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PRECONDITIONED ITERATIVE METHODS FOR WEIGHTED

TOEPLITZ LEAST SQUARES PROBLEMS∗

MICHELE BENZI† AND MICHAEL K. NG‡

Abstract. We consider the iterative solution of weighted Toeplitz least squares problems. Our
approach is based on an augmented system formulation. We focus our attention on two types of
preconditioners: a variant of constraint preconditioning, and the Hermitian/skew-Hermitian split-
ting (HSS) preconditioner. Bounds on the eigenvalues of the preconditioned matrices are given in
terms of problem and algorithmic parameters, and numerical experiments are used to illustrate the
performance of the preconditioners.
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1. Introduction. Linear systems with Toeplitz and Toeplitz-related coefficient
matrices arise in many different applications; see [28]. While many efficient algorithms
have been developed for solving problems with Toeplitz structure, a few emerging
applications lead to Toeplitz-related problems for which the available algorithms are
not directly applicable.

In this paper, we consider preconditioners for weighted Toeplitz least squares
problems

min
x

‖Ax− b‖2
2,(1.1)

where the rectangular coefficient matrix A and the right-hand side b are of the form

A =

[
DK
µI

]
and b =

[
Df
0

]
.(1.2)

Here K is a Toeplitz matrix, D a nonconstant diagonal matrix with real positive
entries, f a given right-hand side, µ > 0 a regularization parameter [38], and I the
identity matrix. Applications leading to such least squares problems include image
reconstruction [17] and nonlinear image restoration [2]. For these applications the
size of the problems can be very large, easily over a million unknowns. Moreover, in
some applications, the problems have to be solved in real time. Because of the local
nature and spatially variant property of weighted Toeplitz matrices, the displacement
rank [22] of A can be very large. Efficient and effective preconditioners need to be
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investigated to develop fast iterative methods for solving such weighted Toeplitz least
squares problems.

Around 1947, Levinson [25], in studying Wiener filters, developed the first fast
direct method for solving symmetric positive definite Toeplitz systems Kx = b. The
method begins with the solution of a 1-by-1 system and then increases the order,
using the lower-order solutions to obtain higher-order solutions recursively. In effect,
it obtains the inverse Cholesky factorization of K. The fast Cholesky factorization, or
Schur’s method, was invented by Kailath, Kung, and Morf [21] in 1979 by exploiting
the displacement structure of K and its Schur complements. Both methods have
a complexity of O(n2). Superfast direct methods of complexity O(n log2 n) were
developed in the 1980s; see, for instance, Ammar and Gragg [1]. All these methods
make use of the Toeplitz structure (small displacement rank) to derive efficient solvers;
see [24, 31]. They are not effective or efficient for Toeplitz-related systems with large
displacement rank.1

An alternative is to make use of iterative methods instead of direct ones. One can
use the conjugate gradient method to find the solution to the least squares problem
without explicitly forming the normal equations; see [9]. The convergence of the
conjugate gradient algorithm and its variants depends on the singular values of the
matrix A. If the singular values cluster around a point (away from zero), convergence
will be rapid. Thus, to make the algorithm a useful iterative method, one usually
preconditions the system. More precisely, one can use the conjugate gradient method
to solve

min
y

‖b−AP−1y‖2
2,

and then set x = P−1y.
Circulant matrices C are often employed to precondition Toeplitz matrices. Since

circulant matrices can always be diagonalized by the discrete Fourier matrix [14], the
product of C with any n-vector v can be computed easily by fast Fourier transforms
(FFTs) in O(n log n) operations. The matrix-vector multiplication Kv can also be
computed by using FFTs in O(n log n) operations by first embedding K into a 2n-
by-2n circulant matrix. It follows that the number of operations per iteration is
O(n log n). The convergence rates of the method for Toeplitz systems have been
analyzed by several authors; see [28]. The main result is that if the diagonals of the
Toeplitz matrix K are the Fourier coefficients of a positive function, then the spectrum
of the preconditioned system C−1K will be clustered around 1 and the method will
converge superlinearly. Hence the complexity of solving a large class of Toeplitz
systems is O(n log n) operations. Similar convergence results for Toeplitz least squares
problems with small displacement rank can be found in [10, 11, 12, 13]. For example,
when D is the identity matrix, (I + CTC)1/2 will be a good preconditioner.

