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Abstract

Background: Phenomics is a field in functional genomics that records variation in organismal phenotypes in the
genetic, epigenetic or environmental context at a massive scale. For microbes, the key phenotype is the growth in
population size because it contains information that is directly linked to fitness. Due to technical innovations and
extensive automation our capacity to record complex and dynamic microbial growth data is rapidly outpacing our
capacity to dissect and visualize this data and extract the fitness components it contains, hampering progress in all
fields of microbiology.

Results: To automate visualization, analysis and exploration of complex and highly resolved microbial growth data
as well as standardized extraction of the fitness components it contains, we developed the software PRECOG
(PREsentation and Characterization Of Growth-data). PRECOG allows the user to quality control, interact with and
evaluate microbial growth data with ease, speed and accuracy, also in cases of non-standard growth dynamics.
Quality indices filter high- from low-quality growth experiments, reducing false positives. The pre-processing filters
in PRECOG are computationally inexpensive and yet functionally comparable to more complex neural network
procedures. We provide examples where data calibration, project design and feature extraction methodologies
have a clear impact on the estimated growth traits, emphasising the need for proper standardization in data analysis.

Conclusions: PRECOG is a tool that streamlines growth data pre-processing, phenotypic trait extraction, visualization,
distribution and the creation of vast and informative phenomics databases.
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Background
Thanks to recent technological innovations we can now

detect and assess traits on virtually all phenotypic levels,

from molecular to population level phenotypes, with un-

precedented speed. These advancements have spurred the

emergence of phenomics, the field in functional genomics

that is dedicated the cataloguing of variation in pheno-

types as a function of variation in genetic, epigenetic and

environmental factors [1]. From a modest origin in docu-

menting qualitative traits with moderate throughput, phe-

nomics has evolved to precisely record quantitative traits

with an astounding degree of parallelization. The massive

accumulation of quantitative phenotypic data requires the

continuous expansion of data storage, analysis, and visua-

lization capabilities, something that has resulted in the

development of an increasing number of specialized

phenotype databases dedicated to the most important

model organisms [2–7].

Microbes dominate the biosphere and microbial phe-

nomics therefore has a key role in functional genomics

[1]. A wide array of techniques have been introduced to

address different aspects of the microbial phenome [8–21],

but the growth of microbial populations and microbial

growth phenomics takes centre stage because of its intim-

ate link to microbial fitness and evolution. Microcultivation

in liquid medium offers high resolution, but only moderate

throughput, in the surveying of growth in microbial popu-

lation size [1]. Recently, we and others have shown that

microcultivation of microbial colonies on solid medium of-

fers both high-resolution and high-throughput estimation
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of microbial population size growth [22–24]. Expectations

are that this will lead to an explosion in microbial growth

phenomics data and make activities in bioinformatics like

storage, analysis and visualization of the accumulated infor-

mation a critical issue. Various algorithms for analysing

and extracting fitness components from microbial growth

data have been developed for use in microbial growth phe-

nomics [25].

Quantifying the growth in microbial population size at

both high resolution and high throughput has technic-

ally two key components. First, an instrument that auto-

matically and accurately records proliferation of a large

number of microbial populations in parallel is needed.

Several microcultivation instruments currently on the

market achieve both a reasonable accuracy and a reason-

able throughput [25–30]. The output from these instru-

ments is files where the measured proxy for population

size, e.g. optical density (OD), is listed for each experimen-

tal position as a function of time. Second, an analytical

framework is needed to automatically handle, analyse and

extract fitness components from each series of population

size estimates and report the results in a convenient for-

mat. There is currently no generally accepted and widely

used standard tool for the conversion of raw growth data

into fitness components. On the contrary, most research

groups develop their own ad hoc methods, leading to in-

accurate, incomparable and incomplete data.

Algorithms to calculate growth rates, lag times and

yield have been presented but are either not publically

available [31, 32], or only available as Perl scripts [29] or

Excel macros [25] upon request. GrowthRates, is a re-

cently published, freely available software for analysing

growth data [33] but does not contain visualization op-

tions for scrutiny of obtained curves in parallel to ex-

tracted traits. GATHODE, is a semi-automated open

source software [34] that contains a graphical interface,

but it is currently only available as source code and thus

programming skills are essential for its installation.

YODA, is mainly designed for chronological life span

analysis and requires the establishment of a web-server

[35]. Several of the above-mentioned tools lack the ability

to correct for the non-linearity of the recorded optical

density at higher cell densities, and none of them provide

a quality measure of growth curves to speed-up and

standardize the downstream analyzes of large data-sets.

To simplify analysis and standardize comparisons

between different laboratories in the conversion of raw

estimates of microbial population size into accurate fit-

ness components, we developed the open source soft-

ware PRECOG (PREsentation and Characterization Of

Growth-data) that is ready to be downloaded in a desktop

version, accessed via a web-site or utilized as a web-

service (API). PRECOG converts the raw OD data into ac-

curate population size estimates, provides quality indices,

extracts fitness components, and presents both processed

data series, i.e. the growth curves, and the extracted fitness

components in a manner that allows easy user-interaction,

exploration, and evaluation. PRECOG is designed to han-

dle data generated by microcultivation in liquid cultures.

However, PRECOG is essentially agnostic with regards to

instrumental platform and requires no prior knowledge

of the experimental design. This allows the user to initi-

ate data-analysis immediately after the data acquisition

has been completed. To enable proper comparison be-

tween research groups of experimentally generated

traits it is essential to standardize procedures between

laboratories at many levels, e.g. analytical procedures

for data pre-processing and feature extraction [36].

