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Abstract

We present a method for real-time sound propagation that captures
all wave effects, including diffraction and reverberation, for multi-
ple moving sources and a moving listener in a complex, static 3D
scene. It performs an offline numerical simulation over the scene
and then applies a novel technique to extract and compactly en-
code the perceptually salient information in the resulting acoustic
responses. Each response is automatically broken into two phases:
early reflections (ER) and late reverberation (LR), via a thresh-
old on the temporal density of arriving wavefronts. The LR is
simulated and stored in the frequency domain, once per room in
the scene. The ER accounts for more detailed spatial variation,
by recording a set of peak delays/amplitudes in the time domain
and a residual frequency response sampled in octave frequency
bands, at each source/receiver point pair in a 5D grid. An efficient
run-time uses this precomputed representation to perform binau-
ral sound rendering based on frequency-domain convolution. Our
system demonstrates realistic, wave-based acoustic effects in real
time, including diffraction low-passing behind obstructions, sound
focusing, hollow reverberation in empty rooms, sound diffusion in
fully-furnished rooms, and realistic late reverberation.

1 Introduction

Acoustic propagation gives a visceral and immersive sense of a vir-
tual environment. It provides cues that cannot be obtained visually,
alerting the listener to activity behind walls or his head with infor-
mation about the distance, direction, and indirectness of path to this
activity’s location. Realistic sound propagation must simulate two
interrelated wave effects: diffraction and scattering. Many gross
acoustic effects arise from diffraction. Smooth reduction in vol-
ume as one walks through a doorway or behind a building is due
to high-order diffraction. Smooth loudness variation in the sound
field of a furnished room results from diffracted scattering off its
complex geometry. Late reverberation arises from very high order
scattering. Neglecting diffraction leads to clicking artifacts and in-
coherent loudness fluctuations, as well as unnatural termination of
sound before it reaches occluded regions.

Capturing these effects in real-time within a complex 3D environ-
ment presents a challenging problem for current approaches. By
“complex”, we mean “containing acoustically relevant scene fea-
tures at length scales down to centimeters” (see Figure 5(a)). Sound
frequencies up to 5 kHz scatter diffusely from “rough” surface fea-
tures at centimeter scales and are mostly unresponsive to finer de-

Figure 1: Train station scene from Valve’s SourceTM game engine

SDK (http://source.valvesoftware.com). Our method per-

forms real-time auralization of sounds from dynamic agents, objects and the

player interacting in the scene, while accounting for perceptually important

effects such as diffraction low-pass filtering and reverberation.

tail while higher frequencies are more strongly absorbed as they
travel through air or scatter off surfaces [Kuttruff 2000, p. 27].
Our method is limited to static scene geometry which largely deter-
mines how sound propagates in many common architectural/virtual
spaces, thus covering a useful set of applications.

Existing methods to solve this problem are geometric, and trace
rays or beams from the source into the scene to collect their contri-
butions near the listener. These methods have a number of lim-
itations, although some can handle dynamic scenes unlike ours.
Methods based on conservative beam tracing split the beam when it
encounters geometric discontinuities, leading to slow performance
in complex scenes and exponential scaling in the reflection order
[Funkhouser et al. 2004; Chandak et al. 2008]. A related problem
arises for ray-tracing methods, which must sample a huge number
to capture multiple-bounce propagation and avoid missed contribu-
tions. In practice, meshes must be simplified and detailed interior
objects replaced by simpler proxies to achieve interactive perfor-
mance. Automatic methods to do this are a nascent area of research
[Siltanen 2005]. Handling diffraction with geometric approaches
is challenging, especially for complex scenes [Calamia 2009]. At
long sound wavelengths, current geometric edge-diffraction models
either ignore global effects from complex geometry or require too
much computation to run interactively.

Wave-based simulation offers a solution to many of these problems,
but its computational burden is at least 3 orders of magnitude too
slow for on-the-fly evaluation. Our solution is to precompute an
off-line, wave-based simulation for a given static environment in
terms of its 7D spatially-varying acoustic impulse response (IR),
S(t, ps, pr), where t is time, ps is source position, and pr is receiver
position. This can be reduced to a 6D problem by restricting the
listener to a 2D plane in the scene and leveraging acoustic reci-
procity. Even so, the computational and storage requirements are
huge. With a recent, fast technique [Raghuvanshi et al. 2009], sim-
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ulating a one-second response at a single source position in a scene
of volume 123m3 bandlimited to frequencies up to 1kHz requires
30 minutes of computation and generates 24GB of data. Simulat-
ing over many different source locations becomes intractable.

To make our approach practical, decrease offline computation, and
reduce run-time computation and memory, we exploit human au-
ditory perception using the well-known ER/LR perceptual model
[Kuttruff 2000, p. 98]. Following standard practice, the IR is di-
vided into two time intervals. The early reflections (ER) phase
comprises sparse, high-energy wavefronts which are detected and
processed individually in human perception, followed smoothly by
the late reverberation (LR) phase, comprising dense arrival of many
low-amplitude wavefronts which are fused perceptually to infer ag-
gregate properties such as the decay envelope. Perceptually, the ER
conveys a sense of location, while the LR gives a global sense of
the scene – its size, level of furnishing and overall absorptivity.

We extract the LR by performing a 1-2 second simulation from a
source placed at the room’s centroid and analyzing its IR at a re-
ceiver in the same place. This result determines the time length of
the ER, as well as the per-room LR filter called the late reverber-
ation impulse response (LRIR). ER length is 50-200ms for rooms
of typical size. We then run simulations with the source placed at
all sample points on the 2D grid described above. For each source
position, the resulting early reflections impulse responses (ERIRs)
are recorded at sample points over the scene’s 3D volume. This
two-step approach reduces the time duration of expensive ER sim-
ulations from 1-2s to 50-200ms, saving at least 10× in precompu-
tation time and runtime storage.

We then extract and compactly encode ERIRs recorded at each
source-listener pair using a novel, perceptually-based technique.
ERIRs contain distinct pressure peaks in time, corresponding to
wavefronts arriving at the listener. We extract the highest-energy
peaks (yielding roughly 30-40 in our examples) and store their de-
lay and attenuation in the time domain. Peak data is wide-band in-
formation that captures reverberation and interference but ignores
diffraction low-pass filtering, so we add a residual frequency trend
representation which restores these effects and allows them to be
plausibly extrapolated to frequencies beyond the ones simulated.
Compared to direct storage of simulated ERIRs, this reduces mem-
ory use tenfold while encoding all-frequency information.