However, such a preconditioner is not well suited for least squares problems with
large displacement rank in (1.1). Since C is a good preconditioner for K, one might
expect the matrix (I +CTD ·DC)1/2 to be a good preconditioner for (1.1). However,
such a preconditioner is not easy to obtain, and it is too expensive. One possible
choice is to approximate D by a circulant matrix CD; see [20]. It is clear that the

1For any square matrix A, consider the matrix operator

△(A) = AZ − ZA, Z = (zij), zi+1,i = 1, zi,j = 0, otherwise.

The displacement rank of A associated with △ is defined as the rank of △(A).
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eigendecomposition of (I + CTCT
DCDC)1/2 can be obtained easily by using FFTs.

Unfortunately, if the entries in D exhibit large variations, the performance of this
kind of preconditioner is disappointing; i.e., the number of iterations can be very
large; see the numerical results in [26].

In this paper, we propose a different approach to solving (1.1), based on an
augmented system formulation. If K is m-by-n (with m ≥ n), it is straightforward to
see that problem (1.1) with K given by (1.2) is equivalent to the (m+ n)-by-(m+ n)
augmented system

[
D−2 K
KT −µI

] [
y
x

]
=

[
f
0

]
,(1.3)

where the auxiliary variable y = D(f − K x) represents a weighted residual. Fur-
thermore, both problem (1.1)–(1.2) and problem (1.3) are equivalent to the normal
equations

(KTD2K + µI)x = KTD2f ,(1.4)

an n-by-n linear system. As is well known, problem (1.4) is a symmetric positive
definite system which may be rather ill-conditioned, even in the presence of reg-
ularization. On the other hand, system (1.3) is symmetric indefinite. In recent
years, much effort has been put into developing effective preconditioners for linear
systems of this type; see [8] for a survey. We identify two preconditioning techniques
that appear to be potentially well suited for augmented systems corresponding to
weighted Toeplitz least-squares problems: a variant of constraint preconditioning,
and the Hermitian/skew-Hermitian splitting (HSS) preconditioner.

The remainder of the paper is organized as follows. In section 2 we recall the idea
of constraint preconditioning and discuss how it applies to the regularized weighted
least squares problems. In section 3 we recall the Hermitian and skew-Hermitian
preconditioner and its application to saddle point (augmented) systems. In section 4
we discuss some theoretical properties of the HSS preconditioner, including eigenvalue
bounds for the preconditioned matrices. In section 5 we discuss nonlinear image
restoration problems, an important class of applications leading to weighted Toeplitz
least squares problems. Numerical experiments are presented in section 6, and in
section 7 we briefly sum up with conclusions.

2. Constraint preconditioning. Constraint preconditioning has been exten-
sively used in the solution of saddle point systems arising from mixed finite element
formulations of elliptic partial differential equations [3, 16, 32, 33]. The method
has also been used for the solution of saddle point (KKT) systems in optimization
[15, 18, 23, 27].

We begin by describing constraint preconditioning in the case where K has
full column rank (= n) and µ = 0 (no regularization). Letting W = D−2 =
diag (w1, w2, . . . , wm), the augmented system is

[
W K
KT O

] [
y
x

]
=

[
f
0

]
.

In this paper the constraint preconditioner is the matrix

Pc =

[
γI K
KT O

]
,(2.1)



PRECONDITIONING WEIGHTED TOEPLITZ LEAST SQUARES 1109

where γ is the arithmetic average of the diagonal entries of W :

γ =
w1 + w2 + · · · + wm

m
.

The application of the preconditioner requires solving a linear system with coefficient
matrix PC in each iteration. Since Pc has a block Toeplitz structure, it is clear that
fast solvers can be used to efficiently apply the preconditioner. Note that γI is the
nearest Toeplitz (indeed, circulant) approximation to W . Some authors reserve the
name “constraint preconditioning” to a preconditioner of the form (2.1) with γ = 1.
We found that such a preconditioner is inferior to the one where γ is given by the
arithmetic average of the diagonal entries of W .