PRECOG is a first step in our goal to create an exten-

sive microbial phenomics framework that streamlines

data acquisition and standardizes fitness component ex-

traction and data visualization, storage and distribution.

PRECOG implementation
The PRECOG analysis pipeline consists of four steps

(Fig. 1a): i) data import, ii) data processing, iii) data

visualization, and iv) data export. PRECOG was initially

developed to process time series of optical density data

from the Bioscreen C instrument, but similar proxies of

population size from other types of instruments can be

used as input.

System overview

PRECOG was implemented using C#, targeting the

Microsoft.Net framework [37], and is accessible as three

different platforms. A webserver hosts a website that

operates as a gateway to PRECOG [38] and it can also

can be reached via a link from our PROPHECY database

[39]. The website hosts the three PRECOG platforms: a

desktop application to be downloaded, installed and used

locally, an online tool at the website and an Application

Program Interface (API)(web service). A table compar-

ing the functionalities of the different versions of PRE-

COG can be found in supplementary material

(Additional file 1: Table S1). Documentation, a video-

tutorial, access to publications linked to PRECOG, and

contact details are also available at the website.

The desktop application can be installed on any Windows

computer (Windows 7 or higher) from the website via the

link “Desktop Application” on the main menu, or from the

desktop install page [40]. Note that the program works

without problems when ran on another operating system

using a virtual machine with Windows installed (e.g.

Oracle’s VirtualBox running on a Mac). The desktop

platform offers the richest user experience by providing

the most features, including an intuitive user interface,

and rich graphics allowing the user to visualize, explore
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and evaluate the processed data. This publication is fo-

cused on the desktop application.

The online PRECOG platform, called PRECOG-lite, is

a slimmed-down version of the desktop application that

runs on a web-server. By connecting to the webpage, the

user can upload a growth-data file and perform limited ex-

ploration of the extracted fitness components and the

underlying population size growth curves. Finally, the user

can download results as text files for further local analyses.

The API is a classic web service (responds to HTTP

requests using the SOAP protocol) providing access to

the code underlying raw data processing and fitness

component extraction. This allows more advanced users

to integrate the code employed into their own programs,

regardless of operating system or programing language.

The API service provides maximum flexibility but

minimal visualization capabilities. The API service can

be found at [41].

PRECOG will read an input file with several series of

optical density data, pre-process each data series to remove

technical noise and some technical bias, calibrate and con-

vert the raw optical density data to actual population sizes,

Fig. 1 PRECOG’s overall design. a The functionality that PRECOG provides is organized as a pipeline that follows four basic steps: step 1 - data
import, step 2 - data processing, step 3 - data visualization, and step 4 - data export. b Screenshots from the PRECOG desktop application. PRECOG’s
user interface is divided into two zones: actions and views. The action zone controls the program’s functions: i) upload data files, ii) setting parameters,
iii) experiment selection, iv) graph controls, and v) save data. The views zone presents the data in different displays: vi) table view, vii) thumbnail view
and viii) detailed curve view
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flag low-quality curves, extract fitness components and

output both fitness components and the underlying data

series (growth curves) for visual exploration and evaluation

by the user.

All the core functions of PRECOG are stored in a vir-

tual library referred to as the PRECOG engine. This core

library is shared by all three versions of PRECOG.

PRECOG desktop application

Using the Microsoft’s Windows Presentations Foundation

(WPF) framework [42–44], we created a rich user inter-

face for the PRECOG engine that functions as a stand-

alone Windows client and facilitates the exploration and

visualization of microbial population size estimates.

The user interface is divided into two zones: actions

and views (Fig. 1b). The action zone organizes all the

system operations under an “Actions Tab”. Here the user

can find all the operations available in PRECOG as collaps-

ible sections. When the user has imported data files in the

“Upload experimental files” window, another tab on the

actions zone, “Experimental Runs”, shows the uploaded

growth-data files as individual experiments. Experiments

can now be explored individually or in batch by selecting

the relevant files. Exploration is performed in the views

zone.

PRECOG has three basic user operations: Upload data

files, Save data, and Parameters. The upload data section

supports xl~ files and CSV exports generated by Bioscreen

C instruments, and generic tab-delimited files. Unlike the

Web and API PRECOG platforms, the desktop application

allows processing and comparison of multiple data sets.

The upload data section also allows the user to set special

options, like the selection of the rate trait extraction method

or the use of the monotonic filter. The parameters section

lets the user customize the calibration function that

converts the recorded optical densities into actual popula-

tion size estimates. It also allows the user to specify the

blank values that subtracts the background signal. At a

minimum, the calibration function should be customized to

each type of instrument and each species of microbes, and

the blank values should be customized to each type of in-

strument and each medium. PRECOG allows the user to

save and output data as tab delimited text files. Four types

of data can be exported, as individual runs or in batches of

more than one run. These are: raw unprocessed data, fully

processed population size estimates, first derivatives (slopes)

of the fully processed series of population size estimates

and the fitness components extracted from each growth

curve. Growth curves that were manually marked as ex-

cluded (see below) will not be included in the export files.

Once an imported data file is selected, data will be pre-

sented in the views zone. By default, it opens in the table

view. This shows the fitness components extracted from

each fully processed series of population size estimates.

Data series are organized column-wise in the input file,

with column headers being integer numbers, typically

denoting position on the experimental plate, beginning

from 1. Each data series is identified in the display by its

column header (Fig. 1b). The table view supports full sort-

ing and copy functionality, the latter allowing the user to

copy from PRECOG and paste into other programs, e.g.

