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Abstract

We present a novel approach for interactively synthesizing motions for characters navigating in complex environ-

ments. We focus on the runtime efficiency for motion generation, thereby enabling the interactive animation of a

large number of characters simultaneously. The key idea is to precompute search trees of motion clips that can

be applied to arbitrary environments. Given a navigation goal relative to a current body position, the best avail-

able solution paths and motion sequences can be efficiently extracted during runtime through a series of table

lookups. For distant start and goal positions, we first use a fast coarse-level planner to generate a rough path of

intermediate sub-goals to guide each iteration of the runtime lookup phase.

We demonstrate the efficiency of our technique across a range of examples in an interactive application with

multiple autonomous characters navigating in dynamic environments. Each character responds in real-time to ar-

bitrary user changes to the environment obstacles or navigation goals. The runtime phase is more than two orders

of magnitude faster than existing planning methods or traditional motion synthesis techniques. Our technique is

not only useful for autonomous motion generation in games, virtual reality, and interactive simulations, but also

for animating massive crowds of characters offline for special effects in movies.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism:Animation

1. Introduction

In recent years, a number of techniques for organizing and

playing back clips of motion data have been developed to

generate animations that are natural and lifelike. In this

paper, we explore the use of precomputation to increase

the runtime speed for synthesizing animation. Runtime effi-

ciency is particularly important for games, virtual reality ap-

plications, and interactive simulations. The AI that controls

the autonomous characters in these applications is often lim-

ited by the computation time that is available. This leads to

very simple scripted behaviors; more complex behaviors are

not possible due to the time constraints. Moreover, the time

constraints are worse if there are a large number of charac-

ters. This motivates our careful investigation of how much of

the computational cost of planning and complex motion syn-

thesis can be effectively precomputed. The techniques pre-

sented in this paper can be used to interactively plan long

sequences of motion for multiple characters navigating in

dynamic environments with local minima.

The main contributions of our method include: 1) The

concept of a Precomputed Search Tree to increase the

speed of motion generation during runtime. We build only

one tree, and each character can re-use the same tree. Be-

Figure 1: Screenshot of the interactive viewer (top). The

characters respond to user changes in real-time while navi-

gating in large and dynamic environments.

cause we map environment obstacles to the region covered

by the tree, we can also reuse the same tree for arbitrary

environments; 2) We can globally plan for long sequences

of motion. This is in contrast to local policy methods, typ-
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ically used in games, that can fail in environments with lo-

cal minima; 3) The precomputed search tree can incorpo-

rate complex behaviors such as jumping and ducking; hence

the characters are not limited to navigating on a flat terrain;

4) We can plan motions for a large number of charac-

ters interactively. We present real-time demos for up to 150

characters moving simultaneosly in dynamic environments.

Aside from real-time applications, our method can also be

used for synthesizing offline animations of massive crowds

of characters for cinematic special effects.

2. Related Work

There has been much work on synthesizing realistic hu-

man motions for animated characters. Motion editing tech-

niques [WP95, Gle97] allow clips of motions to be modified

for use in different environments or situations. Motion in-

terpolation methods [WH97, RCB98] can generate new mo-

tions from a set of examples. Motion graphs [AF02,KGP02,

LCR∗02, PB02] allow better re-use of motion capture data

by re-playing through a connected graph of clips. Physics-

based approaches allow us to generate a variety of natural

human movements [FvdPT01], and learn motion styles from

examples [LHP05].

Interactive applications such as games often use local pol-

icy methods to generate motions for its characters. These

methods use a set of simple rules [Rey87]. Local policies are

typically very fast to compute, but often fail in complicated

maze-like environments with local minima. It is also diffi-

cult to adapt them appropriately for more complex charac-

ter skeletons such as human figures. For example, the policy

may cause a character to turn suddenly to avoid something,

resulting in footskate or other undesirable artifacts. In addi-

tion, local policies often cannot guarantee non-collision or

deadlock between multiple characters. Because our method

is built on top of a global planning technique, it outputs

motions that avoid local minima. Our representation of mo-

tion data as high-level behaviors is reminiscent of move trees

[Men99, MBC01], which are often used in games to repre-

sent the motions available for a character.

