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Abstract

The problem of recovering a parameter function based on measurements of

solutions of a system of partial differential equations in several space variables

leads to a number of computational challenges. Upon discretization of a

regularized formulation a large, sparse constrained optimization problem is

obtained. Typically in the literature, the constraints are eliminated and the

resulting unconstrained formulation is solved by some variant of Newton’s

method, usually the Gauss–Newton method. A preconditioned conjugate

gradient algorithm is applied at each iteration for the resulting reduced Hessian

system.

Alternatively, in this paper we apply a preconditioned Krylov method

directly to the KKT system arising from a Newton-type method for the

constrained formulation (an ‘all-at-once’ approach). A variant of symmetric

QMR is employed, and an effective preconditioner is obtained by solving the

reduced Hessian system approximately. Since the reduced Hessian system

presents significant expense already in forming a matrix–vector product,

the savings in doing so only approximately are substantial. The resulting

preconditioner may be viewed as an incomplete block-LU decomposition, and

we obtain conditions guaranteeing bounds for the condition number of the

preconditioned matrix.

Numerical experiments are performed for the dc-resistivity and the

magnetostatic problems in 3D, comparing the two approaches for solving the

linear system at each Gauss–Newton iteration. A substantial efficiency gain is

demonstrated. The relative efficiency of our proposed method is even higher in

the context of inexact Newton-type methods, where the linear system at each

iteration is solved less accurately.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The problem of recovering a parameter function based on measurements of solutions of a

system of partial differential equations (PDEs) in several space variables leads to a number of

computational challenges. Such problems arise in many applications, including groundwater

flow, dc resistivity, magnetotelluric inversion, diffraction tomography, impedance tomography

and more; see [14, 16, 19, 29, 42, 46, 49] and references therein.

For instance, consider the inverse problem of recovering an approximation for a model,

m(x), based on measurement data b on the solution u(x) of the forward problem

∇ ·

(

em∇u
)

= q, x ∈ � (1.1a)

∇u · n = 0, x ∈ ∂� (1.1b)
∫

�

u d� = 0, (1.1c)

where � ⊂ R
3.

A typical formulation of this inverse problem would seek m(x) to minimize the sum of

a data fitting error term and a regularization term, subject to the forward problem (1.1) being

satisfied. The problem is typically ill-posed without regularization and it is ill-conditioned

with it, since the regularization term is aimed at removing noise without overshadowing or

‘flattening’ the data.

To obtain a numerical solution the differential terms must be discretized. This typically

leads to an algebraic, constrained optimization problem, where the various Jacobian matrices

are very large but sparse. In most works reported in the literature (e.g., [42, 48, 49]), the

constraints are eliminated and the resulting unconstrained formulation is solved by some

variant of Newton’s method, usually the Gauss–Newton method. A preconditioned conjugate

gradient (CG) algorithm is applied at each iteration for the resulting reduced Hessian system.

The reduced Hessian is a dense matrix, and special care must be taken to form matrix–vector

products efficiently.

In this paper we apply instead a preconditioned Krylovmethod directly to the KKT system

arising from a Newton-type method for the constrained formulation [41]. Such a formulation

is also referred to as the ‘all-at-once’ approach [35, 44], since the solution of the forward

problem is computed simultaneously with the solution of the inverse problem (cf [38]). In

this paper, a variant of symmetric QMR [24, 25] is employed and an effective preconditioner

is obtained by solving the reduced Hessian system approximately. Since the reduced Hessian

system presents significant expense already in forming a matrix–vector product, the savings

in doing so only approximately are substantial. The resulting preconditioner may be viewed

as an incomplete block-LU decomposition, and we obtain conditions guaranteeing bounds for

the condition number of the preconditioned matrix. An even more impressive improvement is

obtained when the KKT system at each nonlinear iteration is solved only approximately, i.e.,

an inexact Newton-type method for the constrained formulation is utilized.

The approach is analogous to work for the incompressible Navier–Stokes equations

in [20, 21, 45]; however, there are substantial differences in the model equations, their

conditioning and the resulting algorithms.

Even closer to our approach, and very recent, are [2, 9, 11–13]. Indeed, Biros and Ghattas

proposed a similar preconditioner in the context of optimal fluid flow control. In this paper

we supply a new constructive convergence proof which naturally leads to grid-independent

convergence rates under reasonable conditions. Furthermore, we study the preconditioner

in the context of distributed parameter estimation in 3D where (unlike most optimal control

problems) the number ofmodel parameters is very large and the algorithm is required to perform
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with rather small regularization parameters3. These recent references add to our conviction that

the approach described here is viable and important for a wide range of applications coupling

differential equations and optimization techniques.

To be specific, we introduce some notation next. Let the forward problem be a linear,

elliptic differential system,

A(m) u = q, (1.2)

whereA refers to a differential operator depending on amodelm(x), defined on an appropriate

domain � and equipped with suitable boundary conditions. An instance of (1.2) is given by

(1.1).