MS Excel, for further analysis. This view shows the quality

indices of each data series (data series and growth curve

will here be used interchangeably) of fully processed

population size estimates, supporting the user in decisions

on to what degree the data series should be trusted. The

user can then mark the data series for exclusion. It is also

possible to merge multiple rows into a single graph. This

feature is useful when wanting to visualize the effect of

multiple samples at once. The user can change this view

to a more compact display with many individual data

series included in the same run as individual thumbnails,

together with the fitness components extracted from each

series (Fig. 1b).

A double click on a graph thumbnail creates a separate

tab in the view zone with a detailed display of the

sample’s growth curve (Fig. 1b). The detailed graph view

allows the user to interact with the data in detail; the

user can perform zoom and pan operations, use logarithmic

or non-logarithmic y-axis, and simultaneously visualize

both the raw optical densities and the fully processed popu-

lation size estimates. The system also shows markers in the

region of each data series where the fitness components

were extracted as metadata (Additional file 2: Figure S1).

This allows the user to visually detect and avoid the intro-

duction of analytical bias that could confound fitness com-

ponent extraction. The detailed graph view has another

useful function; it can show the first derivative of the curve.

The first derivative maximum should overlap with the

growth rate metadata markers (Additional file 2: Figure S2).

If not, this is a clear indication of analytical errors in the fit-

ness component extraction. The detailed graph view, its

underlying data and the extracted fitness components can

be copy-pasted into other applications.

PRECOG-lite – online version

The online PRECOG-lite platform is a slimmed-down

version of PRECOG that allows the user to upload a sin-

gle experimental file. The raw optical densities will be

pre-processed and calibrated as in the desktop applica-

tion and the fully processed population size estimates

will be presented as growth curves. These can be saved in

a tab-delimited text file. During the upload and process

steps, the user can set several parameters like the ones

determining the calibration function, the blank value, the

growth rate trait extraction method and if they want to

skip the monotonic filter (Additional file 2: Figure S3).

Once the data has been processed, it can be accessed in

Fernandez-Ricaud et al. BMC Bioinformatics  (2016) 17:249 Page 4 of 15



the same three formats as in the desktop application: table

view, thumbnail view and detailed graph view (Additional

file 2: Figure S3). In the online version, potential low-

quality curves are flagged for visual inspection by one or

more of the four quality-indices. However, the user cannot

in PRECOG-lite mark the curves for exclusion as can be

done in the desktop version.

PRECOG web service – API

The API version of PRECOG offers access to some of

the basic functions of the core library (see [45] for an

overview), allowing other developers to use them in their

own programs. The current API implementation is basic

and is intended to evolve organically following user input.

Pre-processing filters reducing noise and bias

To remove or reduce random noise and technical bias,

PRECOG filters the raw optical densities in a three-step

procedure. This is done before the background subtraction

and the calibration that transform raw optical densities

into actual population size estimates. First, a sliding win-

dow one-dimensional median filter considers each three

consecutive data values in the data series, replacing the

middle value with the median of all three. Edge cropping

is avoided by padding (filling the gap by cloning the end-

points). Median filters are standard to minimize the im-

pact from high amplitude noise at single time points,

“spikes”, while preserving the overall data characteristics

[46–49]. Optical density spikes originate from lamp fail-

ure, heterogeneity in the cell population, electronic inter-

ference, dust particles or sudden change in light influx

from the environment. In the evaluated test data series,

spikes affected about 4 % of 90,000 growth curves.

Whereas the median filter effectively removed spikes at

single time points (Fig. 2; upper two graphs), it failed to

remove the rare “wide spikes” that extended over mul-

tiple consecutive time-points (Fig. 2; lower two graphs).

Low amplitude but high frequency noise is challenging

to remove. Standard signal analysis instead seeks to

minimize the influence of such noise by smoothing

series of signals, accepting that also data that is close to

the truth are subject to minor adjustments [47–50].

After the median filtering, PRECOG therefore employs a

one-dimensional mean filter in a sliding window that

considers three consecutive data values. The middle

value in each window is replaced by the mean over the

three values in the series. The smoothing is among

the lightest employed in signal analysis, accepting that

Fig. 2 Effects of data pre-processing. Effects of different types of noise in the raw data (red line) on the fully (black line) or partially (green line)
processed data, the latter without the mean filter that removes spikes. If spikes are not removed, as in the case of wide spikes consisting of more
than one data point, the processed data will be distorted (as seen in the lower two graphs). Figures are screenshots from PRECOG.
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some noise may penetrate in order not to distort the

true data trends.

Neither the median nor the mean filter is capable of

accounting for the strongly confounding noise and bias

associated with collapsing growth curves. Curve collapses

follow from the sudden emergence of dramatic heterogen-

eity in microbial populations, typically due to bubble

formation, cell-cell cohesion leading to aggregates, or well

- wall adhesion leading to deprivation of cells in the cen-

tral well area. Curve collapses are associated with drastic

drops in cell density, often followed by equally drastic in-

creases when bubbles and cell aggregates drift stochastic-

ally in and out of light beams. PRECOG, as a third

filtering step, sweeps each data series and enforces data

monotonicity by replacing any values lower than its prede-

cessor with the predecessor itself (Fig. 2). Given that the

enforcement of monotonicity has been preceded by both

median and mean filtering, its effects are restricted to re-

moving or reducing abnormalities in collapsing curves. A

relevant note of caution is that there might be naturally

occurring biological phenomena that result in a negative

net growth (curve collapses), e.g. bacterial cultures being

treated with cell lysing agents like certain antibiotics, or

being exposed to changing osmotic pressure or starvation,

with associated cell lysis and/or autophagocytosis. To make

possible studies of these phenomena using PRECOG, there

is an option where the monotonicity filter can be excluded.

