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PRECONDITIONED ITERATIVE METHODS 
FOR INDEFINITE SYMMETRIC TOEPLITZ SYSTEMS* 

Paul Concust and Paul Saylort 

Dedicated to David M. Young on the occasion of his 65th birthday 

Abstract 

Stable fast direct methods for solving symmetric positive-definite Toeplitz systems of linear 

equations have been known for a number of years. Recently, a conjugate-gradient method with 

circulant preconditioning has been proposed as an effective means for solving these equations. For 

the (non-singular) indefinite case, the only stable algorithms that appear to be known are the general 

0 ( n 3 ) direct methods, such as L U decomposition, which do not exploit the Toeplitz structure. We 

depict here some initial numerical results on the feasibility of circulant preconditioned iterative 

methods for the indefinite symmetric case. 

1. Introduction 

The use of iterative methods for the solution of linear systems of equations Ax = b 

for which A is a Toeplitz matrix has been stimulated by the recent work of G. Strang 

[14]. It was proposed in (14] that for the symmetric positive definite case the use of 

a circulant matrix as preconditioner could be particularly effective for the conjugant 

gradient method. Since circulant systems can be solved rapidly with the Fast Fourier 

Transform (FFT) and since for a significant class of matrices the spectrum of the 

preconditioned matrix turns out to have strong clustering with only a few isolated 

extremal eigenvalues, the conjugate gradient iteration can converge with striking ef-

ficiency. Subsequent related work can be found in [7], [8], [9], [10], [15]. 

We report here on our initial findings for extending the use of circulant precon

ditioners to the case in which A is a symmetric Toeplitz matrix that is indefinite 

* This work was supported in part by the Applied Mathematical Sciences subprogram of the 
Office of Energy Research of the U.S. Department of Energy under Contract DE-AC03-76SF000098 
and by National Science Foundation grant DMS87-03226. 
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(both some positive and some negative eigenvalues). For this case the need for effi

cient iterative methods is more pressing than for the positive definite case, because 

the specialized rapid direct methods for Toeplitz matrices can be unstable when the 

matrix is indefinite. 

2. Toeplitz and Circulant Matrices 

Let A denote a real symmetric n x n Toeplitz matrix. A Toeplitz matrix is 

constant along its diagonals and thus, in the symmetric case, is determined by the n 

elements of the first row, ao, a1, ... , an-1, 

ao at an-2 an-1 
at ao at an-2 

A= a2 at ao (1) 

at 

an-1 a2 at ao 

Such matrices arise in applications such as time series analysis, Pade approximation, 

and differential and integral equations. 

A circulant matrix, which is a special case of a Toeplitz matrix, is determined by 

only the first ~ + 1 elements of the first row if n is even. Each successive row contains 

the elements of the row above shifted one to the right, with the last element wrapped 

around to become the first, i.e., 

co Ct C2 Ct 

Ct co Ct c2 

c2 Ct co 

Ct 

Ct c2 Ct co 

Since the eigenvectors of a circulant matrix are given by successive powers of the nth 

roots of unity, systems with circulant coefficient matrix are amenable to solution by 

the FFT in 0( n log n) operations. 

To obtain a preconditioner S for symmetric positive definite A, Strang proposed 

keeping the central diagonals of A and replacing the outer diagonals by reflected 
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values from the central ones to complete the circulant. For the matrix A in (1) the 

circulant preconditioner S is 

ao at a2 at 

at ao at a2 

S= a2 at ao (2) 

at 
at a2 at ao 

For n even, element an-i is replaced with ai for j = 1, 2, ... , ¥" - 1. No arithmetic 

computation of new elements is required. 

The preconditioner S wa.s shown to be extremely effective for use with the con

jugate gradient method. Because the FFT can be used to form the matrix-vector 

products with A in O(n log n) operations a.s well as to solve the precOnditioning cir

culant systems in 0( n log n) operations, each conjugate gradient step is very efficient. 

A remarkable feature is that the eigenvalues of s-t A cluster exceptionally favorably. 