Let the operator Q indicate the projection onto the locations in � to which the data are

associated. Thus, the data are viewed as a nonlinear function of the model:

b = QA(m)−1q + ǫ,

where ǫ is measurement noise. Since the data are noisy, and the inverse problem of recovering

m from it is often ill-posed even without noise [22, 48], there is no unique model which

generates the data. Therefore, a process of regularization is used to recover a relatively smooth

(or piecewise smooth), locally unique solution to a nearby problem.

A regularization method often utilized in practice minimizes the Tikhonov

functional [22, 48, 49]4

min
m

1
2
‖QA(m)−1q − b‖2 + βR(m − mref), (1.3)

where mref is a reference model and β > 0 is the regularization parameter. Typical choices

(with mref = 0) are

R =

∫

�

k0m
2 + 1

2
|∇m|2, (1.4a)

or

R =

∫

�

k0m
2 + |∇m|, (1.4b)

or some combination of the two.

The PDE in (1.2) is subsequently discretized on a grid by a finite volume or finite element

method to read

A(m)u = q, (1.5)

where A is a nonsingular matrix5, u is the grid function approximating u(x) and arranged

as a vector, and m and q likewise relate to m(x) and q(x). The regularization functional is

discretized similarly; see, e.g., [6] for a detailed example. The resulting optimization problem

is written in constrained form as

minimize 1
2
‖Qu − b‖2 + βR(m − mref)

subject to A(m)u − q = 0.
(1.6)

The following description is a slight generalization of [31]. Introducing the Lagrangian

L(u, m, λ) = 1
2
‖Qu − b‖2 + βR(m − mref) + λT [A(m)u − q], (1.7)

3 Other well known differences from optimal control exist as well.
4 Throughout this paper the l2-norm is assumed unless specifically indicated otherwise.
5 The assumptions of linearity of the forward problem (1.2) with respect to u, as well as the nonsingularity of A, can

be relaxed.
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a necessary condition for an optimal solution of our problem is

Lu = QT (Qu − b) + AT λ = 0, (1.8a)

Lm = βRm + GT λ = 0, (1.8b)

Lλ = Au − q = 0, (1.8c)

where

Rm = Rm(m) =
∂R

∂m
, G = G(u, m) =

∂(Au)

∂m
.

If (1.4a) is used then

R(m − mref) =
1
2
‖W (m − mref)‖

2, (1.9)

where W is a scaled finite difference or finite element matrix which does not depend on m

(e.g., [6]). Using (1.8c) to eliminate u and then (1.8a) to eliminate λ yields a nonlinear least

squares data fitting problem. The Gauss–Newton method (e.g. [18, 41]) has been widely

employed for the latter problem; however, here we stay with the more general, constrained

formulation.

A Newton linearization for solving the nonlinear equations (1.8) leads to the following

KKT system to be solved at each iteration:

Hkkt

(

δu

δm

δλ

)

= −

(

Lu

Lm

Lλ

)

, where Hkkt =

(

QT Q K AT

K T βRmm + T GT

A G 0

)

(1.10)

with

K = K (m, λ) =
∂(AT λ)

∂m
, Rmm = Rmm(m) =

∂Rm

∂m
, T = T (u, m, λ) =

∂(GT λ)

∂m
.

This is the large, sparse, linear system on which this paper concentrates.

The only invertible blocks in Hkkt are those on the cross-diagonal. In particular, in the

upper left corner QT Q is normally singular, and the usual Schur complement method [20, 45]

will not work. One approach is the augmented Lagrangian method [23, 26, 36]. This adds
(

AT

GT

)

( A G ) to the upper-left corner of Hkkt , making this block invertible and dominant.

However, the extra term introduces a significant added complication.

Let us instead permute block rows and columns in (1.10), obtaining

H

(

δu

δλ

δm

)

= −

(

Lλ

Lu

Lm

)

, where H =

(

A 0 G

QT Q AT K

K T GT βRmm + T

)

. (1.11)

If β is not small then the diagonal blocks in H dominate, corresponding to dominant terms in

an elliptic PDE system. Several efficient methods for solving such a system are known, and

the problem is no longer difficult. But practical values of β are usually ‘not large’, and the

system in (1.11) must be viewed as strongly coupled.

We thus consider block elimination. Specifically, solution methods and their performance

for the reduced Hessian are discussed in section 2. In section 3 we then introduce our

preconditioned Krylov method for the KKT system. We show that a preconditioner based

on the reduced Hessian can be very effective.

Numerical experiments are performed in section 4 for the dc-resistivity problem (1.1)

and for the magnetostatic problem (i.e. Maxwell’s equations for a zero frequency) in 3D,

comparing the two approaches for solving the linear system at each Gauss–Newton iteration.

A substantial efficiency gain is demonstrated in sections 4.1.1 and 4.2.1. The relative efficiency
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of our proposed method is even higher in the context of inexact Newton-type methods, where

the linear system at each nonlinear iteration is solved less accurately, as demonstrated in

sections 4.1.2 and 4.2.2.

Conclusions and further remarks are offered in section 5.