Many planning approaches have been used for creating

animations. Planners based on grasp primitives [KvdP01],

probabilistic roadmaps [CLS03], and a two-stage probabilis-

tic planning and motion blending approach [PLS03] have

been used. Sung et al [SKG05] also use a two-level plan-

ning technique to animate their characters: a PRM approach

first generates approximate motions; these motions are then

refined to precisely satisfy certain constraints. Planning ap-

proaches have also been used to generate human arm mo-

tions [KKKL94] and characters performing manipulation

tasks [YKH04]. These previous approaches have not shown

motions for a large number of characters synthesized in real-

time.

Reitsma and Pollard [RP04] introduced the idea of em-

bedding a motion graph into a 4-D grid. The 4-D grid then
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Figure 2: Overview of the motion generation system.

represents the possible ways the character can move in the

environment. The embedding only works for a specific sta-

tic environment, and takes on the order of minutes to com-

pute. This is not a problem for their work because their focus

was on the evaluation of motion graphs. In contrast, we are

concerned with improving the runtime speed of the search.

Lee and Lee [LL04] have also explored the idea of precom-

putation. They preprocess sets of motion data to compute a

control policy for a character’s actions. This policy was then

used at runtime to efficiently animate boxing characters. Our

approach is different in that we precompute a search tree of

possible future actions. We then build gridmaps over this tree

so that we can efficiently index to the relevant portions of the

tree during runtime.

3. Precomputed Search Trees

Figure 2 shows an overview of our system. The inputs to the

system include: a starting position and orientation, a goal

position, a description of the environment geometry, and a

Finite-State Machine of motion states. In the precomputa-

tion phase, we build a search tree of the states in the FSM.

We also compute gridmaps over this tree so that we can ac-

cess the nodes and paths in the tree more efficiently later.

During runtime, we first use a bitmap planner to search for

a coarse path. This path is repeatedly used to select interme-

diate sub-goals for use in the Runtime Path Finding module.

This module returns a sub-path, part of which might be saved

as the overall path. We continue this Runtime Path Finding

process until we have reached the final goal. The resulting

path corresponds to a sequence of states chosen from the

FSM. This sequence is then converted into motion that al-

lows the character to move from the start to the goal.

Environment Representation The inputs to the sys-

tem include an annotated geometric description of the ob-

stacles in the environment, similar to the one in [LK05]. In

particular, there can be special obstacles such as archways or

overhangs where the character can duck underneath, or low

obstacles on the floor which the character can jump over. We

must have a corresponding valid region for each of the spe-

cial obstacles when we perform the Runtime Path Finding.
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Figure 3: Left: A small FSM of behaviors. Right: The first

two levels of a small search tree example.

For the purpose of collision detection, we bound the charac-

ter by a cylinder of radius r. We enlarge the size of the ob-

stacles by r, and shrink the character to a point. The problem

then becomes planning a path for this point in the enlarged

obstacle space [LaV06].

Finite-State Machine We have an FSM of behavior states

which is used to precompute the tree. Figure 3(left) shows a

small FSM. Each state or node contains a set of motion clips

representing a high-level behavior, and each edge represents

transitions between the behaviors. In order for solution paths

to be found for a variety of environments and goal positions,

it is important that we design this FSM carefully. There is

one cost for each behavior state, equal to the approximate

distance the character travels multiplied by a user weight.

Precomputing the Search Tree We build a tree of the

states in the FSM up to a certain depth level. Figure 3(right)

shows the beginning of such a tree for a small set of behav-

iors. This search tree represents all the possible paths that

the character can take from an initial start position and ori-

entation. If we build the exhaustive tree (Figure 4 left), its

size grows exponentially with respect to depth level. Equa-

tion 1 shows the total number of tree nodes for an exhaustive

tree with branching factor b and depth level d. The branch-

ing factor also depends on the number of behavior states and

how they transition to each other. In general, the tree size

is O((average b)d). Our precomputed tree is a pruned tree

that limits the number of paths that can reach each point (see

Figure 4 right). The intuition is that there are parts of the

exhaustive tree that have more than 1,000 paths reaching it.

A large number of these paths are similar, and hence it is

reasonable to prune them.

total number o f tree nodes =
d

∑
k=0

b
k

(1)

Each node of the tree has the position, orientation, cost,

and time of the path up to that node starting from the root

node. We initialize the tree with an empty root node. We also

initialize an empty grid similar to the one in Figure 5(left).

To build the nodes in the d + 1 level, we consider all the

child nodes of the nodes in the d level. We must consider

the transitions (as specified in the FSM) when we build this

set of child nodes. We randomly go through this set of child

Figure 4: Frequency plot of the precomputed search tree.