Suppose that the elements ao,at,·· .,an-1 are part of a sequence {ak}~0 , which 

defines a limiting symmetric positive definite Toeplitz matrix of infinite order. It 

was proved in (9] by R. Chan & G. Strang that for n - oo, if the underlying (real

valued) generating function /(8) = L:~oo aikieikll is positive and in·the Wiener class 

L:~oo iaki < oo, then the n X n matrices S and s-t are uniformly bounded and 

positive definite for all sufficiently large n, and the eigenvalues of s-1 A cluster at 

unity. An interesting relationship between this clustering and approximation on the 

unit circle is discussed in (16]. 

3. Solution Methods 

As part of a general study on iterative methods for solving symmetric indefinite 

systems of linear equations, we describe here our initial investigations for Toeplitz 

coefficient matrices. We are interested in methods that work on the original system of 

equations and avoid transforming to the associated positive-definite normal-equation 

system. 
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Numerical methods for solving symmetric Toeplitz systems of equations can be 

categorized as follows. 

A. General direct methods. General direct methods such as LU and Q R decomp<r 

sition require O(n3 ) operations and can be used for the positive-definite case or, 

with pivoting, for the indefinite case. They do not take specific advantage of the 

Toeplitz structure. 

B. Specialized direct methods. For the positive definite case specialized direct meth

ods have been devised that take advantage of the matrix structure to solve a 

system in fewer operations than required for general direct methods. The sta

bility of these methods has been studied by Bunch in [6]. Both the "classical" 

0( n2 ) specialized methods of Levinson [11] and Trench [17] and the more recent 

"fast" O(nlog2 n) specialized methods (e.g., [1], [4], [5]) are generally unstable if 

the matrix is not positive definite. 

C. Iterative methods. For the positive definite case the circulant preconditioned 

conjugate gradient method proposed by Strang requiring 0( n log n) operations 

per iteration can be very effective. For the indefinite case, which is the area of 

our study, iterative methods can be of comparatively greater interest because of 

instability of the specialized direct methods. Three iterative-method possibilities 

for consideration are (a) the conjugate residual method on the original system 

of equations; (b) circulant preconditioning with acceleration, such as adaptive 

Chebyshev [12] or a conjugate gradient type method [3]; and (c) stabilization of 

the specialized direct methods with iterative techniques. 

We are concerned here with the iterative method possibility (b) of circulant 

preconditioning for symmetric indefinite Toeplitz matrices and report on some pre

liminary numerical experiments. 

4. Test Matrix Preconditioners 

The circulant preconditioners we investigate for our test matrices are the Strang 
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preconditioner S in (2) and the circulant matrix that best approximates A in the 

Frobenius norm, which was suggested by T. Chan (10). 

The optimal Frobenius norm circulant preconditioner is obtained from A by 

replacing both ai and an+l-i by a weighted average. Let C denote the preconditioner. 

Then there holds 

ao iit a2 iit 
lit ao lit a2 

C= a2 iit ao (3) 

iit 
lit a2 lit ao 

where iii = n;i ai +-!;an-i, i = 1, 2, ... , I (for n even). The pairing of the off-diagonal 

elements of A has the same pattern for C as for S. For S the lower-index element 

simply replaces the larger, whereas for C a weighted average of the two replaces both. 

Recently, R. Chan has proved that the preconditioner C, and others having the 

same pairing/replacement pattern, enjoy the saine asymptotic clustering properties as 

does S for the same class of matrices-symmetric positive definite Toeplitz matrices 

with positive generating function in the Wiener class (7). He showed also that the S 

preconditioning is the best circulant approximation to A in the 1 and oo norms (8]. 

For non-square matrices, other circulant preconditionings based on Cybenko's QR 

factorization are considered by Olkin in (13). 