2. The reduced Hessian method

Following [31], we proceed to eliminate δu, then δλ, and finally solve for δm in (1.11):

δu = −A−1[Lλ + Gδm], (2.12a)

δλ = −A−T [Lu + QT Qδu + K δm] (2.12b)

= −A−T [QT J + K ]δm − A−T [Lu − QT Q A−1Lλ],

δm = −H−1
red p, (2.12c)

where

Hred = Hred(u, m, λ) = J T J + βRmm + T − S − ST , (2.13a)

J = J (u, m) = −Q A−1G, (2.13b)

S = S(u, m, λ) = K T A−1G, (2.13c)

and

p = p(u, m, λ) = βRm + J T (Q A−1q − b)− K T (u − A−1q). (2.13d)

In the Gauss–Newton approximation, second-order information is ignored by setting

T = 0, K = 0. Hence the reduced Hessian becomes the symmetric positive definite matrix

Hred = J T J + βRmm . (2.14)

Furthermore, Newton variants for the unconstrained formulation (i.e. for the discretization

of (1.3)) are also accommodated here, upon setting u and λ according to (1.8c) and

(1.8a) respectively, at the beginning of each iteration. Thus, the most popular, classical

Gauss–Newton method can also be implemented more efficiently by using the constrained

methodology described in the next section.

To focus our arguments, we consider for the rest of this section the relatively simple

Gauss–Newton method. For the solution of (2.12c) we may use a PCG, CGLS or LSQR

method [8, 41, 43, 49]. However, a matrix–vector product Hredv for some given vector v

requires the evaluation of w = Jv and of J T w.

Since the matrix J is large and dense, the evaluation of Jv proceeds by first forming Gv,

then solving the forward problem to obtain A−1Gv and finally multiplying the result by −Q:

all of these are obtained by sparse matrix computations [31, 49]. But even with this, each

evaluation of Hredv requires the solution of one forward problem and one adjoint problem to

a high degree of accuracy, so it is expensive as such.

Moreover, the convergence of these methods without preconditioning may be slow. This

is due to the different spectral character of the operators J T J and Rmm . While the former

is a compact operator with eigenvalues which cluster at 0, the latter is a discretization of

a differential operator with eigenvalues which cluster in the limit at infinity. As discussed

in [49], a straightforward idea is to precondition the system using Rmm . Especially for the

simpler regularization (1.9), this involves solving a Poisson equation which in discretized

form yields the operator Rmm = W T W .

Such a preconditioning corresponds to the employment of the system

R
−1
mm(J T J + βRmm) = R

−1
mm J T J + β I
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where the first term on the right bounds the largest eigenvalue of the system from above and

β I bounds the spectrum from below. Therefore, PCG converges linearly for this problem,

independent of the grid [22, 49].

Unfortunately, each PCG iteration can be quite expensive. This is because of the combined

effect of (i) having to invert A, AT and Rmm , and (ii) the need to obtain accuracy to a small

tolerance in order to maintain sufficient conjugacy of the calculated approximations (see [27]

and section 4.1.1).

3. A preconditioned Krylov method for the KKT system

In the previous sectionwe discussed the solution of the preconditioned reducedHessian system.

In this section we consider the solution of the KKT system (1.10) or (1.11) directly.

It is well known [24, 25, 43] that Krylov methods for such systems tend to converge

very slowly without appropriate preconditioning. Since Hkkt is symmetric but far from being

positive definite, we expect to be able to construct preconditioners with similar attributes. The

idea of using indefinite preconditioners for the KKT system has been discussed in [24, 25],

where it was shown that, although the product of the preconditioner with the KKT system

(1.10) is no longer symmetric (which rules out use of the popular MINRES or SYMMLQ

methods [45]), it is possible to apply a symmetric QMR variant (which we refer to as SQMR)

for the solution of the system. Similar preconditioners are used in [11, 13] for different

applications.

The preconditioned version of this method, denoted PSQMR, involves one matrix–vector

product and one preconditioning per iteration, which is roughly half the cost of a usual

preconditioned QMR or BiCGstab iteration.

In order to devise an effective preconditioner for the KKT system we return to the reduced

Hessian method of the previous section. We recall that each iteration in (2.12) involves the

solution of linear systems with A, AT and Hred.

Let B be an approximation to A−1 and let Mred be an approximation to H−1
red . These

approximate inverses yield an approximate inverse M to the permuted KKT matrix H , upon

using the reduced Hessian methodology. Furthermore, if we choose B and Mred such that their

product with a vector can be rapidly calculated then the product of the approximate inverse M

with a vector can also be easily and rapidly computed. Such an approximation can be used as

a preconditioner for the KKT system.

Thus, suppose that we are to calculate x = Mv for a given vector v = [vT
λ , vT

u , vT
m]

T . We

write x in component form, x = [xT
u , xT

λ , xT
m ]

T , follow (2.12), and obtain the following.

Preconditioning algorithm.

(1) w1 = Bvλ;

(2) w2 = BT (vu − QT Qw1);

(3) w3 = vm − K T w1 − GT w2;

(4) xm = Mredw3;

(5) xu = w1 − BGxm ;

(6) xλ = BT (vu − QT Qxu − K xm).

This preconditioner is suitable for (1.11). Note the reordering necessary in v and x in order to

obtain the corresponding preconditioner for (1.10). Upon such reordering, the corresponding

preconditioning matrix for (1.10) becomes symmetric (and indefinite), hence the symmetric

QMR algorithm may be used. This yields our PSQMR algorithm.
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3.1. Analysis of the reduced Hessian preconditioner

The performance of the preconditioner M is intimately related to the choices of approximate

inverses B and Mred. In this section we analyse this effect.