A novel run-time system propagates source sounds based on this
precomputed data. Spatial interpolation of IRs is required as
sources and listener move; these positions are subsampled in our
system to about 1m. Straightforward waveform interpolation yields
erroneous timbral coloration and “gurgling” artifacts; we interpo-
late in the encoded space of peak times and amplitudes to avoid
such artifacts. The ERIR is then spatialized to the listener’s left and
right ears, the LRIR added, and the source sound convolved in the
frequency domain with the final IRs for each ear.

Our work is the first to achieve real-time, wave-based sound propa-
gation, including high-order, frequency-dependent sound scattering
and diffraction, for moving sources and listener in complex envi-
ronments (see Figure 1). We propose a novel decomposition of
the computation into three parts: an off-line wave-based simulation
in the static scene, an off-line perceptually-based encoding of the
resulting IRs, and a run-time engine. We automatically compute
from simulation both the ER and LR and separate them based on
echo density. Our new IR encoding extracts peaks and a residual
frequency trend. Computing this information from the bandlim-
ited results of numerical simulation, extrapolating it in a perceptu-
ally plausible manner, employing a grid-based sampling for moving
sources and listener, and using one which exploits reciprocity are all
novel contributions. Our run-time system then efficiently decodes,

interpolates, and convolves source sounds with these encoded IRs
in the frequency domain, supporting tens of moving sources and a
moving listener in real time.

2 Related Work

An introduction to acoustics can be found in the classic texts [Kut-
truff 2000; Kinsler et al. 2000] and auralization in [Lokki 2002].
Techniques for simulating sound propagation may be classified into
geometric acoustics (GA) and numerical acoustics (NA).

Geometric acoustics GA assumes rectilinear propagation of
sound waves, a valid approximation only if the wavelength is much
smaller than the local feature size. Extensive research and commer-
cial software apply geometric methods to room acoustic prediction;
here we focus on interactive approaches.

Beam tracing [Funkhouser et al. 2004; Antonacci et al. 2004] bun-
dles rays to compute their interaction with scene geometry. For
fixed sources, a beam-tree is built for the scene in an offline pro-
cessing step, and then used at run-time to render acoustic propa-
gation paths to a moving listener. The method handles low-order
specular reflections. Diffraction can also be included, via the geo-
metric theory of diffraction [Tsingos et al. 2001], but is applicable
only for edges much larger than the wavelength.

More recent work [Chandak et al. 2008] supports moving sources
without guaranteeing exact visibility. Minimal preprocessing is re-
quired and dynamic geometry can be handled; diffraction is disre-
garded. [Taylor et al. 2009] includes diffraction effects by using the
Biot-Tolstoy-Medwin (BTM) theory of diffraction [Calamia 2009].
The method discretizes diffraction edges and integrates contribu-
tions from each element. Second-order diffraction must consider
all pairs of elements and quickly becomes intractable at higher or-
ders. Even finding all potential diffraction edges is computationally
challenging in complex scenes.

Numerical acoustics NA directly solves the wave equation gov-
erning physical propagation of sound in a scene. With enough com-
putation, all wave phenomena can be captured, including diffraction
and scattering in complex scenes. Numerical approaches are insen-
sitive to the complexity and polygon count of a scene and instead
scale with its physical dimensions.

Expressing the problem in the frequency domain yields the
Helmholtz equation. Many interactive sound applications rely on
this formulation, to capture the frequency-dependent directional
distribution of sound emitted by an object [James et al. 2006], or the
frequency-dependent local scattering of sound off complex surfaces
[Tsingos et al. 2007]. The latter considers only first-order scatter-
ing and neglects diffraction and time-domain effects. In general,
Helmholtz solvers are efficient for simulating at one or a few fre-
quencies, but become much less efficient than time-domain solvers
for capturing transient information such as propagation delays.

Finite difference time domain (FDTD) methods have been used in
room acoustics for more than a decade [Botteldooren 1995]. A
scene’s 3D air volume is uniformly discretized and the pressure
field in each cell is solved with a time-marching scheme. Simu-
lation from a single source location yields the acoustic response at
all listener cells in the scene. FDTD is computationally intensive,
scaling linearly in the volume and in the fourth power of maxi-
mum simulated frequency. Advances in computational power have
prompted recent investigation into FDTD for medium-sized scenes
[Sakamoto et al. 2006].

A recent technique [Raghuvanshi et al. 2009] achieves speedups
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of nearly 100 times over FDTD by partitioning the scene’s interior
volume into rectangular regions and exploiting an analytic solution
within each. The technique simulates large, static 3D scenes in
minutes, and forms the basis for our precomputed simulation.

Precomputed methods for interactive auralization A division
of computation into offline and run-time parts similar to ours is used
in [James et al. 2006], but for rendering sounds at select frequencies
from an impulsively struck, precomputed object rather than propa-
gating arbitrary, broadband sounds between moving sources and a
receiver inside a precomputed 3D scene. We assume sources are
monopole (point sources), but our system could easily be extended
to handle multiple monopole and dipole sources.

Previous work has also dealt with precomputed IRs. [Pope et al.
1999] proposes sampling IRs on a dense grid but does not describe
how moving sources might be handled, nor how to represent or
interpolate IRs for handling the moving listener.

[Tsingos 2009] uses manually-specified source/listener location
pairs (roughly one location per room) to sparsely sample spatially-
varying IRs. The ER component is approximated using globally
computed (virtual) image sources from these locations. The over-
all approach is well-suited for scenes with large, specular reflec-
tors but insufficient for handling spatially detailed acoustic effects
that we target such as diffracted shadowing behind walls or focus-
ing/diffraction/scattering effects off complex geometry.

ER/LR separation LR effects are typically specified through ar-
tificial reverberation, based on IIR (Infinite Impulse Response) fil-
ters whose parameters (e.g. exponential decay time and peak den-
sity) are hand-tuned to match scene geometry. Based on a well-
known idea [Gardner 1998], [Min and Funkhouser 2000] separate
the ER and LR using echo density as we do, but handle the LR
with artificial reverberation. Recent geometric techniques use ray-
tracing to explicitly compute the LR from geometry [Stavrakis et al.
2008; Tsingos 2009]. However, the former doesn’t account for the
ER at all while the latter segments based on a user-specified num-
ber of initial wavefronts arriving at the receiver. Our approach au-
tomatically computes and segments both the ER and LR using a
wave-based simulation on the scene geometry – the LR is sampled
sparsely, while the ER is sampled densely in space.