Background/blank subtraction and data calibration

The last pre-processing steps before the fitness compo-

nents are extracted are the blank subtraction and the

calibration adjustment. The blank value, provided by the

user, is subtracted from every data point in the data

series. This effectively removes the background signal on

the assumption that the background is constant across

all experimental positions. Recorded optical densities do

not increase linearly with cell densities because of an ac-

celerating cell shielding effect against light at higher

densities. This is typically detectable at OD > 0.3 [25]. Sam-

ple dilution is not logistically feasible in high-throughput

growth phenomics; thus, recorded optical densities have to

be analytically transformed into actual population size esti-

mates. The transformation uses an empirically established

calibration function that should be separately established

for each species and instrument type. For the Bioscreen C

instrument, a calibration function has been calculated and

applied to correct for this effect. The function is valid for

most lineages and physiological states of the model yeast

Saccharomyces cerevisiae [25] and is offered as default.

The default procedure for fitness component extraction

The traditional view of the microbial population size

growth curve postulates an initial lag phase of no net in-

crease in cell number, an exponential phase where net

increase in cell number is positive and constant and a sta-

tionary phase of no net increase. These phases are sepa-

rated by acceleration and deceleration phases that typically

are disregarded in the analysis. The inevitable final phase of

net death, which rarely is initiated within the time-frame of

a typical experiment, also tends to be overlooked. In this

traditional view, the three fundamental fitness components

is the length of the lag phase, the rate of growth in the ex-

ponential growth phase and the total gain in population

size up until growth ends in the stationary phase. The latter

reflects the efficiency with which the limiting resource has

been converted into population size growth. PRECOG ex-

tracts these three fitness components, using the algorithms

earlier presented [25], in the following way:

The growth lag is extracted from population size esti-

mates, presented on the log-scale as the intercept between

the initial population size and the line extrapolated from

maximum growth. PRECOG calculates the mean of the

first five population-size estimates, providing a robust

measure of the initial OD. PRECOG then calculates the

time for all the intercepts between the initial mean values

and every slope. Slopes are obtained in a moving window

of eight time-points, departing from the beginning of the

curve and proceeding to the end. The fitness component

lag time is estimated as the mean of the two largest inter-

cepts and is expressed in hours.

The growth rate, expressed as population size doubling

time, is extracted from the highest of many short slopes

in the exponential growth phase and converted into

population doubling time. The first three hours of the

curve is excluded to avoid obtaining slopes corresponding

to cell size increases when cells exit from the starved G0

state and recapture a size that is permissive for cell division.

Then it takes the logarithm (base 10) of the remaining data

points and calculates the slopes in a moving window of

three time-points. Slopes are ranked based on their values

and the two highest slopes are discarded in order to

minimize the effect of any remaining artefact outliers. From

the remaining slopes, the mean of the five highest is formed

�xhighest slopes
� �

and converted into doubling time (in hours).

The growth efficiency is extracted as the total increase

in population size, from the smallest to the largest popula-

tion sizes, given that growth has actually ceased when

population size is maximal. The mean of the two smallest

measurements �xbaseð Þ and the mean of the six highest

measurements �xtop
� �

defines the interval such that the ef-

ficiency is estimated as �xtop − �xbase . No estimate of effi-

ciency is given if the standard deviation of the six highest

OD measurements divided by �xtop
� �

is greater than 0.02,

corresponding to a rough distinction between curves that

have and have not reached a stationary phase.

PRECOG also provides an alternative algorithm for

growth rate extraction that is less prone to overestimate
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the growth rate when growth curves are noisy and more

robust when data are sparse. The algorithm performs

linear regressions in a window of five time points that

slides along the curve, extracting slopes from the regres-

sion models and converting the highest slope into doub-

ling times.

Quality indices

Automatic evaluation of the quality of the data series of

population size estimates is challenging because both

high-quality data series, that should be retained, and

low-quality data series, that should be rejected, vary

greatly in their growth dynamics and types of technical

errors (Additional file 2: Figure S4, Figure S5). To distin-

guish high from low quality growth curves given this

variability, PRECOG establishes four quality indices

(QI), based on the raw data series, that together esti-

mates curve quality. The indices are QI1, “overall noisi-

ness” in the form of the average fit of regression lines to

the data along the curve, QI2, “local noisiness” based on

local regions with poor fit of regression lines to the data

along the curve, QI3, “number of spikes” that identifies

short, dramatic increases in data values and QI4, “curve

collapses” that identifies curves with sudden and sus-

tained drops in data values. Conceptually, these phe-

nomena are all incompatible with accepted models of

true growth curve dynamics. High values in one or more

of the quality indices therefore suggest technical prob-

lems and identify data series that should be visually

inspected by the user for possible exclusion.

For the QI1, “overall noisiness”, we exclusively consider

the noise in the growth phase of the curve, by calculating

linear regression over a five-point sliding window with

slope k > 0.07. QI1 is defined as 1 - the average coefficients

of determination, r2, of the data in all such windows to

their respective linear regression, and provides a measure

of the overall noisiness in a data series.

The QI2, “local noisiness” uses the same principle as

QI1 but only considers high local variation of the growth

data. QI2 is defined as 1 - the average of the three worst

coefficient of determination, r2, of the linear regressions.

Thus, it indicates the existence of very noisy regions.

The QI3, “number of spikes”, estimates the number of

spikes in the growth curve. The QI3 index is initially cal-

culated in the same way as the QI2. However, here PRE-

COG counts the number of r2 values that are less than

0.5. From practical experience we have seen that this

index shows how many sharp bends the curve has, thus

being an indication of the number of spikes.

