an advantage for identification, which is made

possible on the basis of sole glucose measurements, but

meanwhile it can be a drawback at the optimization stage.

To be able to predict the real optimal insulin profiles for

a given patient, the tendency model we are using should

fulfill some adequacy requirements [14]. In practice, these

requirements are hard to meet, but future research should

compare the accuracy of this simplified model with more

complex models (for example [9], [15]). Also, to avoid

hyper- or hypoglycemia, robust optimization (i.e. optimiza-

tion considering uncertainty, e.g. deduced from confidence

intervals) should be investigated.
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APPENDIX

A. Maximum A Posteriori identification strategy: Transfor-

mation

In the Maximum A Posteriori method, the vector θ of

model parameters is a random variable. In this paper, this

random variable is assumed to have a log-normal distribution.

This distribution is widely used in the context of physiolog-

ical model parameters as it ensures that any realization of

this random variable will have a positive value.

By definition we have:

θi = exp(Θ)i for each i ∈ {1, · · · , Nθ}, (9)

with Nθ = dim(θ), and Θ = [Θ1, · · · ,ΘNθ
] is a random

vector having a multivariate normal distribution. Θ is thus

fully defined by a mean vector µΘ and a covariance matrix

ΣΘ with:

µΘ = E[Θ] (10)

ΣΘ = E[(Θ− E[Θ])(Θ− E[Θ])T ], (11)

with the autocorrelation coefficients being:

σΘ(i) =
√

ΣΘ(i, i), (12)

and the correlation coefficients:

σΘ(i, j) =
ΣΘ(i, j)

σΘi
σΘj

. (13)

A transformation that defines a one-to-one relationship

between Θ and a vector M of uncorrelated normalized (zero

mean and identity covariance) Gaussian vector is applied. M

is also of dimension Nθ.

This transformation is defined as follows:

Θ = AM +B, (14)

where A is called the transformation matrix.

A and B should be uniquely defined by µΘ and ΣΘ. To

determine the relationship between these three entities, first

the mean of Θ is computed as follows:

E[Θ] = AE[M ] +B. (15)

M has zero mean. Thus:

E[Θ] = µΘ = B. (16)

The covariance of Θ is computed:

ΣΘ = E[(Θ− E[Θ])(Θ− E[Θ])T ]. (17)

Θ = AM +B and E[Θ] = B, thus:

ΣΘ = E[(AM)(AM)T ]. (18)

Developing:

ΣΘ = E[AMMTAT ] = AE[MMT ]AT . (19)

However E[MMT ] is the identity matrix, remembering

that M is a set of independent normalized Gaussian vari-

ables. Thus, we have:

ΣΘ = AAT . (20)

If A is chosen as a triangular matrix, it can easily be

proven that the components A(i, j) of the matrix A are

defined by the two following equations:

A(j, j) =

√

√

√

√σΘ(j)2 −

j−1
∑

k=1

A(j, k)2 (21)

A(i, j) =
σΘ(j)σΘ(i)σΘ(j, i)−

∑j−1

k=1
(A(j, k)A(i, k))

A(j, j)
.

(22)

A and B are now fully defined. As a reminder, we have:

θ = exp(Θ) = exp(AM +B). (23)

B. Maximum A Posteriori identification strategy: Objective

function

The minimized objective function for the parameter iden-

tification takes the following form:

Jid =

Ng
∑

i=1







(

Ĝ(ti,M)−G(ti)
)2

σ2
i






+

Nθ
∑

j=1

M2

j ,

where Ng is the total number of glucose measurements used

for the identification and Nθ is the number of parameters

being identified. Mj are the corresponding Nθ normalized

Gaussian variables which together are the previously men-

tioned M vector.