Peak detection Peak detection is proposed in [Emerit et al. 2007]
to encode a single acoustic response with the goal of accelerating
run-time convolution of input signals during playback of MPEG
streams. Neither spatial interpolation nor compactness is a con-
cern. Our method for IR encoding differs substantially: we resolve
peaks possibly merged by the bandlimited simulation to recover in-
dividual peaks; [Emerit et al. 2007] segments the input IR into a
sparse (~10) set of coalesced “peaks” and computes detailed spec-
tral properties for each in 64 frequency sub-bands. This requires at
least 10× more memory than our approach.

IR interpolation Dynamic Time Warping (DTW) [Masterson
et al. 2009] finds correlations between two signals of lengths N and
M in O(NM) time and could be used to interpolate simulated acous-
tic responses. Our representation is based on sparse peaks which
can be correlated and interpolated much more efficiently.

3 Perception in Acoustic Spaces

Sound propagation in an arbitrary acoustic space from a source lo-
cation, ps, to a receiver location, pr, is completely characterized
by the corresponding acoustic impulse response (IR), defined as the

time
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Figure 2: Impulse response (IR) and corresponding frequency response

(FR) for a simple scene with one reflection.

sound received at pr due to an ideal Dirac-delta impulse emitted at
ps. The propagated result of an arbitrary source sound is then found
by convolving it with this IR. Simulating and storing IRs at all pos-
sible sample pairs, ps and pr, is prohibitively expensive. We attack
this problem by exploiting human perception, based on established
ideas in room acoustics [Kuttruff 2000]. This analysis breaks IRs
down into two distinct time phases: early reflections (ER) followed
by late reverberation (LR). We briefly discuss each below.

Note that the propagated sound received by a human listener de-
pends both on the scene’s IR and on the original sound emitted at
the source. A listener does not perceive the acoustic IR directly.
Nevertheless, a specific IR usually leads to perceptible character-
istics when applied to a wide variety of source sounds, prompting
the shorthand “The IR sounds like this.” The more impulsive the
source sound, the more it generally reveals about the scene’s acous-
tic response, but the perceptual effect of even a continuous source
sound like music is substantially changed by propagation.

3.1 Early Reflections (ER)

The ER phase is characterized by a sparse set of high-amplitude
pressure peaks, and captures position-dependent variation in loud-
ness, spectral coloration and echoes. Consider the scene shown in
Figure 2. The scene’s propagated response can be examined in two
ways: in the time domain, as the impulse response shown on the
bottom-left in the figure, and equivalently, in the frequency domain,
as the complex frequency response (FR) whose magnitude is shown
on the bottom-right. The IR is a set of two impulse peaks, separated
in time by ∆t. Assuming the amplitudes of the peaks to be 1 and a,
the FR is a comb-filter that oscillates between 1+a and 1−a with
“between-teeth” bandwidth of 1/∆t.

When ∆t is above 60-70ms, known as the “echo threshold”
[Litovsky et al. 1999], we perceive a distinct echo, especially for
impulsive sources. If the delay is much smaller, the peaks fuse in
our perception. However, the corresponding FR’s between-teeth
bandwidth increases (as 1/∆t), and our auditory system is able to
extract the selective attenuation of certain frequencies. The result
is perceived as a comb-filtered, “colored” sound, typical of small
spaces such as a narrow corridor or shower. Following [Kuttruff
2000, p. 203], if the delay is larger than 20-25ms (FR between-
teeth bandwidth less than 50Hz), coloration becomes inaudible due
to our ears’ limited frequency discrimination [Halmrast 2007]. We
thus assume that errors in peak delays and amplitudes are tolerable
as long as they preserve FR features up to a resolution of 50Hz.
Between these thresholds (25ms-60ms), our perception transitions
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from coloration to echoes and sounds “rough”.

ERs in real scenes are determined by numerous interactions with
the boundary. In an empty room, the ER has low temporal den-
sity and audible coloration. In a furnished room, sound is scattered
more highly, yielding an ER with dense, smaller peaks and lead-
ing to a warmer sound. The ER also depends on occlusion, as the
sound field diffracts around obstacles leading to spatial variation in
its loudness and frequency response.

3.2 Late Reverberation (LR)

After undergoing many boundary interactions, the sound field en-
ters the LR phase, becoming dense and chaotic in time and space.
The LR between any source and receiver consists of numerous
small-amplitude peaks. These peaks are not individually perceived,
only their overall decay envelope which causes reverberations to
fade out over time. The decay curve stays largely constant within a
room [Kuttruff 2000, p. 209] and depends on its global geometry.

An important feature of our approach is that it directly simulates
the LR, and so captures its decay curve automatically from scene
geometry. This is possible because numerical simulation scales lin-
early in simulated time duration and is insensitive to the order of
boundary interactions. Computing the LR from scene geometry
also ensures that the ER and LR match, preserving realism. The
LR is characterized by peak density: 1000 peaks per second indi-
cate a fully-developed LR phase [Gardner 1998]. We use a value of
500 peaks per second as the LR’s onset.

4 Acoustic Precomputation

The precomputation begins by running an LR probe simulation,
which places a source at the centroid of each room in the scene
as described in Section 4.2. These LR simulations determine the
time at which the ER phase transitions to the LR phase, denoted
TER. TER depends on the room size. Larger spaces require more
time for the sound field to become stochastic; i.e., to reach the re-
quired peak density. This is detected automatically by processing
on the LR probe data and taking the maximum over all rooms in the
scene. We obtain values of 50-200ms for our experimental scenes.

In many applications, the listener’s position is more constrained
than the sources’. This can be exploited to reduce memory and
preprocessing time. Uniform samples are placed over a region rep-
resenting possible locations of the listener at runtime, but are con-
sidered as sources in the precomputed simulation. The principle of
acoustic reciprocity means that we can reverse the simulated sense
of source and listener at run-time. Simulations are then run over
multiple source positions, ps, for time length TER, to record the
spatially-varying ER impulse response (ERIR). For each source, the
resulting time-varying field is recorded at samples, pr, uniformly
distributed over the entire 3D scene volume. Each source and re-
ceiver sample generates a time-varying sound signal, s(t), which
is then processed as described in Section 4.3 to extract its relevant
content and yield a compact result.

4.1 Numerical Simulation

We use the simulator described in [Raghuvanshi et al. 2009]. It is
fast yet still able to propagate an input signal over long distances
and many reflections without distorting the waveform due to nu-
merical dispersion errors that arise in finite difference approaches.
This is crucial in our subsequent processing – dispersion introduces
artificial ringing and leads to the detection of spurious peaks and
artifacts in the final auralization.