Each point represents the number of paths that can reach

that point from the root of the tree. The root is near the mid-

dle of each figure and the tree progresses in a forward di-

rection (or up in the figure). The tree covers an area that

is approximately a half circle of radius 16 meters, with the

character starting at the center of the half circle. The major-

ity of paths end up in an area between 8 and 14 meters away

from the start. We used about 1,500 frames of motion at 30

Hz. Left: Exhaustive tree of 6 depth levels built from FSM

with 21 behavior states. This tree has over 6 million nodes

(over 300 MB). Right: The pruned tree has 220,000 nodes

(about 10 MB).

nodes, and decide if each one should be added. If the node’s

corresponding cell (xi,yi) (see Figure 5 left) has less than

a prespecified number of k nodes already in it, we will add

the node and increment the number of nodes in that cell.

We thereby limit the number of nodes in each cell to k. In

Figure 4(right), k is set to 100. We also limit the total number

of nodes we built.

Since each node has only one parent, we can trace back

the path to the root to find the sequence of behavior states

that can reach that point. Hence each node also represents

the path up to and including that point. Each node also has a

blocked variable, initialized here with UNBLOCKED. If this

variable is set to BLOCKED, this means we know for sure

that we can neither reach that point nor any of the corre-

sponding descendant nodes. However, the path from the root

to the parent node of that point may still be reachable.

Environment Gridmap We build an environment

gridmap over the tree as shown in Figure 5(left). The grid-

cells are all initially marked as UNOCCUPIED. Each node

of the tree can then be associated with a gridcell. For exam-

ple, node i corresponds to cell (xi,yi) in Figure 5(right). We

precompute and explicitly store the corresponding (xi,yi)
value in each node so that we can quickly access the cell

that a node is in during runtime.

The size of the gridcells is a parameter of the system, and

we used a range of sizes from 14 cm to 28 cm. This parame-

ter, however, affects the runtime phase significantly. It may

increase the time for mapping the environment to the tree

(Section 4.2) by approximately nine if the size of each cell is

cut to a third of the original. We want to balance between a

large cell size which decreases the runtime, and a small cell

size which represents the environment more accurately.
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Figure 5: Left: An environment gridmap initialized with

UNOCCUPIED cells. The intuition for this gridmap is that

if cell (xi,yi) is occupied by an obstacle, the tree nodes cor-

responding to this cell and their descendant nodes (the black

ones) are BLOCKED. Right: For each node i, we precom-

pute and store the corresponding values xi, yi, xmidtime_i, and

ymidtime_i.

For each tree node i, we also precompute and store the

values xmidtime_i and ymidtime_i (Figure 5 right). We first take

half (with respect to time duration) of motion clip i to reach

node midtime_i. The values xmidtime_i and ymidtime_i are then

stored in node i. Node midtime_i is used temporarily in this

calculation and does not exist in the tree. If the motion clip

is one of the special motions such as jumping, we do not

take half of the clip to get node midtime_i. Instead we use

the point where the special motion is actually executed. For

the example of jumping, this is where the character is at or

near the highest point of its jump. This information should

already be pre-annotated in the motion data. These “mid-

time” positions are used for collision checking in the runtime

phase. For the special motions, they are used to see if the

character successfully passes through the corresponding spe-

cial obstacle. The choice of taking half of the clip is only a

discretization parameter. For more accurate collision check-

ing, we can continue to split the clip and compute similar

information. We choose only the “midtime” discretization

because our motion clips are short in length (hence midtime

in enough), and a smaller discretization gives a faster run-

time.

Goal Gridmap We precompute a goal gridmap (Fig-

ure 6) used in the runtime path finding phase (Section 4.3).

For every node in the tree, we place it in the correspond-

ing cell in the gridmap. Each cell then contains a sorted list

of nodes. We used a range of cell sizes from 45 to 90 cm.

The environment gridmap does not explicitly store this list

of nodes, but the goal gridmap does.

4. Runtime Path and Motion Generation

4.1. Coarse-Level Planner

Figure 2 illustrates how each module works with the rest of

the system. We first use a fast bitmap planner to generate a

coarse-level path from the start to the goal. This path is then

used as a guideline for picking sub-goals to run each sub-

case of the runtime path finding phase. In our implemen-

goal

root

Figure 6: In the goal gridmap, each cell contains a sorted

list of nodes. The list of nodes in each cell can also be

thought of as a list of paths derived by tracing the node back

towards the root of the tree. They are sorted by the sum of

the cost of the motion states in the path.