Although the asymptotic spectra are the same for the C and S precondition-

ings, for finite n there are differences that can have practical effects on the relative 

convergence rates for the preconditioned conjugate gradient method. The S precondi

tioning appears to cluster eigenvalues more sharply than does the C preconditioning, 

particularly when a~c decreases rapidly away from the main diagonal, although the 

C preconditioning appears to result in smaller condition number (10]. The sharper 

clustering for S results in enhanced convergence for the preconditioned conjugate 

gradient method for some problems. 
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5. Test Matrices · 

The test matrices considered here for the symmetric indefinite case are taken 

from the positive definite examples used by T. Chan and by Strang, which are thEm 

shifted by constant diagonal matrices to make some of the eigenvalues negative. The 

matrices before shifting are the following. 

(i) ak = 1/(k + 1), k = 0,1, ... ,n. Since the decay away from the diagonal is 

only arithmetic, the limiting underlying generating function does not belong to 

the Wiener class and hence would not satisfy the hypotheses for the asymptotic 

clustering and other results of [7], [9]. 

(ii) ak = ( t) k, k = 0, 1, ... , n. This is a matrix studied by Kac, Murdock, and Szego. 

Decay away from the diagonal is geometric, and the hypotheses of [7], [9] on the 

limiting underlying generating function are satisfied. In fact, the S preconditioner 

is unusually effective for this matrix, which is the inverse of a tridiagonal matrix 

(not Toeplitz). As pointed out in [15], the preconditioned matrix s-1 A has only 

five distinct eigenvalues (for n even). These are 1+\, ( 1t 12 , 1, (: )"' 2 , 
2 1+ t 1- 2 

1 ~! . The smallest and largest eigenvalues are simple and independent of n. The 

eigenvalue 1 is double, and the other two are repeated ( -f - 2) times each. Thus 

the clustering toward 1 is exponential. These striking properties, well suited for 

the conjugate gradient method, appear to have encouraged much of the work in 

[9], [14], and [15]. 

(1.1·1·) - cos k k 0 1 ak - k+T• = , , .. . ,n. This is a variation of case (1). The cos k factor 

introduces some negative elements in the matrix and alters the smooth arithmetic 

decay away from the diagonal. As for (1), its limiting underlying generating 

function does not belong to the Wiener class. 

(iv) ao = 2 + ~' a1 = -1, a2 = a3 = · · · = an_1 = 0. This tridiagonal matrix is a 

discretization of the one-dimensional Helmholtz operator -Uxx + u with Dirichlet 

boundary conditions on a uniform mesh on [0, 1]. The limiting matrix A satisfies 

the hypotheses of [7], [9] so that the results there apply. The preconditioner 
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Sin this case replaces an-l with -1 and leaves the other ai, i = O, ... ,n- 2 

unchanged. It corresponds to the Helmholtz operator with periodic, instead of 

Dirichlet, boundary conditions. Since S and A differ only by a rank-two matrix, 

s-1 A has an (n- 2)-fold eigenvalue of 1. The C preconditioner for this case 

replaces a1 and an_1 by their weighted average n~l a1, and there holds 

n-1 1 
C= --S+-1. 

n n 

In general, C and A differ by a matrix of full rank. 

Note that the discrete Laplace operator -Uxx, which would result simply in 2 on 

the diagonal instead of 2 + *' as in (iv), would not provide a suitable test matrix, 

as the S preconditioner, which would correspond to a Laplace operator with periodic 

boundary conditions, is singular [9]. The generating function of the matrix, in this 

case, does not satisfy the positivity condition. 

For the numerical experiments the above matrices are shifted by a constant di

agonal matrix -a:I, with values of a: such that A- a:I is indefinite, but nonsingular. 

As only the diagonal elements of A are changed by the shift, the preconditioners 

for A- a:I are S- a:J and C- a:I, where S and C are the preconditioners for A. 

Note that if an unshifted preconditioned matrix has an eigenvalue 1 corresponding to 

eigenvector ¢>, e.g., 

A¢>= S¢>, 

then 

(A - a: I)¢> = ( S - a: I)¢, 

so that the shifted preconditioned matrix also has eigenvalue 1 with eigenvector ¢. 