Input to the simulator is the room geometry, absorption parameters
(potentially varying per triangle), grid resolution, source reference
signal, and source location. The simulator then generates the re-
sulting sound at each time-step and at all grid cell centers in 3D. A
single run of the simulator thus captures the whole room’s acous-
tic response at every possible listener location, from a fixed source
location. Currently, our simulator models spatially-varying but
not frequency-dependent sound absorption. Including frequency-
dependent absorption requires a more sophisticated simulator but
otherwise does not affect our approach.

The reference input signal propagated from the source location is a
Gaussian pulse of unit amplitude, given by:

G(t) = exp

(
−
(t −5σ)2

σ2

)
, (1)

where σ = (πη f )
−1 and η f is the simulation’s frequency limit, typ-

ically 1000Hz. This function’s Fourier transform is a broadband
Gaussian spanning all frequencies from 0 to η f .

Bandlimited simulation To keep preprocessing time and stor-
age manageable, we limit our simulation to frequencies up to η f .
A practical limit used in most of our examples is η f = 1000Hz,
with a corresponding grid resolution of about 10cm. Information at
higher frequencies must be extrapolated. This is a limitation of the
precomputation only and becomes less of a problem as computa-
tional power increases; the run-time supports the results of higher-
frequency simulation without change or additional cost. Frequen-
cies in the range 100Hz to 5000Hz are most important perceptually
for room acoustics [Kuttruff 2000, p. 27]. Though humans can
hear higher frequencies, they quickly attenuate in air and are highly
absorbed by most surfaces.

Our simulation’s frequency gap between 1kHz and 5kHz yields two
major types of error. First, it limits the time resolution at which
peaks can be separated to 500µs. Merging a high-amplitude peak
with another which follows closer than this limit eliminates col-
oration effects. Our auralizations thus neglect some high-frequency
coloration. Second, diffraction information is unavailable beyond
1kHz. Our method for extrapolating the frequency trend in Sec-
tion 4.3.2 produces a plausible, natural-sounding result in this gap.

Spatial sampling The spatial accuracy at which we perceive
sound fields is limited. A human head acts as a diffractive occluder
which destroys interference patterns at smaller spatial resolution.
We thus believe that its size (~10cm) is a guide to the smallest
sampling resolution required for convincing auralization in typical
scenes. To our knowledge the question is an open research problem.

Our simulator generates spatial samples for the receiver near this
resolution, but we further downsample them by a factor of 8× in
each dimension to reduce run-time memory requirements. Typi-
cal receiver grid resolution is about 1m. Using the interpolation
method proposed in the next section, subsampled IRs still provide
artifact-free results without clicks or gurgling, as demonstrated in
the accompanying video. The sound field changes convincingly
as the sources and listener move around obstructions. Increasing
spatial resolution would use more memory but would not signifi-
cantly affect runtime performance, since the expense is dominated
by FFTs rather than spatial interpolation.

4.2 LR Processing

The purpose of the LR probe simulation is to compute the duration
of the ER phase, TER, and the LRIR. We run a peak detector on the
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simulated probe response to generate a set of peak delay/amplitude
data, {ti,ai}, sorted on delays, ti. This is shown in the upper right
of Figure 3. Simulations bandlimited to 1kHz imply a quantization
of peak delays at roughly 500µs. Such quantization can introduce
artificial periodicities and lead to audible but false coloration. We
perturb peak times by a random value in the range -500 to +500 µs.
Any periodicities above a few milliseconds, including “fluttering”
effects in the LR, are still preserved.

Peak detection We use a straightforward algorithm to detect
peaks in a signal. It scans the time-dependent signal for maxima
and minima by comparing each value with both its neighbors. De-
tected signal extrema are recorded in terms of their time and am-
plitude. Such a simple detector is sensitive to noise and would be
inappropriate for physically-measured IRs. It works well however
on the results of noise-free bandlimited simulations.

LR duration After peak detection, we conservatively truncate the
LR when it has decayed by 90dB. The resulting duration, TLR, is
calculated as follows. We first construct the signal’s decay enve-
lope, d(t), from the peaks detected previously via

d(t) = 10× log(ai
2), ti ≤ t < ti+1 (2)

This operation converts pressure amplitudes to intensities and fills
out spaces between peaks. We then smooth in time by applying a
moving average filter on d(t) of width 40ms. TLR is given by the
smallest t such that d(0)− d(t) > 90. Peaks with delays beyond
TLR are then removed.

ER duration As explained in Section 3, we calculate TER as the
time when peak density reaches 500 peaks per second. Starting
from time t = 0, we consider all peaks within the range [t, t +20ms]
and count those within 20 dB of the highest intensity peak in the in-
terval. If the number of such peaks exceeds 500 per second × 0.02
seconds = 10 peaks, we record this t as the ER duration. Otherwise,
we increase t by 20ms and continue until the criterion is satisfied.
Since peak density increases with time, this procedure terminates.

Increasing LR peak density Our frequency-bandlimited simu-
lator can detect no more than 1000 peaks per second. While this is
sufficient for music and voice, it is not for impulsive sources such
as gunshots or footsteps, which require roughly 10,000 peaks per
second [Gardner 1998]. Following practice in artificial reverbera-
tors, we add peaks stochastically to increase the density by a factor
of 10. We do this while preserving the decay envelope, as follows.

We first compute a densification factor, F(t), TER ≤ t < TLR as

F(t) = 10

(
t −TER

TLR −TER

)2

. (3)

F(t) builds quadratically in time from 0 to a terminal value of 10,
based on the expected quadratic growth in peak density in physical
scenes [Kuttruff 2000, p. 98]. Next, for each peak {ti,ai} in the LR
after time TER, ⌊F(ti)⌋ additional peaks are added with amplitudes
ai × rand(−1,1). This preserves the simulated decay envelope and
yields the final LRIR for use at runtime.

Handling multiple rooms For scenes comprising multiple
rooms, we perform an LR probe simulation and store the LRIR sep-
arately for each room. The user manually marks volumetric scene
regions as rooms with enclosing, closed surfaces. An LR probe
simulation is run for each of these rooms, as described earlier. ER
processing, described in the next section, does not rely on room
partitioning but instead operates on the entire scene at once.

Early Reflections (ER) Late Reverberation (LR)

FFT

FFT

dividetime

Store ,[ ]
peak times and amplitudes frequency trend

extrapolated

frequencysimulated signal

detected peaks

Figure 3: IR encoding. The late reverberation (LR) filter is stored once per

room. The early reflections (ER) filter is represented as a set of peaks and a

frequency trend, and stored at each source/listener grid point.