Figure 7: The points of the path that are eventually chosen

by the coarse-level planner. The smaller green circle repre-

sents the starting orientation.

tation, we used a bitmap planning algorithm [Kuf04] opti-

mized for 2D grids. Note that the coarse-level planner is not

necessary if the goal position lies within the space covered

by the precomputed tree. In this case, we can apply the run-

time path finding module once and immediately find a solu-

tion path.

A coarse-level map of the environment is used as input to

the bitmap planner. The size of the gridcells was about 70

cm. We map the obstacles to this coarse gridmap using the

technique discussed in Section 4.2. In particular, we only use

the regular obstacles in this step, and not the special ones

(ie. one that the character has to jump over). A path is re-

turned that may go through these special obstacles. This is

fine since the character has the motion capabilities (ie. jump)

to go through these obstacles.

The special obstacles are then added to the coarse-level

map. We can eliminate parts of the returned path that collide

with these obstacles. In addition, we annotate the parts of

the path that appear just before the special obstacles, and

the parts that appear just before the final goal position (but

not the final goal position). Figure 7 shows an example of

the points in the path that are eventually chosen. Note that

in this example, there is an obstacle that the character must

duck under, and one that it must jump over.
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Environment Gridmap

d

d/√2

Figure 8: Left: Translating and rotating the start configu-

ration and the obstacles to fit the coordinate system of the

precomputed tree. Right: If the size of the gridcell is d, we

can guarantee that the mapping is correct if the sampling of

points for the obstacle is at most d/
√

2 apart.

4.2. Mapping Obstacles to Environment Gridmap

In this module, we want to mark each cell of the environment

gridmap as either OCCUPIED or as a valid region of a spe-

cial obstacle. We first translate the starting position to match

the root node of the precomputed tree, and rotate the starting

orientation to face the forward direction (Figure 8 left). All

the obstacles in the environment are translated and rotated

similarly. Each obstacle is then mapped to the environment

gridmap.

If an obstacle is outside the region covered by the tree,

we can safely ignore it. Otherwise, we map it to the envi-

ronment gridmap by iterating through a discretized set of

points inside the obstacle (Figure 8 right). If a gridcell is

OCCUPIED, we know that the tree nodes in that cell are

BLOCKED. But in order to save time, we will not mark them

as such until it is necessary to do so in the runtime path find-

ing step. The indices of each gridcell that gets marked as be-

ing occupied are recorded as the mapping proceeds. We use

this information to quickly reset the environment gridmap

every time we re-execute this mapping module.

4.3. Runtime Path Finding

We repeatedly use the path from the coarse bitmap planner to

select sub-goals, which are then used in repeated iterations

of the path finding technique in Algorithm 1.

Sub-goal Selection The coarse level path has many points

that we can use as sub-goals. Intuitively, we would like to

find ones that will be within the dark red regions (Figure 4)

of the precomputed tree. We choose the sub-goal to be the

point in the coarse path that is closest to a fixed distance

away from the start (Figure 9). A distance between 10 and

12 meters worked well in our examples. Note that the start

is different for each iteration of the path finding phase.

Runtime Path Finding Algorithm Algorithm 1 takes a

goal position as input, and returns the tree node that repre-

sents the solution path. If there is no possible path in the pre-

computed tree that can reach the goal, it will recognize that

there is no solution. The inputs also include the precomputed

tree, the environment gridmap, and the goal gridmap. The

Algorithm 1: RUNTIME PATH FINDING

GoalGoalGrid ← T (GoalGlobal)
P← GoalGrid[GoalGoalGrid .x][GoalGoalGrid .y].Nodes()

foreach p ∈ P do
while ( (p.BLOCKED == false) and

(EnvGrid[p.xi][p.yi] == UNOCCUPIED) and

(p != rootNode) ) do

p.BLOCKED← true1

// midtime collision check

if isSpecialMotion(p.motionState) then

if EnvGridmap[p.xmidtime_i][p.ymidtime_i] !=2

specialObstacle(p.motionState) then
continue to next p

end

else

if EnvGridmap[p.xmidtime_i][p.ymidtime_i] ==3

OCCUPIED then
continue to next p

end

end

p← p.parent

end

// this path traced through before

if p.BLOCKED == true then continue to next p4

// this path is blocked by an obstacle

if EnvGridmap[p.xi][p.yi] == OCCUPIED then5

p.BLOCKED← true6

continue to next p

end

// reached rootNode and path found

return node representing current path7

end

return no path found

goal position is first translated and rotated from its global

coordinates to the coordinate system of the goal gridmap

(function T ). The transformed indices are used to find P, the

list of nodes sorted in increasing cost. We then go through

each node p in P, and try to trace it back towards the root

node (which is where the start is in the current iteration).