Letting Ŵ = γ−1W , the preconditioned matrix is

M =

[
γI K
KT O

]−1 [
W K
KT O

]
=

[
(I − Π) Ŵ + Π O

X I

]
,

where Π is the orthogonal projector onto the range of K and X = (KTK)−1KT (W −
γI). Hence, λ = 1 is an eigenvalue of M of multiplicity at least 2n. It can be shown

that the remaining eigenvalues are eigenvalues of the symmetric matrix (I−Π)Ŵ (I−
Π). Note that in the special case m = n, we have Π = I, and all the eigenvalues of
the preconditioned matrix are equal to 1; furthermore,

M− I =

[
O O
X O

]
⇒ (M− I)2 = O .

Therefore the minimum polynomial of the preconditioned matrix has degree 2, and
GMRES [34] applied to the preconditioned system delivers the solution in at most
two steps, independently of W . Of course, if m = n and K is nonsingular, then
the solution is simply given by x = K−1f and y = 0, and the augmented system
formulation is neither necessary nor recommended.

In the more general case where m �= n, it can be shown that GMRES with
constraint preconditioning terminates after at most m − n + 2 steps if K is m-by-n;
see [23]. Therefore, constraint preconditioning is an excellent strategy when K has
full rank, µ = 0, and m− n is small, no matter what W is.

Things, however, can be quite different when K is rank deficient or highly ill-
conditioned and regularization must be included (µ �= 0). In this case the constraint
preconditioner needs to be regularized as well, and the preconditioned matrix becomes

Mµ =

[
γI K
KT −µI

]−1 [
W K
KT −µI

]
.

This modified constraint preconditioner has been studied by various authors, most
recently in [3]. It can be shown that when µ > 0, the preconditioned matrix Mµ has
the eigenvalue 1 with multiplicity n, and that all the remaining eigenvalues are real.

If K and W are well conditioned or moderately ill conditioned, the spectrum is
clustered around 1 and convergence is fast. If, however, K is very ill conditioned (as
it will be if regularization is needed), many of the eigenvalues of Mµ will be close to
zero and the preconditioner quality will deteriorate; see the numerical experiments in
section 6.
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3. Hermitian and skew-Hermitian preconditioning. The augmented sys-
tem (1.3) can be rewritten in the equivalent nonsymmetric form

[
W K

−KT µI

] [
y
x

]
=

[
f
0

]
or Mu = c .(3.1)

Let now

M =

[
W K

−KT µI

]
=

[
W O
O µI

]
+

[
O K

−KT O

]
= H + S(3.2)

be the splitting of M into its symmetric and skew-symmetric parts. Note that H, the
symmetric part of M , is a positive diagonal matrix and hence positive definite. This
means that M itself is positive definite, in the sense that

zTMz = zTHz > 0 for all z ∈ R
m+n , z �= 0 ,

and therefore all the eigenvalues of M have positive real part.
Consider the preconditioning matrix

P :=
1

2α
(H + αI)(S + αI),(3.3)

where I denotes the (m + n)-by-(m + n) identity and α > 0. Note that H + αI is
diagonal and positive definite, and S + αI is nonsingular. Thus, this preconditioner
is well defined even when some of the entries on the diagonal of W are zero. We note
that this case does indeed arise in many situations of practical interest [9, 20]. The
scalar 1/(2α) in (3.3) has no impact on the preconditioned system P−1Mu = P−1c (or
MP−1w = c, u = P−1w for right preconditioning), but we retain it as a normalization
factor (see below). The stationary iterative process

u(k+1) = u(k) + P−1(c−Mu(k)), k = 0, 1, . . . ,(3.4)

where u(0) is an arbitrary initial guess, has been introduced in [4]. It is known as
the HSS iteration.2 It was shown in [4] that if H is positive definite, the iteration
(3.4) converges to the unique solution of Mu = c for any initial guess and any α > 0.
This result was extended in [7] to generalized saddle point problems, in which the
symmetric part of M may be singular. When H is positive definite, it is possible to
give an explicit formula for the value of α that minimizes an upper bound for the
spectral radius of the iteration matrix I −P−1M in terms of the extreme eigenvalues
of H; see [4].