4.3 ER Processing

At each source and listener location, the simulator produces a prop-
agated signal, s(t), of length TER. The ERIR can be computed from
this signal using straightforward deconvolution. Convolving input
sounds with it then yields a simple method for run-time auraliza-
tion. Such a direct approach has three problems: it ignores fre-
quencies above η f and so muffles sounds, it is difficult to spatially
interpolate without producing artifacts, and it uses too much mem-
ory. We solve these problems by converting the ERIR to a compact
representation having two parts as shown in Figure 3: a set of peaks
with associated delays and amplitudes, and a residual frequency re-
sponse magnitude, called the frequency trend. ER peaks capture the
main time-domain information such as high-amplitude reflections,
as well as coloration effects as described in Section 3.1, while the
frequency trend accounts for residual frequency-dependent attenu-
ation including low-pass filtering due to diffraction.

Peak information is naturally all-frequency, and so applies to arbi-
trary inputs without muffling. Only the frequency trend needs to be
extrapolated to higher-frequency input signals.

4.3.1 Peak Extraction

A simple method for detecting peaks in the recorded response, s(t),
is to run the peak detector introduced in Section 4.2. Let’s de-
note this set of peaks as P. We first remove low-amplitude peaks
from P using a threshold of 40dB below the highest-amplitude peak
present. Such peaks are masked by the higher energy peaks.

Unfortunately, this method merges peaks separated by less than
1ms, since sums of closely-separated Gaussians have only one ex-
tremal point. We can do better: using results from a simulation
bandlimited to 1kHz, it is possible in theory to resolve peaks sep-
arated by as little as 0.5ms. The following describes an approach
that extracts more information from the simulation in order to pre-
serve coloration effects and simplify later processing to extract the
frequency trend. It doesn’t guarantee all theoretically-resolvable
peaks are detected but provides good results in practice.

The ideal impulse response, I(t), is computed by performing a de-
convolution on s(t) with the input signal G(t) given in (1). Using ⊗
to denote convolution, ⊙ to denote element-wise complex multipli-
cation, and x̂ to denote the Fourier transform of x, the convolution
theorem states that

s(t) = G(t)⊗ I(t) ⇔ ŝ( f ) = Ĝ( f )⊙ Î( f ). (4)
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To solve for the IR I given s and G, we deconvolve using a fre-
quency coefficient complex division to obtain

Î( f ) =
ŝ( f )

Ĝ( f )
. (5)

An inverse FFT on Î( f ) then yields I(t). Before performing it

though, we must low-pass filter Î to eliminate frequencies above
η f , since these are outside the simulator’s range and contain large

numerical errors.1 This can be done by zero-padding the FR vector
above η f up to the target rate of 44.1kHz. It is well-known that such
an abrupt zeroing or “brick-wall filtering” leads to ringing artifacts
in the time domain and so to fictitious peaks. At the same time, it
provides the best possible time resolution for separating peaks.

The problem then is to generate a set of super-resolved peaks P′

from I(t) that are guaranteed to be real and not “rings” of earlier
peaks, in order to separate high-energy peaks to the fullest possible
extent and preserve their audible coloration.

Finding super-resolved peaks P′ A bound on ringing error in
I(t) can be computed by observing that brick-wall filtering turns an
ideal peak into a Sinc function, having a 1/t time-decaying ampli-
tude. We can therefore build an error envelope e(t) against which
later peaks in I(t) can be culled to account for “rings” of earlier
ones. P′ is initialized to contain all peaks detected from the ideal
IR, I(t), including rings. We retain only peaks within 20dB of the
highest amplitude one, since we are interested in closely-spaced,
high-amplitude peaks that create strong oscillations in the FR.

A ringing envelope, S(t), is then defined as the low-pass filtering
result of a unit ideal impulse at t = 0 to a frequency limit of η f :

S(t) =





0, |t|< t0
|sin(ωt)|/ωt, t0 ≤ |t|< t1
1/ωt, |t| ≥ t1

(6)

where t0 = 0.5/η f , t1 = 0.75/η f , and ω = 2πη f . The time t0 repre-
sents the first zero of the Sinc while t1 represents the following min-
imum of its negative side lobe. The envelope thus bounds ringing
that occurs after a peak’s main lobe. If an ideal peak is band-passed,
peak detection run on it, and all peaks with absolute amplitudes less
than this envelope culled, only the original peak remains.

To build the complete error envelope, e(t), we accumulate these
over each peak in P′ = {ai, ti} via

e(t) = ∑
i

|ai|S(t − ti) (7)

The fact that P′ itself contains ringing peaks serves to make the
envelope conservative in the sense that in the worst case we may
remove a real peak but never fail to remove a ringing peak. Culling
is straightforward: a peak (ai, ti) is removed if |ai|< e(ti).

Supplementing P with P′ We use P′ to supplement P since mul-
tiple peaks in P′ may have merged to a single peak in P. We scan
through all peaks in P′ and assign each to the peak in P closest to
it in time. We then replace each peak in P with the set of peaks
in P′ that were assigned to it, yielding the final set of peaks. This
automatic procedure generates about N=20-50 peaks in our tests.

1The reader might wonder why such low-pass filtering was not also ap-

plied to the signal s(t) before performing peak detection on it. The reason

is that the input source signal G(t) and its response s(t) contain little energy

above η f . It is only when frequency-domain values are divided by each

other during deconvolution that a non-negligible result is obtained at higher

frequencies, requiring cleanup.

4.3.2 Frequency Trend Extraction

Peak extraction ignores diffraction and implicitly assumes every
peak acts on all frequencies uniformly. Diffraction introduces
frequency-dependent filtering not captured by this set of peaks.
This residual information is captured by our method of frequency
trend extraction, as illustrated in the middle of Figure 3. It com-

pares the simulated FR, Î( f ), to the FR of the idealized IR com-
posed of the extracted peaks, P, in order to extract any residual
low-pass trend due to diffraction. The following description as-
sumes η f =1kHz, our typical frequency limit.