As we trace back towards the root, we mark each node as

BLOCKED, if it is not already BLOCKED or not obstructed

by an obstacle. The intuition behind this is that we want

to find the shortest path that is not obstructed in any way.

We also check to see that the “midtime” point of the mo-

tion clip reaching that node is not obstructed (line 3) be-

fore tracing back to its parent node. Furthermore, if we have

arrived at that node through a special motion (line 2), we

check to see if the motion successfully goes through the cor-

responding special obstacle by checking to see if the “mid-

time” point is a valid region of that type of special obsta-

cle. The specialObstacle() function returns the type of this

corresponding obstacle. If the “midtime” point is obstructed

in any way, the algorithm will continue to the next possible

node in P.
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Figure 9: The 2 columns correspond to the first 2 iterations

of the runtime path finding phase for this example. The top

row shows the start (green sphere) in each iteration, and the

sub-goal (red sphere) selected from the coarse-level path.

The bottom row shows the path returned by the path finding

algorithm (light and dark blue) and the partial path chosen

(dark blue only). An estimate of the outline of the precom-

puted tree is shown. The tree is transformed to the global

space only in the figure to show how it relates to the other

parts of the environment. There is only one precomputed

tree, and it is never transformed to the global space in the

algorithm.

There are three conditions under which each trace of node

p towards the root node stops (Figure 10):

1. Pointer p arrives at a node that is obstructed by an obsta-

cle (case 1 in Figure 10(top) and line 5 in Algorithm 1).

When this happens, the path from the root node to p

cannot be a solution. We mark that node as BLOCKED

(these are the black nodes in Figure 10 and also the ones

marked BLOCKED in line 6) and proceed to test the next

node in P.

2. Pointer p arrives at a BLOCKED node (case 2 and line

4). When this happens, the path from the root node to p

also cannot be a solution. The algorithm then continues

to test the next node in P. The red nodes in Figure 10 are

the nodes that were traced back. These are the ones that

are marked as BLOCKED in line 1 of Algorithm 1.

3. Pointer p arrives at the root node (case 3 and line 7). The

green nodes correspond to the nodes traced back for this

p. Note that these are also marked as BLOCKED, but it

does not matter since we already have the solution. We

stop testing the list of nodes P, and return the original

node that p points to in this case (the darker green node

in Figure 10 top) to represent the solution path. If we have

gone through the whole list P without having reached the

root node, there is no possible solution.

The solution path from the algorithm is in the coordinate

system of the precomputed tree. We must therefore trans-

form (T−1) each node in the path back to the global coordi-

nate system. The bottom row of Figure 9 shows examples of

the algorithm’s output. Before running a new iteration of the

path finding phase, we reset the tree by UNBLOCK-ing the

nodes that were previously BLOCKED.

2

1

3

root
obstacle

Figure 10: The process of tracing back the list of sorted

nodes P towards the root node in Algorithm 1. Top: The 3

cases under which each trace of node p stops. The sub-goal

is inside the dashed square (a cell of the goal gridmap). Bot-

tom: Simple example. The blue nodes are the nodes of the

precomputed tree. The sub-goal is somewhere in the square-

shaped box of red nodes. The other colored nodes corre-

spond to the 3 cases.

Partial Paths Recall that we annotated the points in the

coarse-level path that appear just before the special obsta-

cles and the final goal. These annotations are used to allow

the character to not get too close to these obstacles or the

final goal before re-executing the runtime phase. Intuitively,

if there is a large obstacle just beyond the current planning

horizon, the runtime algorithm may generate a path that al-

lows the character to move just before this obstacle. In the

next iteration, it may be too close to it that there is nowhere

to go given the motion capabilities of the character. To avoid

this issue, we keep only a part of the solution path so that

each iteration can better adjust to the global environment.