The QI4, “curve collapses”, measures the magnitude of

the corrections done to the raw growth curve. The QI4

index is calculated by comparing data series before and

after filtering with the monotonic filter. We obtain QI4

as the sum of the absolute differences between the data

series, over all time-points. Large correction values reflect

curves that have collapsed in late exponential or stationary

phase. These are rarely captured by other quality indices.

Methods
Establishing the calibration function

To make the species-specific calibration functions to

correct higher OD values, cells were grown overnight to

stationary phase in synthetic defined media; YNB with 2 %

(w/v) glucose for the various yeast species and LB medium

for Escherichia coli. The stationary phase cultures were

x1.5 serially diluted in the corresponding growth media to

finally reach 15 dilution-steps, and the whole series of

dilutions measured in the Bioscreen instrument. The

blank-corrected diluted OD values and the blank-corrected

undiluted OD values are for practical purposes indistin-

guishable up to OD ≈ 0.3, and above this value the true OD

values were calculated using the corresponding dilution fac-

tor and the diluted samples (OD < 0.3). A blank value was

estimated on only media without cells, and this value was

subtracted from all other measured OD values. Using the

previously established formula for calibration, y = x + cx3

[51], which assumes a near 1:1 linearity for low OD, the fol-

lowing values for c were found: Candida albicans: c =

0.5790256635480614, Pichia pastoris: c = 0.56532843458

04932, Schizosaccharomyces pombe: c = 0.6467246377423

4579, and E. coli: c = 0.75389848795692815. For S. cerevi-

siae we obtained c = 0.82673123484708266 which is very

close to the earlier established and since long used c value

for this species, 0.8324057 [19, 51]; for consistency reasons

we will stay with the old c value.

Results
Flagging low-quality data series for manual inspection

and exclusion

To evaluate the performance of PRECOG, we created two

benchmarking sets of 100 high- and 100 low-quality

growth curves. Curves in the high-quality set are technic-

ally of good standard and capture a wide range of true bio-

logical properties, including individual and combined

effects on each of the classical fitness components growth

lag, rate and efficiency, as well as multimodal growth.

Multimodal growth corresponds to multiple phases of ele-

vated growth (Additional file 2: Figure S4 and data S1).

Growth curves in the low-quality set represent a variety of

amplitudes and frequencies of technical noise (Additional

file 2: Figure S5 and data S2); roughly half of the curves in

this benchmarking set are completely dominated by tech-

nical error and should be rejected. We believe that these

two benchmarking sets could be generally valuable in mi-

crobial phenomics for performance tests of growth algo-

rithms and software. The two benchmarking sets can be

downloaded from [52].
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Growth curves are quality filtered by PRECOG in a

semi-automated procedure. The first step is the auto-

matic calculation of quality indices based on four curve

features. The second step is manual scrutiny of indicated

problematic curves for possible exclusion. The four quality

indices are QI1; “overall noisiness”, QI2; “local noisiness”,

QI3; “number of spikes” and QI4; “curve collapses”. Thus,

the four indices capture different types of technical prob-

lems encountered, and one should not expect all indices

to flag for low quality of a particular problematic curve.

Low-quality data series evading the four quality indices

may result in extractions of incorrect fitness components.

On the other hand, false flagging of high-quality data

series results in an excessive workload on the operator, in

terms of manual inspection.

To find the optimal breakpoint for what to flag and

what not to flag, we evaluated six thresholds for each

quality index: flagging the worst 0.5, 1, 2.5, 5, 10 and 15 %

of data series on almost 90,000 growth curves, the aggre-

gated 90 k set, generated over many years and by several

different experimentalists in our lab (Fig. 3). Each thresh-

old was then tested on the two benchmarking sets to

evaluate false positives and false negatives. We found the

numbers of false positives, in the high-quality set, and

false negatives, in the low-quality set, to be lowest at

the 5 % flagging level for each QI in the aggregated 90 k

Fig. 3 Filtering data using PRECOG’s quality indices. a Data is filtered using four quality indices, QI1 - “overall noisiness”, QI2 - “local noisiness”,
QI3 - “number of spikes”, and QI4 - “curve collapses”. Upper panels: performance of each quality filter on the “aggregated 90 k set”, including almost
90,000 growth curves. x-axis shows QI score, y-axis shows number of growth curves flagged at each QI score setting. Blue bars = non-cumulative
flagging, red line = cumulative flagging, dashed black line = selected QI score setting that flags a cumulative 5 % of curves. Lower panels: performance
of the QI filter (QI score, y-axis) on the two selected benchmarking sets of 100 high- and 100 low-quality curves (x-axis). Dashed horizontal lines:
performance at the 5 % rejection threshold selected based on the “aggregated 90 k set” growth curves. b Summary performance of all quality indices.
Number of curves that obtain 0, 1, 2, 3 and 4 flags in the “aggregated 90 k set” at the selected threshold, where each quality index flags the worst 5 %
of growth curves, i.e. 90 % of all curves were not scored by any of the quality indices while 2 % were scored by all four. c Summary performance of all
quality indices. Number of QI flags in the high- and low-quality benchmarking sets. Colours indicate quality index responsible for the flagging, with
blue = QI1, red = QI2, green =QI3 and purple = QI4. d Number of false positives and negatives in the two benchmarking sets, as a function of using
various thresholds from the “aggregated 90 k set”
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set (Fig. 3d). At this threshold the low-quality curves were

easily distinguished by the quality indices; only one curve

escaped all four quality-indices. None of the high-quality

curves were flagged at the 5 % threshold. It was also clear

that different quality indices captured different curve

problems (Fig. 3c); only 39 % of the low quality curves

were flagged by all four quality indices while roughly 11 %

were captured by only one quality index. The flagged

curves can be visually inspected in PRECOG in a semi-

automated manner, allowing fast operator decisions on

which flagged curves to accept and reject. Non-flagged

curves are automatically accepted and included in the

downstream analysis.