Note that each iteration (3.4) requires solving two linear systems:

(H + αI)u(k+ 1
2 ) = r(k), (S + αI)u(k+1) = 2αu(k+ 1

2 ) ,(3.5)

where r(k) = c−Mu(k) is the residual at the kth step. In [4, 7] one can find a discussion
of the effect of inexact solves in (3.5). Inexact solves may result in considerable savings
in terms of overall solution time. In this paper, however, we do not consider the effect
of inexact solves.

2In [4] the coefficient matrix M was allowed to have complex entries, and the corresponding
splitting was M = H + S, where H was the Hermitian part of M and S the skew-Hermitian part.
In this paper we consider only matrices with real entries, but we retain the name HSS.
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The convergence of (3.4), even with the “optimal” value of α (which may be
difficult to estimate in practice) can be quite slow. In [7], it was proposed to use HSS as
a preconditioner for Krylov subspace methods (such as GMRES or Bi-CGSTAB [40]);
see also [6]. The preconditioner was applied to a variety of saddle point systems arising
from the discretization of PDEs, with good results. In this paper, we are interested
in using HSS exclusively as a preconditioner. It was observed in [7] that while it is in
many cases possible to find efficient solvers for the first of the systems (3.5), solving
the second system is usually less straightforward. For the problems studied in this
paper, the matrix H +αI is diagonal; therefore the first system in (3.5) can be solved
at a cost of just O(n) operations. The second system is of the form

[
αI K

−KT αI

] [
v
w

]
=

[
g
h

]
.(3.6)

System (3.6) is equivalent to the reduced system

(KTK + α2I )w = αh + KT g .(3.7)

Once (3.7) has been solved for w, v can be obtained from αv = g − Kw. If K is
a Toeplitz matrix, computing v from w can be done in O(n log n) operations using
FFTs. Hence, the problem is reduced to solving linear systems of the type (3.7).
But this is precisely the normal equation formulation of a standard regularized least
squares problem for a Toeplitz (or Toeplitz-related) matrix K, and as we mentioned
in the Introduction, there are efficient methods for solving (3.7). In particular, for
certain types of problems that are important in image processing applications there
are O(n log n) methods for solving (3.7). In this case, the cost of applying the HSS
preconditioner is O(n log n) per iteration. See also the discussion at the end of sec-
tion 6.

We further note that the scalar shift α2 plays the role of a regularization parameter
in the reduced system (3.7). This suggests that perhaps a sensible choice for α could
be α ≈ √

µ, where µ is the regularization parameter for the weighted least squares
problem. We will see in the section on numerical experiments that this is a good
choice in some cases, but not always.

4. Spectral properties of the HSS preconditioner. The purpose of this
section is to derive some bounds on the eigenvalues of the preconditioned matrix
P−1M (or MP−1, which has the same spectrum), where M is the nonsymmetric
augmented matrix (3.1) and P is the HSS preconditioner (3.3). Although one should
be careful not to infer too much from the eigenvalue distribution alone when the
preconditioned matrix is nonnormal (as is the case here), our experience is that for
the problems considered in this paper the distribution of the eigenvalues is strongly
correlated with the rate of convergence of GMRES. In particular, convergence will
be fast if most of the eigenvalues are enclosed in a small rectangular region of the
complex plane well separated from the origin.

Let T = I − P−1M be the iteration matrix in the stationary iteration (3.4)
associated with the HSS splitting. Then it can be shown [4, 7] that ρ(T ) < 1 (where
ρ(T ) denotes the spectral radius of T ) for all α > 0, and therefore the iteration
(3.4) is unconditionally convergent. This implies that the eigenvalues of P−1M are
contained in the disk of radius 1 centered at (1, 0). In particular, the preconditioned
matrix P−1M is positive stable: all its eigenvalues have positive real part, a desirable
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property for Krylov subspace methods. In addition, if H is positive definite with
extreme eigenvalues λ1 = λmax(H), λm+n = λmin(H), then using α =

√
λ1λm+n

minimizes an upper bound on ρ(T ); see [4]. When H is a diagonal matrix, as in (3.1),
the “optimal” α is of course explicitly available. However, this is usually not the best
choice when P is used as a preconditioner for a Krylov subspace method [6].