More specifically, if the current sub-goal is not annotated

as being near a special obstacle or the final goal, we keep

the whole solution path. Otherwise, we only keep the first 2

motion states of the solution path (Figure 9 bottom). In addi-

tion, if the solution path includes a special motion state, we

take all the states up to and including it. This is an optional

adjustment that again helps the character in adjusting itself

before executing a special motion. Our experiments show

that without this adjustment, the algorithm may sometimes

inaccurately report that there is no solution.

Furthermore, we have to make sure that the last motion

state of the path we keep and the root node of the precom-

puted tree can transition to the same states. If this is not the

c© The Eurographics Association 2006.



M. Lau & J. Kuffner / Precomputed Search Trees: Planning for Interactive Goal-Driven Animation

case, we need to add an additional state or leave out the last

one. This is because the next iteration of the path finding

phase uses the same precomputed tree and therefore starts at

the root node. Since the majority of our motion states transi-

tion to each other, this is not a major concern.

4.4. Motion Synthesis

The path finding phase eventually returns a sequence of mo-

tion states that allow the character to navigate from the start

to the goal. This sequence is converted to character motion

by putting together the motion clips that represent the states.

For the frames near the transition points between states, we

linearly interpolate the root positions and apply a smooth-

in/smooth-out slerp function to the joint rotations. The joint

rotations are originally expressed as euler angles. They are

converted into quaternions, interpolated with the slerp func-

tion, and converted back into euler angles.

5. Experimental Setup

To demonstrate the efficiency of our technique, we have built

interactive applications in which the user can modify the en-

vironment, and the characters will react to the changes au-

tonomously. The “runtime path finding” phase is executed

repeatedly to adapt to changes in the environment.

Single Character Mode The complete path for one char-

acter is continuously re-generated as the user changes the

environment. We draw some of the character’s poses to rep-

resent the animation. The precomputation phase (Section 3)

is first executed once before the draw loop begins. If the

user changes the position and orientation of an obstacle or

the goal position, we update this information and apply the

runtime path finding phase as described in Section 4. If no

changes are detected, we can just draw the previously found

solution.

Multiple Character Mode The motions for multiple

characters are generated in real-time. We do not generate the

full path at the beginning. We execute a “runtime path find-

ing” phase to synthesize the next partial path only after we

start rendering the first frame from the previous partial path.

Hence the characters can respond to environment changes

continuously.

To handle multiple characters (Algorithm 2), we specify a

maximum planning time (Tplanning), and plan as many char-

acters as possible within each iteration of the draw loop. The

exception is that we plan for every character once when we

execute the planning loop for the first time. We are ready to

plan the current character (line 1 of Algorithm 2) after we

start rendering the first frame (of the current character) from

the previously planned partial path.

To generate the next partial path/motion (line 2), we exe-

cute the runtime path finding phase (Section 4). We run the

coarse-level planner with the updated starting location as the

Algorithm 2: MULTIPLE CHARACTER PLANNER

Initialize environment

Precompute tree and gridmaps

// draw loop

while true do
Read Input

if input detected then
Update environment state

end

// planning loop

while current planning time < Tplanning do
Advance to next character

if all characters planned in current planning loop

then
Stop current planning loop

end

if ready to plan current character then1

Generate next partial path/motion2

Store results in buffer
end

end

foreach character do
Draw pose from buffer data depending on time

end

end

end of the last partial path. The sub-goal selection and run-

time iteration is done just once, since we only need the first

partial path here. We use the same precomputed tree for all

the characters, so we reset the gridmaps and precomputed

tree after each character’s runtime iteration.

We also precompute the blending frames. The characters’

poses are blended at the transition points between motion

clips. We precompute the blending frames for all possible

pairs of motion clips so we can efficiently use them at run-

time. We place the correctly blended poses in the data buffer

as we store the results.

In addition, we need to deal with collision avoidance be-

tween characters. We apply these 3 steps. First, we use a

global characters gridmap to store the time-indexed global

positions of the characters after their poses are stored to the

data buffer. These positions are placed into the correct bucket

in the gridmap for efficient access later. Second, in addition

to mapping the obstacles to the environment gridmap (Sec-

tion 4.2), we map the characters’ positions to a local charac-

ters gridmap using a similar procedure. During the runtime

iteration, we select the cells in the global characters gridmap

that are relevant in each local sub-case. This assures that the

collision check between characters is linear in the number of

characters, instead of being quadratic in the naive case. The

positions are also placed into the appropriate bucket in the

local gridmap. Third, as we trace through the tree nodes in

Algorithm 1, we check to see if each node can collide with

the locally relevant characters. An additional test is needed

in the while loop that performs a Euclidean distance check

between the node’s position and each of the relevant charac-
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Figure 11: The solution paths of motion states for the envi-

ronment in Figure 7.

ters’ position. With the use of the local characters gridmap,

this step is fast because we rarely have to perform a distance

check.