The shifting preserves eigenvalues unity of the preconditioned matrix. There holds, 

more generally, that shifting preserves eigenvalues of the difference between A and the 

preconditioner, e.g., if J.l and t/J are an eigenvalue-eigenvector pair such that (A-S)¢= 

f.LtP, then [(A - a:I) - (S- al)]t/J = J.ltP· This implies that shifting preserves any 

clustering of the spectrum of A - S, for example as in Theorem 2 of [8] (dependence 

of A and S on the order n is denoted explicitly here): Let f be a positive function 
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in the Wiener class, then for all f > 0, there exist M and N > 0 such that for all 

n > N, at most M eigenvalues of A(n)- S(n) have absolute values exceeding f. If 

also ( S - a: I) and ( S - a: I) -l are uniformly bounded for all n > N, then the shifting 

would preserve the result of [8], [9] that the eigenvalues of s-1 A cluster at unity. 

6. Computed Spectra 

The spectra for n = 16, as computed using a public-domain version of MATLAB, 

are given in Figs. 1-5. For Figs. 1-4 the value o: = v5(A)~va(A) is chosen, where 

v;(A) denotes the ith eigenvalue of A, 0 < v1 ~ v2 s · · · s Vn· For Fig. 5, o: = 
vt(A)~v5 (A) is chosen. For all the test problems, A has distinct eigenvalues, so that 

v4 ':/: vs ':/: vs and A - o:I is nonsingular. For these problems S - o:I and C - o:I 

are nonsingular also. Our interest is to observe whether the shifted preconditioners 

yield clustering of the eigenvalues, and to compare the clustering properties. For 

the standard adaptive Chebyshev method [12], the eigenvalues of the preconditioned 

matrix must lie in a half-plane. If they do not, then an adaptive Chebyshev method 

using two disjoint regions-one in each half-plane--to enclose the eigenvalues might 

be employed, but such techniques are not as highly developed. If the eigenvalues do 

not lie in a half-plane, then a conjugate-gradient-like acceleration might be employed, 

but these methods are not robust. They also are not robust if the symmetric part is 

indefinite, even if the eigenvalues are in a half plane; thus this property is of interest 

also. 

In each figure, the top three rows depict the eigenvalues of A and of the precondi

tioned matrices s-1 A and c-1 A, with plotting symbols of plusses, circles, and trian

gles, respectively. The fourth row depicts the spectrum of the shifted matrix A-' o:I. 

Plotted below are the imaginary vs. real part of the eigenvalues;\ of (S -o:I)-1(A-o:I) 

and (C- o:I)-1(A- o:I), using the same plotting symbols as for the unshifted pre-

conditioned matrices. 

In Figs. 1-3, the spectra of the unshifted matrices are consistent with those given 
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in [10] for the case n = 15. (We have chosen n to be even so that the property for 

case (ii) of only 5 distinct eigenvalues holds.) As observed in [10], for these cases 

the C preconditioning results in a spectrum that lies strictly within that for the S 

preconditioning. However, for examples such as (ii) (Fig. 2), the eigenvalue clustering 

is smeared out. For example (iv) (Fig. 4) the spectrum for the C preconditioning 

does not lie strictly within that for the S preconditioning, but the condition number 

for C is still smaller. For this case the C preconditioning smears out the clustering 

considerably. For the shifted matrices, behavior of the two preconditionings can differ 

more appreciably. 

In Fig. 1 (the arithmetic decay case), one sees that for the shifted matrices the 

S preconditioning spectrum lies within that for the C preconditioning, in contrast to 

the case for the unshifted matrices. The imaginary parts for the S preconditioning 

are much smaller than for the C preconditioning, and the real parts are all positive. 

The complex conjugate pair of eigenvalues for the C preconditioning to the left of the 

imaginary axis would pose difficulties for, say, adaptive Chebyshev acceleration that 

would not be present for the S preconditioning. 