Benchmarking PRECOG’s pre-processing data filters for

minimizing noise

To remove or reduce noise and bias, PRECOG filters the

raw optical densities in a three-step procedure. PRECOG’s

data filtering is computationally inexpensive and therefore

possible to employ on a very large scale, and addresses the

vast majority of technical errors manifesting in data series.

We tested PREGOG’s data filtering by comparing its per-

formance to a multi-layered neural networks noise reduc-

tion filter. Neural networks have been used for many years

as a reliable tool to solve noise reduction problems [53, 54].

A multi-layered neural network, iterated 500x to exclude

outliers (remove noise), did not perform better than the

three-step PRECOG data filtering process (Fig. 4). Fitness

components, extracted following the data processing by the

two methods, were nearly identical for high-quality curves

(r2, lag = 0.9938, rate = 0.9976, efficiency = 0.9997) and cor-

related well also for low-quality curves (r2, lag = 0.7868,

rate = 0.7465, efficiency = 0.991); if the really bad curves

flagged for all four QI:s were excluded the correlations were

even better (r2, lag = 0.9716, rate = 0.9762, efficiency =

0.9933). Visual inspection of low-quality data series where

Fig. 4 Benchmarking of PRECOG’s default data cleaning algorithm. We compared PRECOG’s pre-processing filters against a computationally
demanding neural network pre-processing procedure. After the pre-processing, the fitness components growth lag, growth rate and growth
efficiency were extracted by PRECOG’s standard procedure from the high- (left panel) and low-quality (right panel) benchmarking sets, and
compared. Low-quality curves are in the right panel marked (green with a red mark) if flagged by all four quality-indices (thus, indicating
curves of really low quality)
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noticeably different outcomes were observed, failed to es-

tablish a pattern of consistent superior performance of any

one filtering method. The computational inexpensiveness

of PRECOG’s three-step data pre-processing therefore

speaks emphatically in its favor.

The importance of calibration to convert optical densities

into population size estimates

The optical density of cultures is easy to measure and can

be implemented in automated procedures, which is why it

has become a standard way of estimating changes in high-

throughput microbial population size studies. Calibration of

recorded optical densities into population size estimates

drastically adjusts the shape of recorded growth curves, sug-

gesting a potentially profound distortion of fitness compo-

nents extracted by softwares failing to employ this

procedure (Fig. 5). To evaluate to what degree fitness com-

ponents are confounded by failure to calibrate, we com-

pared fitness components extracted from the high-quality

benchmarking set, before and after calibration (Fig. 5b). Dis-

tortions in the form of a systematic underestimation of lag

phases, corresponded to 15 % shorter lags than reality, and

systematic overestimation of population doubling times,

corresponded to 25 % slower growth than reality, were sub-

stantial. In the case of growth efficiency, the systematic un-

derestimations from non-calibrated data were outright

catastrophic, with a mean of 61 % lower estimates than

reality (Fig. 5b). Thus, calibration of recorded optical dens-

ities is absolutely essential and should never be overlooked.

PRECOG allows the user to choose between calibration

functions stored centrally or to enter functions established

empirically by the individual laboratory. It is clear from our

experimental data that different organisms require different

calibration functions (Fig. 5c). For example, the relation be-

tween observed optical density and actual population size is

very different in the fission yeast S. pombe than in the bud-

ding yeast S. cerevisiae. In this context it should be men-

tioned that OD is influenced by other factors besides cell

number, like the volume and biomass of each cell, absorp-

tion from internal molecules, the shape of individual cells

and cell aggregation. This means that OD measurements

are most effective in comparing microbial cultures for

which other properties that affect light transmission are

identical. Thus, OD should always be seen as a proxy for

the microbial population size, and interesting phenomena

should ideally be confirmed by alternative cell-counting

methods, like microscopy or FACS, for which the biases

are different. The impact from the calibration function

will especially be great for the extraction of growth effi-

ciency, as calibration functions deviate more from linearity

at higher optical densities. PRECOG enables users to enter

calibration functions established by comparing optical

densities of diluted and non-diluted microbial samples

over a range of densities [25] (see Methods section for a

more detailed description of experimental and analytical

procedures for establishing valid calibration functions).

Fitness component extraction and frequency of sampling

PRECOG extracts the three canonical fitness components

associated with net growth of microbial populations; length

of the initial lag phase, in which no net growth occurs,

maximal rate of growth (specifically: minimum population

doubling time) in the phase when net growth is positive,

and the total gain in population size, given that a stationary

phase of no further net growth has been reached at the

maximum population size. Stationary phase is almost ex-

clusively entered because one resource, typically energy or

nitrogen, has been depleted, and the population size yield

therefore represents the efficiency with which this resource

has been converted into population growth. PRECOG also

tracks the data points used to extract each fitness compo-

nents as associated metadata, allowing stringent user

evaluation of the reliability of each extracted fitness com-

ponent (Additional file 2: Figures S1, S2).

The primary experimental settings that operators need

to decide on prior to experiment start are frequency of

data measurements and total number of data measure-

ments. Together, these parameters define the length of an

experiment. We evaluated the influence of varying the data

measurement frequency on extracted fitness components

in a standard 72h experiment, using the two benchmarking

sets. While growth efficiency and lag were largely un-

affected by realistic frequency changes (Additional file 2:

Figure S7), minimum population doubling times were sys-

tematically and continuously overestimated when data

measurements were less frequent (Fig. 6a, upper panel).