6. Results

We measured the execution time of the path finding phase

across a variety of example scenarios. In tables 1 and 2,

the “average runtime” for Precomputed Trees gives the ex-

ecution time of the techniques in Section 4. It does not in-

clude the time for motion synthesis (Section 4.4), and for

rendering the character’s motion. The “average output time”

is the length of the resulting animation (at 30 Hz) returned

by the system. The A*-Search columns are the results for

the same input environments and using a Behavior Planning

technique [LK05] that builds the search tree during runtime.

Precomputed Tree A*-Search

avg runtime (µs) 3,131 550,591

176 times faster

avg output time (µs) 13,123,333 12,700,000

real-time speedup 4,191 23

average µs/frame 7.95 1,445

average pathcost 361 357

Table 1: Runtime for example with special obstacles (Fig-

ure 7). The FSM used to build the tree has 21 motion states.

The average precomputation time was 49.3 seconds. The re-

sults are averaged over 10 executions of randomly selected

start and goal locations.

Table 1 shows the average runtime for the environment in

Figure 7. For a trivial case where there is a direct path be-

tween the start and goal, the Precomputed Trees method was

143 times faster than A*-Search (571 vs. 81,535 µs). And

it took 2.62 µs for Precomputed Trees and 372 µs for A*-

search to compute each frame. Figure 11 shows the solution

paths for one test case. The A*-Search solution is globally

optimal with respect to the cost of the motion states. Our

experiments have shown that the Precomputed Trees tech-

nique produces solution paths that are near optimal up to the

resolution of the grid maps.

Table 2 is for the maze example in Figure 12. In the most

time-consuming case for both methods, Precomputed Trees

was 4,163 times faster than A*-Search (6.23 vs. 25,940 ms).

And it took 5.89 µs for Precomputed Trees and 26,687 µs

Precomputed Tree A*-Search

avg runtime (µs) 4,865 17,598,088

3,617 times faster

avg output time (µs) 29,072,222 27,600,000

real-time speedup 5,976 1.57

average µs/frame 5.58 21,253

average pathcost 1,113 1,064

Table 2: Runtime for maze example (Figure 12). The main

differences from Table 1 are: the FSM used to build this tree

has 13 motion states (no special motions), and the environ-

ment here is larger, more complex and has local minima. The

average precomputation time was 3.1 seconds. The results

are averaged over 6 executions.

Figure 12: A sample solution path (using Precomputed

Trees) for the maze environment.

for A*-Search to compute each frame. These results demon-

strate that our method scales well to both trivial and complex

cases.

The runtime in Tables 1 and 2 is the average search time

for each frame in the solution. The output of the search is

a sequence of states. If we convert the states into motion,

we need to translate and rotate each pose, which takes an

average of 10 µs. So the total time to generate each pose is

about 18 µs (adding the 7.95 from Table 1).

Figure 13 shows the effect of pruning the precomputed

tree (Section 3). We can see that there is only a small dif-

ference in path cost even if the size of the tree decreases

significantly. If we use a tree of less than 10 MB, the tree is

so small that the algorithm may sometimes report incorrectly

that there is no solution. Furthermore, the graph shows that

as the memory decreases, the path tends to get worse (higher

cost). Thus, there is a clear tradeoff between the memory

used and the quality and variety of motions that can be gen-

erated.

Single Character Mode The full solution path for each

character in Figure 14 (both cases) can be re-generated at

approximately 25 times per second. This means that about

1,200 frames of motion (for the larger case) can be contin-

uously re-synthesized with respect to user changes 25 times

each second.
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Figure 13: Using a significantly smaller precomputed tree

has only a minimal effect on the overall quality of the paths

that can be synthesized. We start from an exhaustive tree with

6 levels, and keep building smaller trees with half the mem-

ory each time. We used these trees to synthesize motion and

measured the average path cost. The 324 MB tree is shown

in Figure 4(left). The 10 MB tree is in Figure 4(right). The

larger trees do not necessarily include the smaller ones as

subtrees because of the way the pruning is done.