We construct the impulse response corresponding to the extracted
ER peaks, I′, by summing over its peaks via

I′ =
N

∑
i=1

ai δ (t − ti) (8)

where δ (t) is the discrete analog of the Dirac-delta function – a
unit-amplitude pulse of one sample width. Its corresponding FR is

denoted Î′. We also construct the FR of the ideal IR of the original

simulation, Î, which contains complete information up to frequen-
cies of 1kHz. The overall frequency-dependent diffraction trend for
f ≤ 1kHz is obtained via

T ( f ) =

∣∣∣Î( f )
∣∣∣

∣∣∣Î′( f )
∣∣∣
. (9)

Before performing this division, we smooth both the numerator and

denominator with a Gaussian of width 50Hz. The unsmoothed Î′( f )
often has near-zero values; smoothing takes care of this problem
and makes the above operation numerically stable. As explained in
Section 3.1, this has little perceptual impact because we are insen-
sitive to finer details in the magnitude frequency response. T ( f )
is then smoothed again with the same Gaussian to yield the final
frequency trend. Average values of T ( f ) in each octave band 0-
62.5Hz, 62.5-125Hz, . . ., 500-1000Hz are then stored.

This trend contains information only up to 1kHz. Fortunately, much
of the perceivable diffraction-related occlusion effect in common
acoustic spaces manifests itself in frequencies below 1kHz [Kut-
truff 2000]. Sound wavelength for 1kHz is about 34cm, which is
comparable to large features such as pillars, doors and windows.

We can also plausibly extrapolate this trend to frequencies higher
than were simulated. To do this, we express T ( f ) on a log-log scale,
which corresponds to plotting the power at each frequency, in dB,
against the frequencies in octaves. These scales better match our
loudness and pitch perception. Moreover, the low-pass diffraction
trend for physical edges is roughly linear on such a log-log scale for
mid-to-high frequencies [Svensson et al. 2009]. We then fit a line to
the log-log trend in the frequency range 125-1000Hz. If the slope
is negative, indicating a low-pass trend, the line is extrapolated and
stored at octave bands higher than 1000Hz up to 22,050Hz. If the
slope is positive, we do not extrapolate and instead just copy the
value at the 500-1000Hz octave to higher ones.

5 Interactive Auralization Runtime

The precomputed, perceptually-encoded information from numeri-
cal simulation supports interactive sound propagation from moving
sources to a moving listener. Our approach performs perceptually-
smooth spatial interpolation of the IRs, and then propagates source
sounds by convolving them with these IRs. Because we generate
realistically dense IRs, our run-time works in the frequency domain
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Figure 4: Run-time processing. Operations computed at run-time are col-

ored red. Processing for only one channel (ear) is shown at figure bottom.

to perform the convolution efficiently. A schematic diagram of our
real-time auralization system is shown in Figure 4.

5.1 Load-time Computation

At load-time, per-room LR filters are loaded and processed. The
initial TER part of the LRIR is zeroed out, to be replaced at run-time

with the spatially-varying ERIR. The LRIR’s Fourier Transform ÎLR

is then computed and stored, along with its time-domain peaks.

Next, ERIR filters for the whole scene are loaded, yielding a table,
IER(ps, pr), where points ps lie on a 2.5D region of potential lis-
tener positions and pr sample sources over the entire 3D volume
of the scene. Note the reversal of sense of source/listener from the
original simulation, which is justified by acoustic reciprocity. Each
sample in the IER(ps, pr) contains a set of peaks with associated
delays and amplitudes, and an octave-band frequency trend.

5.2 ERIR Interpolation

Spatial interpolation Given the current source and listener lo-
cations, ps and pr, the ERIR table is indexed and interpolated to
reconstruct the ERIR as shown in the top of Figure 4. This interpo-
lation is bilinear over pr and tri-linear over ps, and so involves 32
point pairs (8 over ps and 4 over pr). The result is denoted ISL, and
is based on the temporal interpolation described next.

Temporal Interpolation High-quality interpolation of IRs is a
challenging problem. Direct linear interpolation (cross-fading)
leads to unrealistic oscillations in the sound amplitude and audible
“gurgling” artifacts. Each peak represents a wavefront from the
source arriving at the listener. As the listener moves, this peak
smoothly translates in time; cross-fading instead generates twin
“ghosts” which only modify amplitudes at fixed peak times eval-
uated at the two spatial samples. Frequency-domain interpolation
fails to help because the time and frequency domains are linearly
related. Interpolating over the peak delays and amplitudes we ex-
tract better matches the physical situation and produces no artifacts
in our experiments.

Interpolating between delays and amplitudes of two peaks assumes
that they correspond; i.e., belong to the same propagating wave-
front. The finite speed of sound dictates that the peaks from the
same wavefront at two points in space separated by a distance ∆d

can be separated in time by no more than

∆t ≤
∆d

c
, (10)

where ∆d is the spatial sampling distance (1m) and c is the speed
of sound in air, 343m/s at 20◦C. The following procedure computes
correspondences and achieves convincing interpolation.

Denote the peak sets of the two IRs as P1 and P2, and assume both
are sorted over peak times ti. We construct a graph whose edges
represent potential correspondence between a peak in P1 and a peak
in P2; in other words, difference between peak times satisfies (10).
Edge weight is assigned the absolute value of the peaks’ amplitude
difference. The algorithm iterates greedily by selecting the edge
of smallest weight currently in the set, finalizing it as a correspon-
dence, and removing all other edges sharing either of the two peaks
selected. The operation is commutative in P1 and P2 and interpo-
lates associated peak delays and amplitudes, yielding a perceptually
smooth auralization for moving sources and listener.

In addition to the peaks, the ERIR’s frequency trend must also be
interpolated. In this case, straightforward linear interpolation of
amplitudes in each octave band works well.

5.3 LRIR Scaling

The overall propagation IR combines the interpolated ERIR be-
tween the source and listener, ISL, with the room’s LRIR, ILR. We
currently choose the LRIR of the room in which the source lies.
This approach yields good results in practice but could be extended
in future work [Stavrakis et al. 2008]. Since convolutions are al-
ready performed in the frequency domain, chains of IRs from mul-
tiple rooms can be computed by element-wise complex multipli-
cation, so such an extension would not incur much run-time cost.
To make a natural-sounding transition between ERIR and LRIR (at
time TER), we must scale the LRIR.

The LRIR’s scaling factor is calculated by first computing the RMS
peak amplitude of the ERIR during the time interval [t0+5ms,TER],
where t0 is the time of the first peak in the ERIR. The result, denoted
AER, discards the first (direct) peak and any that closely follow it.
We also calculate the LRIR’s maximum absolute peak amplitude
in [TER,2TER], yielding ALR. Finally, we account for the LRIR’s
attenuation from the frequency trend; we do this by computing the
mean of amplitudes over all the ERIR’s frequency bins, yielding
FER. The final scaling factor is given by

βLR =
AER FER

ALR
. (11)

This scaling is then applied to the LRIR’s frequency response, ÎLR

computed during load-time, before adding it to the ERIR.