For the matrix H in the permuted KKT system (1.11) the reduced Hessian methodology

corresponds to a block-LU decomposition,

H = LU, L =

(

I 0 0

QT Q A−1 I 0

K T A−1 GT A−T I

)

, U =

(

A 0 G

0 AT K + QT J

0 0 Hred

)

. (3.15)

Note that

H−1 = U−1L−1, U−1 =





A−1 0 −A−1G H−1
red

0 A−T −A−T (K + QT J )H−1
red

0 0 H−1
red



 ,

L−1 =

(

I 0 0

−QT Q A−1 I 0

−(K T + J T Q)A−1 −GT A−T I

)

.

Defining correspondingly,

J̄ = −Q BG, Û =

(

B 0 −BG Mred

0 BT −BT (K + QT J̄ )Mred

0 0 Mred

)

, (3.16a)

L̂ =

(

I 0 0

−QT Q B I 0

−(K T + J̄ T Q)B −GT BT I

)

, (3.16b)

it can be directly verified that

M = Û L̂. (3.16c)

Now, writing

UÛ = I + EU , L L̂ = I + EL ,

we obtain

H M = L(UÛ )L̂ = I + EU + EL + L EU L̂,

where

EU =

(

−(I − AB) 0 (I − AB)G Mred

0 −(I − B A)T [(I − B A)T (K + QT J̄ )− QT Q A−1(I − AB)G]Mred

0 0 −(I − HredMred)

)

EL =

(

0 0 0

QT Q A−1(I − AB) 0 0

(K T + J̄ T Q)A−1(I − AB) GT A−T (I − B A)T 0

)

.

Theorem 1. Assume:

(1) For the discretizations of the forward problem, the data locator and the regularization

term, there are constants γ1, γ2, γ3 and γ4 such that, for all sufficiently fine grids,

‖A−1G‖ 6 γ1, ‖A−1Q‖ 6 γ2, ‖QT Q‖ 6 γ3 and ‖G H−1
red ‖ 6 γ4.

(2) The approximate inverses satisfy ‖I−HredMred‖ 6 α1 and ‖I− AB‖ 6 α2 for constants

α1 < 1 and α2 < 1.

Then there are constants K1 and K2 depending only on the problem such that for all sufficiently

fine grids

‖I − M H‖ 6 K1α1 + K2α2.
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The first of the theorem’s two assumptions typically holds under mild conditions on �,

since A is a discretization of an elliptic operator (see, e.g., [15, 47])6. The second assumption

specifies a basic requirement of the approximate inverses B andMred. Note that similar bounds

hold for ‖I − MredHred‖ and ‖I − B A‖.

Proof of theorem 1. From the assumptions it follows that

‖BG‖ 6 ‖B A‖‖A−1G‖ 6 (1 + α2)γ1 6 2γ1,

‖B Q‖ 6 ‖B A‖‖A−1Q‖ 6 (1 + α2)γ2 6 2γ2,

‖G Mred‖ 6 ‖G H−1
red ‖‖HredMred‖ 6 γ4(1 + α1) 6 2γ4.

We then obtain

‖EL‖ 6 α2C1

‖EU‖ 6 α2C2 + α1C3

‖L EU L̂‖ 6 C4 (α2C2 + α1C3)

where the constants Ci , i = 1:4, depend on the constants γ j , j = 1:4, in an obvious manner.

The claimed bound follows directly from the expression previously derived for H M , where

K1 and K2 depend on the constants Ci , i = 1:4. �

The constants K1 and K2 depend on the problem and are not under our control. However,

by choosing B and Mred judiciously we can affect α2 and α1. For sufficiently small values of

these constants,

c := K1α1 + K2α2 < 1.

Then, the condition number of M H is bounded by 1+c
1−c

and rapid convergence of the

preconditioned Krylov method may be expected. Note that the convergence rate is expected

to be independent of the grid (for all sufficiently fine grids) if α1 and α2 are. On the other hand

it must be acknowledged that to obtain c < 1 the requirements on α1 and α2 may be more

stringent than what is necessary to obtain satisfactory results in practice.

4. Numerical experiments

For our numerical experiments we use the regularization (1.9) discretizing (1.4a), and apply

the Gauss–Newton method. This combination of choices is not only the simplest (thus

allowing us to avoid various incidental issues), it is also the one which has been most popular

amongst practitioners (although it disallows discontinuities in the model) and for which the

reduced Hessian method has the most solid track record. For the reduced Hessian method we

subsequently use the PCG algorithm.

We apply our proposed method to two typical model problems, the div–grad problem

described in (1.1) and the magnetostatic problem. In both cases we use the following setup.

For the regularization we assume a smooth model and choose

W = h
3
2

(

−DT

10−3 I

)

,

that is, the scaled discretization of the operator

(

∇

10−3 I

)

with respect to cell centres (see [6]).

For mref we choose the constant m̄ which minimizes

‖Q A−1(m̄)q − b‖.