Figure 14: Screenshots of the one character viewer. The

gray spheres show the coarse-level path. The darker gray

ones are the ones annotated as appearing just before a spe-

cial obstacle or the goal. The blue spheres show the solution

path of motion states. Left: Simple environment. Each com-

plete solution path has about 20 seconds or 600 frames of

motion. The poses are drawn 1 second apart. Right: Larger

(70 by 70 meters) and more complex environment. Each so-

lution has about 1,200 frames of motion. Poses are drawn 2

seconds apart.

The screen’s frame rate for the viewer is 28 Hz at a reso-

lution of 1280 x 960. For the simple environment, the frame

rate changes to 26 Hz if we continuously move an obsta-

cle to allow the “runtime path finding” to execute as much

as possible. It takes about 3 ms to generate the full solution

path, which is approximately what we expect from the run-

time tables above. For the larger environment, the frame rate

changes to 24 Hz if we allow the runtime phase to execute as

much as possible. In this case, it takes about 6 ms to generate

the full path. The one character viewer is included mainly as

a demonstration of speed, since other techniques can be used

to generate the motion for one character in real-time.

Multiple Character Mode We demonstrate experimental

results for (1) multiple characters following navigation goals

that the user can interactively modify, (2) many characters in

a large complex environment (Figure 1), (3) the user “shoot-

ing” an obstacle at many characters (Figure 15), and (4) an

Figure 15: Screenshot of the multiple character viewer. The

small gray spheres show the most recently planned coarse

path for the current character being planned for. The red

sphere shows the sub-goal chosen in the corresponding sub-

case. The user can “shoot” an obstacle (the larger gray

sphere) and the characters will update their motion plan

to avoid it. The positions of the obstacle are computed and

stored in the global characters gridmap.

example containing 150 characters. Each iteration of the run-

time phase takes about 8.5 ms. The screen rate is about 23

Hz at a resolution of 1280 by 960.

7. Discussion

We have presented a “Precomputed Search Tree” technique

for interactively generating realistic animations for virtual

characters navigating in a complex environment. The main

contribution is the idea of computing the search tree and re-

lated gridmaps in advance so that we can efficiently synthe-

size solution paths during runtime. Our technique can glob-

ally plan in large environments with local minima, generate

complex behaviors such as jumping and ducking, and syn-

thesize motions for multiple characters in real-time.

The average search time per frame of 8 µs is two orders of

magnitude faster than previous approaches, and 4,000 times

faster than real-time. The speedup of our technique comes

primarily from not having to build the search tree during

runtime, and from the coarse-level planner generating sub-

goals to guide the runtime phase. We also avoid having to ac-

cess large numbers of tree nodes during runtime by building

gridmaps in advance. In addition, the environment is mapped

to the tree during the path finding phase, rather than mapping

the tree to the environment which would be much more ex-

pensive. Another reason for the speedup is that the search is

performed on the motion states rather than individual poses.

The search time is therefore amortized over the frames of

motion in each state.

We have successfully used a precomputed tree of 10 MB

to synthesize motions. We have shown that scalability is

not an issue because we can significantly reduce the size of

the tree without sacrificing the variety of paths and motions

that we can generate. Our animations demonstrate that our

dataset is complex enough that we can produce a large vari-

ety of motions.

c© The Eurographics Association 2006.



M. Lau & J. Kuffner / Precomputed Search Trees: Planning for Interactive Goal-Driven Animation

One drawback of our system is that we sacrifice global op-

timality in order to achieve interactive runtime speed. How-

ever, our results have demonstrated that our solution paths

are very close to the optimal paths given by a traditional A*

planner. Another limitation of our method is the handling

of goal positions that are beyond the search horizon of the

precomputed tree. There may exist a round-about path to

reach such a goal position, but our algorithm will not find

it because it is not reachable at the given tree depth. Hav-

ing more varied motions (ie. turning on-the-spot, stepping

sideways) can help to expand the overall reachability of the

space covered by the tree. Finally, our system has no notion

or rules that specifically lead to crowd animation control,

even though it can be successfully used to interactively ani-

mate a large number of characters simultaneously.

One area of future work is to explore the tradeoffs be-

tween memory use, motion generation power, and the speed

of search. We have only shown that a decrease in memory

use does not lead to a significant decrease in motion genera-

tion power nor motion quality. Moreover, it would be useful

to explore how we can build an optimized tree. For exam-

ple, one may want to produce a better tree node distribution

by using the same amount of memory to cover a larger area

while decreasing the average number of paths reaching each

point.
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