5.4 Binaural Processing

Human auditory perception is binaural; that is, based on two ears.
This allows us to estimate direction and distance to sound sources,
a capability known as localization [Blauert 1997]. Ideally, this re-
quires augmenting each peak in the ERIR with information about
the corresponding wavefront gradient; i.e., the direction in which
the sound is propagating. It may be possible to extract such in-
formation from our simulation, but its calculation is challenging.
This is especially true because we exploit reciprocity, which would
require tracking simulated waves all the way back to their sources.

Fortunately, a well-known property of localization is the “prece-
dence effect”, also known as the “law of the first wavefront”, which
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(a) living room scene (b) outdoor walkway scene (c) “Citadel” scene from Valve’s SourceTMSDK

Figure 5: Test scenes used for auralization.

states that our perception of the direction to a source is determined
almost exclusively by the first arriving sound. We therefore assign
to the first peak the direction from source to listener, and the re-
maining peaks to random directions. Each peak in ISL is processed
depending on its assigned direction and two ERIRs generated for

the left and right ear respectively, I left
SL and I

right
SL .

Binaural perception is sensitive to the exact geometry of the individ-
ual listener’s ears, head and shoulders, which can be encapsulated
as his head-related transfer function (HRTF). Non-individualized
HRTFs can lead to large errors in localization [Hartmann and Wit-
tenberg 1996]. Our system is easily extensible to customized
HRTFs and supports them with little additional run-time cost. To
avoid the complexity and present results to a general audience, we
currently use a simple model [Hartmann and Wittenberg 1996],
based on a spherical head and cardioid directivity function.

5.5 ERIR Short Fourier Transform

To perform convolutions, we transform the left/right ERIRs, I left
SL

and I
right
SL , to the frequency domain. This processing is identical for

both; we simplify notation by referring to the ERIR as ISL. Denote
the number of audio time samples in the ER and LR phases as NER

and NLR, respectively. TER << TLR and so NER << NLR. Because
the ERIR and LRIR are later added in the frequency domain before
convolving with the source signal, a straightforward approach is to
perform an FFT of length NLR on ISL. However, it contains only ze-
ros beyond sample NER. Zero-padding a signal in the time-domain
corresponds to interpolating in the frequency domain, a fact we ex-
ploit to reduce computation. We perform a short FFT on ISL of
length 4NER and then upsample the resulting frequency coefficients
by a factor of NLR/4NER. The interpolation filter used is a Sinc
truncated at the fifth zero on either side, multiplied by the Lanczos
window. These choices of intermediate buffer size (4NER) and win-
dowing function reduce FFT wrap-around effects enough to avoid
ghost echoes.

The same idea can be applied to compute the Fourier transform on
audio buffers representing each input sound source. Overall, we
reduce all required per-source FFTs from length NLR to 4NER, a
speedup of 2-4× compared to the straightforward approach.

5.6 Auralization

Audio processing is done in fixed-sized buffers at a constant sam-
pling rate. The size of FFTs is clamped to the longest LR filter over
all rooms. For each source, a sample queue is maintained in which
buffers are pushed from the front at each audio time step. The input
sound signal for the i-th source is denoted ui(t). Refer to Figure 4
for the overall organization of the auralization pipeline.

Processing begins by performing an FFT on the current buffer for
the source sound, ui, yielding the transformed signal ûi. Next, the

interpolated ERIR, ISL, is computed based on the current source
and listener locations as discussed in Section 5.2. The LRIR is ac-
cessed depending on the room containing the source, and its scaling
factor βLR computed as described in Section 5.3. Binaural process-
ing from Section 5.4 is performed to yield ERIRs for the two ears,

I left
SL and I

right
SL . These are transformed to the frequency domain as

described in Section 5.5, and the scaled LRIRs added to yield

Î left = Î left
SL + βLR ÎLR,

Î right = Î
right
SL + βLR ÎLR. (12)

The source signal is then efficiently convolved in the frequency do-
main, yielding the propagated versions of this sound for each ear:

v̂ left
i = Î left ⊙ ûi,

v̂
right
i = Î right ⊙ ûi. (13)

In this way, we accumulate contributions from all sources in the
frequency domain, at each ear. The final result is transformed back
to the time domain using two inverse FFTs:

v left = FFT−1
(

∑i v̂ left
i

)
,

v right = FFT−1
(

∑i v̂
right
i

)
. (14)

The first audio buffers for v left and v right are then sent to the sound
system for playback. Between consecutive buffers in time, we per-
form linear interpolation within a small (5%) window of overlap.

6 Implementation and Results

Our system is implemented in C++ and uses the Intel MKL library
for computing FFTs. Vector operations are optimized using SSE3.
Performance was measured on a 2.8 GHz Quad-core Intel Xeon
processor, with 2.5 GB RAM. We intentionally ensure that the en-
tire sound engine runs inside one thread on a single core, mirror-
ing the practice in interactive applications such as games. Precom-
putation and run-time statistics are summarized in Table 1. In all
examples, the preprocessing time is dominated by the numerical
simulation; the perceptually-based encoding is comparatively neg-
ligible. The accompanying video shows real-time results collected
from our system, and a demonstration of integration with Valve’s
SourceTM game engine. Geometry input to the acoustic simulator is
exactly what is shown rendered in each video segment. No manual
simplification is performed.

Audio buffer length in our system is 4096 samples, representing
about 100ms at a sample rate of 44.1kHz. Our system takes 1.7-
3.5ms per source for every audio buffer, which allows about 30
moving sources and a moving listener in real time. Our sound en-
gine utilizes XAudio2 for buffer-level access to the sound-card.
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Figure 6: Sound scattering and diffusion in the living room scene. The top row shows an empty room while the bottom row is fully-furnished. The left three

columns show a 2D slice of the sound field generated by a Gaussian impulse emitted near the room’s center, while the right column shows the entire IR at a

single receiver point placed at the source location. Red/blue represents positive/negative pressure in the sound field. Black areas represent solid geometry in the

scene. Note the large difference in wave propagation in the two scenes because of scattering and diffraction. Refer to the video for comparative auralizations.