6 Although, both ‖A‖ and ‖A−1‖ may be unbounded: recall that A−1 corresponds to a discretization of the Green

function in more than one space dimension see [33].
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As an initial iterate for the nonlinear iteration process we setm = mref (i.e.,R(m−mref) =

0 at first), u as the solution of the corresponding forward problem, and λ = 0.

4.1. The div–grad inverse problem

To apply our methods to the problem in (1.1), we first write the PDE (1.1a) as a first-order

system using fluxes J = em∇u, and discretize it on a uniform grid in the interval [−1, 1] with

grid spacing h. An intermediate staggered grid is used with the fluxes J placed on cell faces

while u and m are at cell centres—see [6] for details. This yields the discrete system

D J = q,

J + S(m)DT u = 0,

where D is a discretization of the div operator plus the boundary conditions (1.1b) and S(m)

is a diagonal matrix with harmonic averages of em on its diagonal. For a source and a sink we

choose

q(x, y, z) = δ(x + 0.4) δ(y + 0.4) δ(z + 0.4)− δ(x − 0.4) δ(y − 0.4) δ(z − 0.4).

Eliminating J we obtain

A(m)u = DS(m)DT u = −q (4.17)

and the null space of the operator is handled by requiring a discrete version of (1.1c) to hold.

In order to synthesize data for our numerical experiment we assume that a ‘true model’ m

is given by

m(x, y, z) = 0.25 [3(1− 9x2 exp(−9x2)− (3y + 1)2 − 3(3z + 1)2)

−10(3x/5− 27x3 − (3y)5 − (3z)5) exp(−9x2 − 9y2 − 27z2)

−1/3 exp(−(3x + 1)2 − 9y2 − 27z2)].

The data are then calculated as u(m)-values on a 63-grid uniformly spaced in the interval

[−0.6, 0.6], corrupted by 1% noise.

The matrix G = ∂ A(m)u

∂m
is easily obtained by differentiating the product S(m)v (for an

arbitrary vector v) with respect to m. Using the finite volume expressions [6] and (4.17), it is

easy to show that G is given by

G = DS2Bd diag(e
−m), Bd =

∂[S(m)v]

∂m
.

Note that Bd is a bidiagonal matrix.

For the approximate inverses B and Mred we experiment with two choices, as in [3].

We first use incomplete LU-decomposition with threshold (ILU(t)) of A and W T W to

generate approximate inverses. Although practically efficient, the condition number of the

preconditioned system deteriorates with this method as the grid is refined. Second, we also

use for B a onemultigridW -cycle applied to A, and forMred a onemultigridW -cycle applied to

W T W . The multigrid method implemented here is vertex based [50] with one double sweep of

symmetric Gauss–Seidel for pre-smoothing and one for post-smoothing. Bilinear interpolation

is used for the prolongation, its adjoint for restriction, and the Galerkin coarse grid operator

is employed. This ensures grid independence of our preconditioner, and the convergence of

PSQMR up to a given tolerance is thus expected in a fixed number of iterations independent

of the grid size. Unfortunately, unless we use a better approximation for the reduced Hessian,

there is no independence of β, and the number of iterations is expected to rise as β decreases

with any of these method variants.
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Table 1. Numerical experiment 1: iteration and flopcounts for the reduced Hessian andthe KKT

solvers when the linear system is solved accurately.

PSQMR PCG

β Grid Preconditioner Itns Work Itns Work

10−2 93 ILU 15 3.5e7 13 9.2e7

173 29 2.3e8 14 1.0e9

333 49 2.8e9 13 3.2e10

653 75 3.1e10 14 4.5e11

10−1 333 34 1.7e9 7 1.9e10

10−3 97 5.0e9 23 6.0e10

10−4 211 1.1e10 51 1.3e11

10−2 93 MG 22 5.0e8 13 1.6e9

173 24 2.6e9 14 8.1e9

333 24 1.4e10 13 4.7e10

653 24 6.8e10 14 1.9e11

10−1 333 11 6.8e9 7 2.1e10

10−3 38 2.4e10 23 7.3e10

10−4 78 4.8e10 51 1.6e11

4.1.1. Experiment 1—solving the linear system accurately. Here we solve the linear system

which arises from the first nonlinear constrained Gauss–Newton step. The iterative methods

used for the linear system are PCG for the reducedHessian and PSQMR for (1.10), as described

in section 3. These iterative processes are stopped when the residual is below 10−5.

In table 1 we collect counts of iterations (‘itns’) for various values of grid size, β and

preconditioner. Substantially more work may be involved in each PCG iteration than in each

PSQMR iteration, even though the same types of matrix–vector products are utilized in both,

because one forward problem and one adjoint problem must be solved relatively accurately

when using PCG.We therefore display alsoMATLAB flop counts (‘work’) as ameasure for actual

total work.

The ILU(t) preconditioner [43] (denoted ‘ILU’) is usedwith threshold 10−2. Themultigrid

W -cycle (denoted ‘MG’) is used as discussed above. The same preconditioners are used for

both PCG and PSQMR, and the former’s inner iteration is stopped when the residual is below

10−7.