Minimum population doubling times typically occur early

in the net growth phase. As data measurement frequency

decreases, minimum population doubling times are in-

creasingly based on data points from later in the net

growth phase, where slopes are less steep and the exponen-

tial growth assumption increasingly incorrect (Additional

file 2: Figure S6).

We also tested an alternative method for rate extrac-

tion, based on a single linear regression over five con-

secutive time-points, expecting it to have a lower degree

of dependency for alterations in frequency of sampling.

Indeed, we found that the tendency towards overestimating

true minimum population doubling times at lower meas-

urement frequencies was somewhat less severe when linear

regressions over five consecutive time-points were consid-

ered (Fig 6b). Comparing the two growth rate extraction

methods on high frequency sampled data, we found near

perfect correlation (r2 = 0.9966) over the whole range of

growth rates in the high-quality data set (Fig. 6b), but a

slight, systematic tendency for extraction of shorter mini-

mum population doubling times using linear regression.

This tendency was substantially stronger in the low-quality
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data set, where the correlation was also less impressive

(Fig. 6b; lower graph). The discrepancy between the

two methods primarily originated from the default

method, based on the mean of many high slopes, dis-

carding the two highest slopes; when including the two

highest slopes in the growth rate extraction, the correl-

ation between methods was excellent (r2 = 0.9705) and

the systematically faster growth extracted using linear

regression disappeared (data not shown). We conclude

that for high-frequency sampled growth data, maximal

population doubling time estimates are mostly inde-

pendent of which of the two methods are used. In PRE-

COG the user can select the preferred growth rate

extraction method.

Fig. 5 Fitness components extraction from calibrated and non-calibrated growth curves. Fitness components were extracted from the high-quality
benchmarking set of growth curves. a Example curves for each of the fitness components extracted (growth lag, rate and efficiency). For each estimated
fitness component, markers (red triangles = non-calibrated data, black circles = calibrated data) indicate the data underlying that estimate. b Correlation
between calibrated and non-calibrated data. Dotted line indicates the 1:1 relation. c Calibration function for different organisms. Recorded optical density
(x-axis) and actual population size (density), as reflected in the OD recorded for a diluted cell suspension and multiplication with the dilution factor (y-axis),
is shown
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Discussion
Estimation of phenotypes is central in experimental life

sciences. Advancing the speed and accuracy with which

phenotype estimation can be achieved is therefore critical

to scientific progress. Although phenomics still lags be-

hind genomics [55], the throughput of phenotypic data ac-

quisition has now, for a wide set of model organisms,

advanced to a degree that data analysis, standardization,

visualization and validation are becoming critical bottle-

necks. The computational challenge is amplified by that

many phenomics instruments, each with their own noise

levels, biases and limitations that need specific attention,

are in use without unified industry standards [36]. Con-

cerns over the reproducibility, comparability and accessi-

bility of the vast resources of phenotypic data are also

being voiced by an increasing fraction of the life science

community [56–59].

Variation in experimental designs in terms of genetic

background, environmental factors, media composition

and instrumental set-up is essential, both for exploring

the full width of biological phenomena and for establish-

ing the general validity of conclusions across wider

swaths of the experimental space. This variation is bene-

ficial and leads to that more of the phenotypic space is

examined. Nevertheless, standardization in the down-

stream analysis is required in order to allow strict compari-

sons across platforms, verification of the reproducibility

and general validity of conclusions, and simplifying data

mining for third parties. We hope that PRECOG can play

such a standardising role.

Currently, phenotypic data is mostly presented using

free text combined with controlled vocabularies, like the

Yeast Phenotype Ontology [60]. However, the qualifiers

used, e.g. arrested, delayed, decreased, increased, and

normal, imply the direction of change relative some type

of reference but lacks quantitative definitions in terms of

effect-sizes, the confidence with which conclusions have

been established, and the conditions under which they

were found to be true [4]. This certainly leaves much

room for improvement [61], including the use of proper

references, quality assessment of data, calibration, stan-

dardized software data processing and fitness compo-

nent extraction, and correctly accounting for noise and

bias.

PRECOG is first and foremost an effort in the direc-

tion of standardized data processing and fitness compo-

nent extraction. Additionally, PRECOG aims to simplify

data analysis, visualization and evaluation for users that

lack the experience, time, and computational expertise to

develop the tools required to achieve these tasks. Most

commercial software dedicated to analysing growth curves

have built-in capacities to extract various variables, such

as the maximum signal intensity, the maximum slope, or

the integral under the curve. Unfortunately, these built in

software features typically extracts variables from raw

growth curve data, i.e. without any calibration to obtain

Fig. 6 Comparing two algorithms for extracting doubling time. a Effect of sampling frequency on doubling time. Sampling frequency denotes
the fixed time (interval) between consecutive measurements. At the start of the experiment the user sets the sampling frequency: PRECOG’s default
algorithm (upper panel), the algorithm based on linear regression (lower panel). Averages from the high- and low-quality sets are indicated. b Doubling
times extracted from data with 20 minute sampling intervals (our default value) for the high- (upper panel) and low-quality (lower panel) benchmarking
sets are shown for the two algorithms
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true estimates of population size and without smoothing

of population sizes to minimize noise and bias. As shown

in Fig. 5, this will result in grossly misleading results.