Scene Dim. η f #ERL #ERS #R ST Mem. TER TLR #S ABT

walkway 19m×19m×8m 1000Hz 1.5M 100 1 120min 600MB 70ms 1100ms 1 1.7ms

living room 6m×8m×3m 2000Hz 4.9M 129 1 75min 1000MB 45ms 250ms 2 1.8ms

Citadel 28m×60m×32m 1000Hz 1.7M 155 6 350min 620MB 80ms 1900ms 8 27.2ms

train station 36m×83m×32m 500Hz 1.1M 200 3 310min 390MB 200ms 2600ms ~15 60ms

Table 1: Performance statistics. The leftmost columns show precomputation statistics while the rightmost two are for the run-time. Abbreviated column

headings are as follows. “Dim.” is the scene dimensions “#ERL” is the simulated number of ER listener probes (before downsampling). “#ERS” is the

simulated number of ER source probes. “#R” is the number of rooms in the scene. “ST” is total simulation time, including LR and ER probes. “Mem.” is the

total memory used at runtime to store ERIRs for all source and receiver positions, including extracted peaks and frequency trend. TER is the length of the ER

phase, and TLR the LR phase, maximized over all rooms in the scene. “#S” is the number of different sources simulated at run-time. “ABT” is the total time

needed to process each audio buffer, summed over all run-time sources.

6.1 Living room

Our technique handles complex scenes like the furnished living
room shown in Figure 5(a). Scattering off furnishings has a no-
ticeable effect on a room’s acoustics. Figure 6 compares visualiza-
tions of the sound field in a 2D slice of this scene, between the fur-
nished room and an empty version with all interior objects and car-
pet removed. In the empty room, specular wavefronts dominate the
sound field and substantial energy still remains after 50ms. In the
furnished room, the greater scattering and larger absorbing surface
area more quickly reduce the sound field’s coherence and energy.
Refer to the accompanying video to hear the difference. The right
column of the figure plots pressure as a function of time at a sin-
gle receiver location. The empty room’s IR is dominated by high,
positive-amplitude peaks, while the furnished room’s contains neg-
ative pressure peaks due to diffraction at geometric discontinuities
and more closely resembles a real room’s response qualitatively.

6.2 Walkway

Figure 5(b) shows an outdoor scene designed to demonstrate var-
ious acoustic effects. Scene surfaces are all highly reflective with
a pressure reflection coefficient of 0.95. Specular reflections from
the walls and lack of scattering yield a fairly long TLR=1.1s, with a
characteristic hollow reverberation due to the parallel walls and lack
of intervening geometry. The walkway’s concave ceiling (blue) fo-
cuses sounds, so that they become louder when the source and re-
ceiver both move below it. Occlusion effects are also important
in this scene because diffraction is the only major source of en-
ergy transport behind the walls. The sound loudness changes real-
istically and smoothly as the listener walks behind a wall separat-

ing him from the source, and demonstrates a convincing diffracted
shadowing effect. Refer to the video for the auralization.

6.3 Citadel

Figure 5(c) shows a larger scene taken from the “Citadel” scene of
Half Life 2. Sound sources include a walking narrator, his foot-
steps, as well as other sources both fixed and moving within the
environment. Realistic, spatially-varying acoustic propagation is
captured automatically from scene geometry, including a varying
LR, and is especially dramatic as the narrator moves from a large
room into a narrow corridor. Interesting reverberation is produced
in the largest room because of its high ceiling, which causes it to
“flutter” especially audible for impulsive sounds.

6.4 Train station

Figure 1 shows a frame from the game Half-Life 2TM, with which
we have integrated our sound engine. We have written a game
“mod” that broadcasts all in-game sound events over a pipe to our
sound engine running in a separate process. Sound events include
information about the WAV file played as well as the source/listener
locations. Our engine then uses this information to propagate
sounds in the scene, based on precomputed results over the scene,
without requiring any access to the scene geometry at runtime. We
can handle up to 15 sources in real time on this scene, including
the game’s ambient sounds as well as main source sounds, such as
gunshots, footsteps and voices. Refer to the accompanying video
for acoustic results and a comparison of our engine’s sounds with
the original game’s with its “sound quality” set to “high”.
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6.5 Error Analysis

To validate our approach, we compared it against a reference nu-
merical simulation bandlimited to a higher frequency of 4kHz. This
tests the three sources of error in our approach: our simulation’s
frequency limit, our perceptually-based parametrization, and spa-
tial interpolation of IRs. The comparison was done on the fully
furnished living room. The IR from the numerical simulator was
convolved directly with the input sound for producing the reference
output. Our system’s sound closely matches the reference; refer to
the accompanying video for the audio comparison.

Figure 7 quantitatively analyzes error in the same scene. Errors are
calculated in third-octave bands with respect to a 4kHz reference
simulation. Frequency responses for our decoded result based on
a bandlimited working simulation (1kHz) are compared to this ref-
erence. The top graph shows errors due to compression alone, by
placing the listener on a simulation grid point and avoiding inter-
polation. Below the simulated frequency limit of 1kHz, our error
stays within 2 dB of the reference and increases only moderately to
4 dB in the extrapolated range. Including spatial interpolation (bot-
tom graph) increases error to a maximum of 5 dB, with an average
of 2-3 dB. These errors may be compared to the human loudness
discrimination threshold at roughly 1 dB over all audible frequen-
cies [Jesteadt et al. 1977]. Our method preserves high frequencies
better than linear interpolation and so controls the “gurgling” ar-
tifacts heard when linearly interpolating IRs as the listener moves
between sample points. For results at other listener locations, refer
to the supplementary material.

7 Conclusion, Limitations and Future Work

Ours is the first real-time method for wave-based acoustic propaga-
tion from multiple moving sources to a moving listener. It exploits
human auditory perception to express the precomputed, spatially-
varying impulse response of a complex but static scene in a com-
pact form. Our run-time technique convolves in the frequency-
domain, allowing arbitrarily dense impulse responses. Overall, our
system captures realistic acoustic effects including late reverbera-
tion, diffuse reflections, reverberation coloration, sound focusing,
and diffraction low-pass filtering around obstructions.

Some limitations of our approach are due to the high computational
cost of wave simulators on today’s desktops – the simulation’s fre-
quency limit and restricted volume. Others arise from precomputa-
tion – our restriction to static scenes and high runtime memory use
(hundreds of MBs) even with fairly low spatial sampling. Mem-
ory use could be reduced by extracting an even more compact set
of ERIR perceptual parameters such as loudness, clarity, etc. Find-
ing a “perceptually complete” set is an open research problem, as
is determining spatial sampling requirements for perceptually ac-
curate auralization. Our technique might be practically extended
to dynamic scenes by simulating low-dimensional parameterized
scenes, such as an opera house at various degrees of seating occupa-
tion. It could also benefit from approximations to handle dynamic
objects, perhaps by separately precomputing frequency-dependent
occlusion factors and then applying them on the fly.
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