In Fig. 2 (the geometric decay case), the strong clustering at 1 for the S precon

ditioning for the unshifted matrix can be seen. Even though the order of the matrix 

is only 16, the separation between the double eigenvalue at 1 and the seven-fold ones 

at ( 1 + ( t) 8 ) -
1 

and ( 1 - ( t) 8 ) -
1 

can be distinguished as only a slight thickening 

of the circle designating the eigenvalue at l. For the shifted matrices, both the C and 

S preconditionings yield eigenvalues entirely in the right half plane. The S precondi

tioning yields much stronger clustering. Some eigenvalues have departed only slightly 

from the real axis, whereas for the C preconditioning significant imaginary parts have 

appeared. Again, the C preconditioning would appear less favorable for acceleration 

than the S preconditioning. 

In Fig. 3 (the altered arithmetic decay case) the S preconditioning does not 

cluster the eigenvalues as well as the C preconditioning does for the unshifted matrices. 

For the shifted matrices the real parts of the C preconditioning eigenvalues are interior 
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to the interval of the real parts of the S preconditioning eigenvalues, but the imaginary 

parts are larger. An adaptive acceleration method that estimates an ellipse enclosing 

the eigenvalues might deal with the S preconditioning matrix more easily, although 

with other shifts for this problem we observed that neither preconditioning suggested 

itself as being substantially better than the other. 

In Fig. 4 (the Helmholtz equation case) the special spectral properties for the 

S preconditioning can be observed. For both the shifted and unshifted case this 

preconditioning differs from the original matrix by only the rank two matrix whose 

elements are equal to -1 in the ( 1, n) and ( n, 1) positions and zero elsewhere. Thus, 

the preconditioned matrix has an ( n - 2)-fold eigenvalue of unity. For this case the 

C preconditioned spectrum for the unshifted matrix does not lie interior to the S 

preconditioned spectrum, as for the other cases, but overlaps it. (But it does have 

smaller condition number.) For the shifted matrices, the C preconditioned matrix 

has a complex-conjugate pair. 

Fig. 5 illustrates the different behavior for the Helmholtz-equation test matrix if 

four rather than five eigenvalues of A are shifted to be negative. In the experiments 

for this matrix, we observed that there was some correlation between the behavior 

of the spectrum and whether an odd or an even number of eigenvalues of A had 

been shifted to be negative. Fig. 5 is representative of even shift cases (except for a 

shift of a= va(A)tvg(A), for which matrices become singular). The eigenvalues of the 

preconditioned shifted matrix are not an in the right-half plane, as for the odd-shift 

case of Fig. 4, and for the S preconditioning they are all real. The property that 

the interior eigenvalues of the circulant preconditioners are double (the two extremal 

ones are simple) may have some bearing on the odd vs. even shift behavior that was 

observed. 

For the. examples, circulant preconditioning appears to be of benefit for condition

ing the spectra of the shifted matrices. The S preconditioning seems to be of greater 

benefit than the C preconditioning in yielding compact spectra, particularly for the 

examples satisfying the conditions of [7], [9] that the limiting underlying generating 
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function be positive and in the Wiener class. For the conjugate gradient type accel

erations that rely on the symmetric part of the preconditioned matrix being positive 

definite, we note that this was generally not the case in the experiments-symmetric 

parts were indefinite. This suggests that an adaptive Chebyshev acceleration would 

be preferable, particularly when the spectrum of the preconditioned matrix lies in a 

half plane, which is satisfied often but not always in the experiments; the standard 

adaptive algorithm packages (21 could then be used. If the preconditioned spectrum 

does not lie in a half plane, then the preconditioning might be effective in conjunction 

with Chebyshev acceleration employing two disjoint spectra-enclosing regions or with 

the conjugate gradient method applied tp the normal equations of the preconditioned 

system. 

As a final note, we remark that the unshifted preconditioners, which are positive 

definite, were generally not nearly as effective in conditioning the spectra of the shifted 

matrices as were the shifted preconditioners. We believe that the numerical results are 

sufficiently encouraging to warrant further consideration of circulant preconditioning 

for the iterative solution of symmetric indefinite Toeplitz systems of linear equations. 
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