Moreover, the specifics of the procedures for variable ex-

tractions are rarely published for proprietary reasons and

are not comparable across either programs or versions of

programs, leading to severe issues with reproducibility be-

tween various laboratories and over time. PRECOG with

its implemented calibration functions and transparent fea-

ture extraction procedures thus facilities automated pro-

cessing of microbial growth phenomics data in a manner

that provides high accuracy, minimizes risks for false posi-

tive and negatives, allows the user to visualize and evaluate

individual data series such that extracted fitness compo-

nents can be directly connected to the underlying growth

curves, and provides easy and standardized exporting

functions. Overall, we found that the established analysis

pipeline handles high-quality curves well, with no operator

intervention needed, whereas low-quality growth curves

pose challenges that cannot easily be overcome in an au-

tomated fashion. We partly solved this by flagging low-

quality data series for operator inspection and potential

rejection, using a series of quality indices. We delegate the

decision to the operator as to what is the best overall strat-

egy, with regards to rejecting or accepting questionable

data series. Ideally, experiments should be designed with

sufficient replication such that rejection of even a rather

high fraction of growth curves as being of too low quality

would not challenge the statistical integrity of the analysis.

In reality, few experimental designs are replicated at a

level where rejecting of substantial amounts of data series

can be done without painful costs. This calls for further

advancements in throughput, and perhaps a refocusing

from number of distinct samples to number and ran-

domization of replicates of these samples. Downstream

analysis of obtained growth data will naturally involve

sound statistics. Certain replicates might in these statis-

tical analyses be scored as outliers; if these correspond to

curves showing quality warnings that would be an excel-

lent base for exclusion.

As with any method, there are room for future improve-

ments of the PRECOG platform. We currently make poor

use of the richness of the data acquired, restricting fitness

components extraction to the lag, rate and efficiency of

growth. These parameters only reflect a fraction of the

growth information in the data accumulated. Focus on

these fitness components are partially motivated by the

established standard model of growth, assuming distinct

lag and stationary phases that are separated by a long ex-

ponential phase. This standard model is at best a very

crude approximation of a complex and very diverse reality,

where growth often rapidly becomes limited by external

factors and therefore switches from exponential to linear

growth, or where serial use of nutrients or handling of

toxins promotes diauxic rather than unimodal growth

[62]. Fitness, in terms of a genotypes’ frequency increase

relative other genotypes, are naturally affected by its

performance in each of these phases. Fitness compo-

nent extraction would therefore certainly benefit from a

conceptual re-think. Full exploitation of the first deriv-

ate of growth is a natural first step in this direction.

Expanding fitness component extraction requires careful

attention to the particular biases that affect the different

phases of growth, with systematic differences between

measurement positions on an experimental plate and the

relative impact of different normalization procedures ap-

plied to account for these constituting key question

marks.

Conclusion
To summarize, we here launch the tool PRECOG that will

promote simplicity, transparency and standardization in

microbial growth phenomics, and provide a portal with

the standalone software and online tools so that other

microbiology labs can easily upload, assess and visualize

their growth data. Data may then be further distributed to

standard repositories, like the SGD [4] and PROPHECY

databases [63, 64].

Availability and requirements
Project name: PRECOG

Project home page: http://precog.lundberg.gu.se/

Operating system(s): Desktop Application: Windows;

Online version: Platform Independent; API(Web service):

Platform Independent

Programming language: Microsoft C#

Other requirements: Dot Net framework 4.5 or higher

License: EULA

Any restrictions to use by non-academics: Software is

free for non-commercial users.

The high-quality set is included as Data S1.

The low-quality set is included as Data S2.

Additional files

Additional file 1: Table S1. Feature comparison of the different
PRECOG platforms. (DOCX 17 kb)

Additional file 2: Figure S1. Meta data to evaluate the extracted
fitness components. Markers indicate data used for estimation of growth
lag (purple circles), rate/doubling time (black cross), and efficiency (green
triangles). Figures are screen shots from PRECOG. Figure S2. Displaying
the first derivative of growth. X’s mark the samples where the doubling
time was extracted, which coincides with the first derivative peak. Allows
the user to identify curves where there are difficulties in extracting traits,
like curves exhibiting multimodality (B and C). Figures are screenshots
from PRECOG. Figure S3. PRECOG-lite website screenshots. (A) upload, B)
table view, C) thumbnail view, D) a detail view of the growth-data, E) the
Save As allows the user to save the data in its different forms (growth-
data, first derivate, and extracted traits). Figure S4. High-quality bench-
marking set of growth curves. The 100 growth curves of high quality dis-
playing various growth feature, i.e. difference in growth lag, rate and

Fernandez-Ricaud et al. BMC Bioinformatics  (2016) 17:249 Page 13 of 15

http://precog.lundberg.gu.se/
dx.doi.org/10.1186/s12859-016-1134-2
dx.doi.org/10.1186/s12859-016-1134-2


efficiency as well as combinations of these. The set also include curves
that are clearly multimodal. Red = raw data, Black = fully processed data.
All curves are displayed on the log scale (y-axis). Figure S5. Low-quality
benchmarking set of growth curves. The 100 growth curves of low qual-
ity, representing various technical challenges, e.g. curves with high levels
of noise, frequent spikes and collapsing curves. Red = raw data, Black =
fully processed data. All curves are displayed on the log scale (y-axis). Fig-
ure S6. First derivative of growth curves with various sampling frequen-
cies. First derivative is displayed indicating times for measurements (red
circles), and data used for estimation of growth rate (crosses). Figure S7.
The effect of sampling frequency on growth lag (upper panel) and effi-
ciency (lower panel). Sampling frequency denotes the fixed time (interval)
between consecutive OD measurements. Averages from the high- and
low-quality sets are indicated. (PDF 452 kb)
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