The results in table 1 indicate that the number of PSQMR iterations is larger than the

number of PCG iterations for comparable runs; however, the overall work estimate for PSQMR

is substantially lower than the work estimate for PCG. This is especially true if the ILU

preconditioner is used, because more matrix–vector products are needed in order to actually

solve the forward problem.

Comparing results for the same value of β when using ILU, both methods require more

forwardmodelling products as the grid is refined7. No such dependence on the grid is observed

when using a multigrid preconditioner, which agrees with the bounds obtained in section 3.

The increase in the number of ILU iterations as the grid is refined is common to both the

PSQMR method and the solution of the forward problem. The results in this case show a

substantial improvement of PSQMR over PCG.

For smaller values of β the reduced problem becomes more ill-conditioned and the spread

of its eigenvalues expands [34]. Both methods deteriorate then, but the cost ratio between

7 Although the number of PCG iterations remains apparently constant, evaluating matrix–vector products for the

reduced Hessian requires more inner iterations for computing w = Jv and J T w as the grid is refined.
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Figure 1. Convergence of the CG method for different tolerance values on the inner solver.

them remains roughly the same.

The stringent tolerance on the inner iteration of the PCG method is central to its relative

slowness and results from the necessity to maintain conjugacy of computed directions in the

CG algorithm. In figure 1 we plot the log of the residual norm as a function of PCG iterations

for several, more relaxed values of this tolerance, employing a 173-grid with β = 10−2. From

this figure it is clear that the convergence of PCG is severely effected if the forward problem

is not solved well.

4.1.2. Experiment 2—solving the linear system within an inexact Newton-type method. The

calculations in section 4.1.1 are performed with a stringent tolerance for the linear system.

But within the nonlinear iteration framework for (1.6), the linear KKT system at each iteration

may be solved only approximately [37, 41]. Whereas the same procedure may be envisioned

utilizing a PCG algorithm for the reduced Hessian approach, there are potential problems

of reliability when the directions in a CG algorithm are ‘not very conjugate’, as mentioned

earlier. Therefore, the solution of the forward problem in each PCG iterationmust be computed

relatively accurately, even if the solution to the whole reducedHessian system is needed only to

a rough accuracy. Thus, we expect our proposed approach to become even more advantageous

when employing an inexact-type method.

While there are many variants of Newton-type methods for the nonlinear inverse

problem [31], we remain focussed on the Gauss–Newton approximation, where we solve

the linear equations at each nonlinear iteration to a rough (relative) accuracy of 10−2. But now

we have a few variants of the Gauss–Newton method:

(1) Using the traditional, unconstrained formulation (1.3) we apply an inexact Gauss–Newton

method as in [6], where the reduced system for δm is solved to the above liberal tolerance

at each iteration. The PCG algorithm is used as before, and the resulting method variant is

denoted ‘UGN–PCG’. Here, we solve the forward problem in each matrix–vector product

to accuracy of 10−6.

(2) If the linear systems at each nonlinear iteration were to be solved ‘exactly’ then the same

Gauss–Newtonmethod could be implemented by applying PSQMR to (1.10) and updating
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Figure 2. Slices in the ‘true model’ and the reconstructed model (based on noisy data) for

z = 0.3, 0.55, 0.75.

for m, followed by updating u and λ to satisfy (1.8c) and (1.8a), respectively [31]8. But

now we solve (1.10) only approximately, so a different variant for the nonlinear solution

method is obtained. The idea is reminiscent of post-stabilization [4, 5] and secondary

correction in SQP methods [41], and it has advantages both in hastening convergence

and in making the solution feasible before reaching optimality; thus this variant adds

robustness to the overall method. Denote it by ‘UGN–PSQMR’.

(3) A third variant is obtained if, having calculated an update direction δm, δu, δλ as in

the previous variant UGN–PSQMR, we update the entire unknown vector simultaneously.

Thus, a line search is used to ensure global convergencewith amerit functionwhichweighs

objective as well as infeasibility (for details see [18, 31, 41]). This variant corresponds to

a constrained Gauss–Newton method when the tolerances are tightened [31]. Denote it

by ‘CGN–PSQMR’.

For the experiment reported belowwe use β = 7×10−3, a value obtained upon employing

the discrepancy principle based on our knowledge of the noise level and statistics (see [6] and

references therein). The stopping criterion is when the norm of the gradient gets below 10−5.

We run the experiment on a 333-grid and use both ILU and MG preconditioners as before.

Results (which are independent of choice of preconditioner) are plotted in figure 2.

Table 2 records the total number of Gauss–Newton steps needed, the total number of linear

iterations needed and the total work in flops for the solution of the nonlinear problem. These

results indicate that combining our solver with an inexact Newton-type iteration can be very

8 Note that the new λ← λ + δλ can be found directly, as is customary in SQP methods [41].
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Table 2. Numerical experiment 2: iteration counts and workestimates for Gauss–Newton variants

on a 333-grid, withβ = 7× 10−3, where the linear systems are solvedinaccurately.

ILU MG

Method Nonlin-itns Lin-itns Work Nonlin-itns Lin-itns Work

UGN–PCG 8 59 1.5e11 8 59 2.8e11

UGN–PSQMR 7 129 7.6e9 7 68 4.5e10

CGN–PSQMR 7 136 7.8e9 7 71 4.6e10

Gradient norm
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 || A(m)u – q || / ||q||

Figure 3. Norms of relative gradient and residual of the constraint as functions of the Gauss–

Newton iteration for CGN–PSQMR.

powerful. An order of magnitude efficiency gain is realized over the traditional inexact Gauss–

Newton method. In fact, since the number of iterations required for the solution of the forward

problem alone using ILU on a 333-grid is typically 30–40, it is seen that we manage to solve

the entire nonlinear inverse problem in a total cost which is not much larger than that needed

for solving a few forward problems.

Further, for CGN–PSQMR the solution to the forward problem is never calculated very

accurately; yet, as can be seen in figure 3 we advance towards feasibility (i.e., solving the

forward problem more accurately) in tandem as we advance towards optimality (solving the

entire constrained optimization problem). Note that the variant CGN–PSQMR is implemented

within a procedure which guarantees global convergence under certain conditions, whereas

the variant UGN–PSQMR is not.

4.2. The magnetostatic inverse problem

The magnetostatic problem is governed by Maxwell’s equations in the steady state,

∇ × E = 0, (4.18a)

∇ × H − σE = s, (4.18b)

∇ · (µH) = 0. (4.18c)

Here, H is the magnetic field, E the electric field, σ > 0 the conductivity, µ > 0 the
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permeability, and s is a source. The system is closed under the boundary conditions

H × n|∂� = 0. (4.18d)

The inverse problem under consideration is to recover σ(x) based on measurement data onH

at certain locations.

We follow [28–30] in reformulating and discretizing this problem. For this, note that (4.18)

corresponds to the frequency domain formulation for a zero frequency. This allows us to avoid

certain complications present in the full Maxwell equations which are not central to the theme

of this paper.

Defining

µH = ∇ × ψ, ∇ · ψ = 0, E = ∇φ, σ = em, (4.19)

applying ∇· to (4.18b), stabilizing, and substituting (4.19) into (4.18) we obtain the elliptic

PDE system

∇ × µ−1∇ × ψ −∇µ−1∇ · ψ − em∇φ = s, (4.20a)

−∇ · (em∇φ) = ∇ · s, (4.20b)

subject to boundary conditions

(∇ × ψ)× n|∂� = 0, (4.20c)

ψ · n

∣

∣

∣

∣

∂� =
∂φ

∂n

∣

∣

∣

∣

∂�

= 0, (4.20d)

∫

�

φ dV =

∫

�

(µ−1∇ · ψ) dV = 0. (4.20e)

To apply the methods presented in this paper to the magnetostatic problem, we must

first discretize the PDE system (4.20). For this we use the finite volume method described

in [29, 30], employing a uniform staggered grid with the components ofψ placed on cell faces

and φ and m at cell centres. This yields the discrete system

A(m)u =

(

CT M−1C + DT M−1
c D S(m)DT

0 DS(m)DT

)(

ψ

φ

)

=

(

s

Ds

)

= q

where D and C are discretizations of the div and curl operators plus the boundary conditions

(4.20c) and (4.20d), S(m) is a diagonal matrix with harmonic averages of em at cell faces on

its diagonal, and M and Mc are diagonal matrices whose elements are averages of µ at cell

edges and cell centres.

In this work we assume that µ is constant, µ = µ0 = 4π × 10−7. Thus, CT M−1C +

DT M−1
c D corresponds to the staggered, but component-wise usual, discretization of the vector

Laplacian times µ−10 . We also choose � = [−100, 100]3 and employ a grid with 323 cells.

For a source and a sinkwe choose themagnetometric resistivity (MMR) setting of [39, 40],

which is an electric line source

s(x, y, z) =

(

(H(x − x2)− H(x − x1))δ(y) δ(z)

0

0

)

where H is the Heaviside function and x2 = −x1 = 40. Thus, ∇ · s consists of two delta

functions.

In order to synthesize data for our numerical experiment we add 1% noise to a ‘truemodel’

m given by

m(x, y, z) = −2 + exp(−0.002(x + 25)2 − 0.002(y + 25)2 − 0.002(z − 25)2)

+2 exp(−0.002(x − 25)2 − 0.002(y − 25)2 − 0.002(z − 40)2).
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Table 3. Numerical experiment 3: iteration and flop counts forthe reduced Hessian and the KKT

solvers when the linear systemis solved accurately.

PSQMR PCG

β Itns Work Itns Work

10−1 102 6.2e9 7 4.3e10

10−2 104 6.2e9 9 5.4e10

10−3 116 6.9e9 19 1.1e11

10−4 158 9.5e9 28 1.4e11

10−5 236 1.4e10 43 2.9e11

Table 4. Numerical experiment 4: iteration countsand work estimates for Gauss–Newton

variantson a 333-grid, with β = 5× 10−3,where the linear systems are solved inaccurately.

SSOR

Method Nonlin-itns Lin-itns Work

UGN–PCG 3 25 4.1e11

UGN–PSQMR 3 151 1.6e10

CGN–PSQMR 3 157 1.7e10

Upon solving the discretized forward problem, the magnetic field is calculated by taking the

discrete curl of9ψ. The predicted field values at data locations are then given by Q̃Cψ, where Q̃

is an interpolation matrix chosen here to interpolate the magnetic field on a 302-grid uniformly

spaced on the plane z = 0, −50 6 x, y 6 50.

In the experiments reported below we have used one iteration of SSOR [43] as a

preconditioner for PCG and PSQMR; this requires less memory than the preconditioners used

in section 4.1. The PCG inner iteration (controlling conjugacy) is stopped when the residual

is below 10−7.

4.2.1. Experiment 1—solving the linear system accurately. Again we solve the linear system

which arises from the first nonlinear constrained Gauss–Newton step and compare the PCG

for the reduced Hessian with PSQMR. These iterative processes are stopped when the residual

is below 10−5. Table 3 records computational effort estimates for various values of β.

As before, the results in table 3 indicate that the number of PSQMR iterations is larger

than the number of PCG iterations for comparable runs; however, the overall work estimate

for PSQMR is substantially lower than the work estimate for PCG. In this case we have found

that the solution of the forward problem (using the SSOR preconditioner) requires roughly

80–100 iterations. Therefore, there is a substantial cost reduction when solving the whole

KKT system. The overall reduction in work is much more substantial than in section 4.1.1;

one reason is that the forward problem in this case requires more computational effort to solve,

as compared with the problem (1.1) in section 4.1.

4.2.2. Experiment 2—solving the linear system within an inexact Newton-type method. We

now repeat the experiments in section 4.1.2 (i.e. using the same grid size, tolerances, etc) for

the magnetostatic problem. For the same noise level of 1%, the discrepancy principle yields

the value β = 5× 10−3 here. Results analogous to those of table 2 are recorded in table 4.

These results again demonstrate that the combination of our solverwith an inexactNewton-

type iteration can be very powerful.

9 It can be shown [29] that the discretization yieldsH to second-order accuracy.
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5. Conclusions and further discussion

In this paper we have developed a preconditioned, symmetric QMR algorithm for the solution

of large distributed parameter estimation problems of the form (1.6). The preconditioner is

obtained by solving the reduced Hessian system (2.12) approximately. We have analysed the

performance of the proposed solver and demonstrated that it can yield significant efficiency

gains in practice by applying it to instances of the dc-resistivity and the magnetostatic

problems.

Computations were also performed for Maxwell’s equations in 3D for moderate

frequencies, realizing rather substantial efficiency gains for this problem as well [32].

Let us emphasize that we are not claiming to present ‘the best method for all problems’:

The nonlinear iteration process is different when switching from the unconstrained to the

constrained formulation, and it is different again when solving the linear equations only to

a rough accuracy. Despite the relevant theory, there may in principle be examples (although

none such was encountered in the case studies considered here) when our method would not

converge while another nonlinear iteration process would. However, the evidence presented

here, complemented by [2, 12, 13] and studied against the background of themajor expense per

iteration associatedwith PDE systems in 3D, clearly signals that our approach offers significant

advances towards the efficient solution of several important practical problems.

Although we have examined the rapid solution of linear systems at each Newton-type

iteration for a nonlinear problem (1.6), our proposed method can be important also for linear

problems such as those arising when using the Born approximation [1, 51]. In particular, for

a given linear problem of the form Hredm = −p where Hred and p are given by (2.13), it may

be rather advantageous to write it in constrained form and employ PSQMR (cf [31]).

As mentioned before (see especially section 4.1.1, [27] and figure 1), a major obstacle that

our method circumvents is the need to retain conjugacy of direction vectors to a high accuracy

when using the CG method. We have noted that when the tolerance is relaxed the algorithm

may break down, especially when the norm of the right-hand side in (1.10) becomes small.

A way to avoid breakdowns is to solve the forward problem more accurately (by a couple of

orders of magnitude) than (1.10). Thus, the tolerance for solving the forward problem when

forming the approximation for J in (2.12), (2.13) is gradually tightened, but always more

stringent than the tolerance for (1.10). We have had a moderate success with this idea [32]

(see also [17] for similar ideas).

Another possibility is to replace J in (2.13) by J̄ of (3.16a) and maintain conjugacy for

the approximated system. Work along this line will be reported in the future.

The possibility of replacing J by an approximation is relevant also for the PSQMR

algorithm, of course, although in a different context: our choice for Mred in section 4 was

based on ignoring J T J in Hred. Whereas this is doubtlessly cheap, it is also guaranteed to fail

as β → 0. For small values of β > 0 we may therefore expect to do better with choices such

as a bidiagonalization of J̄ = −Q BG, or an automatic sparse approximate inverse construct

for approximating J in Mred [10]. We have experimented with such variants and found that,

whereas they do indeed improve robustness for small values of β, the overall performance for

the examples presented in section 4 is not improved by much.

Finally, the necessary conditions (1.8) can be viewed, as mentioned earlier, as a

discretization of a strongly coupled PDE system. In [7] we design a multigrid method for

such a system as an alternative for the PSQMR method described in this paper. Generally

speaking, the present method is more robust and easier to implement, but the multigrid method

performs supremely in adequate circumstances.
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