More refined bounds on the eigenvalues of P−1M can be found in [36] under the
assumption that W is a symmetric positive definite matrix (not necessarily diagonal)
and µ = 0. In our setting, this would correspond to a weighted least squares problem
without Tikhonov regularization. The results in [36] show that for small α the spec-
trum of P−1M is real and is entirely contained in two small intervals, one to the right
of 0 and the other to the left of 2. The first interval contains n eigenvalues, which
tend to 0 as α → 0, and the second interval contains the remaining m eigenvalues,
which tend to 2 as α → 0. Here m ≥ n. In practice this means that α should be
taken small but not too small. In the case µ �= 0, however, things appear to be more
complicated, and a thorough analysis has so far eluded our efforts.

It is straightforward to see that the iteration matrix T = I − P−1M is similar to

T̂ = (αI −H)(αI + H)−1(αI − S)(αI + S)−1,

and therefore T and T̂ have the same eigenvalues. Note that (αI −H)(αI + H)−1 is
symmetric and (αI −S)(αI +S)−1, being the Cayley transform of a skew-symmetric
matrix, is orthogonal [19, p. 440]. When W = diag (w1, w2, . . . , wm) we find

(αI −H)(αI + H)−1 =

[
E O
O ωI

]
, E = (αI −W )(αI + W )−1 , ω =

α− µ

α + µ
,

and therefore, letting Σ = αI + 1
αK

TK,

T̂ =

[
E O
O ωI

] [
αI −K
KT αI

] [
1
αI − 1

α2KΣ−1KT − 1
αKΣ−1

1
αΣ−1KT Σ−1

]
.

We already know that the eigenvalues of T̂ are bounded above by 2. Lower bounds, on
the other hand, are more difficult to come by. However, the particular choice α = µ
(which implies ω = 0) leads to a significant simplification:

T̂ =

[
E − 2

µEKΣ−1KT −2EKΣ−1

O O

]
.

In this case, the spectrum of T̂ consists of the spectrum of the m-by-m matrix
E − 2

µEKΣ−1KT , plus the eigenvalue 0 with multiplicity n. It follows that the

preconditioned matrix P−1M , which is similar to I − T̂ , has m eigenvalues equal
to 1, while the remaining n eigenvalues are of the form 1− νi where ν1, . . . νm are the
eigenvalues of the matrix

E − 2

µ
EKΣ−1KT = E

(
I − 2

µ
KΣ−1KT

)
= EF ,

where we have let F = I − 2
µKΣ−1KT . Note that both E and F are symmetric. The

diagonal matrix E is negative definite, provided that 0 < µ < wmin ≡ mini{wi}, and
it has spectral norm ||E||2 < 1. The eigenvalues of F can be easily expressed in terms
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of the singular values σi of K as follows:

λi(F ) = 1 − 2

(
σ2
i

µ2 + σ2
i

)
=

µ2 − σ2
i

µ2 + σ2
i

,

and therefore

||F ||2 = max
i

|µ2 − σ2
i |

|µ2 + σ2
i |

≤ 1 .

If K has full column rank and 0 < µ ≤ σmin(K), then F is negative semidefinite.
Therefore if µ < min{mini{wi}, σmin(K)}, then the eigenvalues of EF are all real
and between 0 and 1, and so are those of P−1M . Note, however, that the condition
0 < µ ≤ σmin(K) is unrealistic in the case of discrete ill-posed problems, where
typically σmax(K) ≈ 1 and σmin(K) ≈ 0. Therefore, F is typically indefinite. In this
case, provided that E is negative definite, the spectrum of the matrix EF is real and
contained in the interval (−1, 1). Clearly, the eigenvalues of P−1M are bounded from
below by 1 − ||E||2. To get a lower bound for this expression, recall that

||E||2 = max
1≤i≤m

|µ− wi|
|µ + wi|

= max
1≤i≤m

1 − µxi

1 + µxi
,

where we have set xi = 1/wi. The function

φ(x) =
1 − µx

1 + µx

is monotonically decreasing; hence it is maximized when x = x∗ = 1/wmax, where
wmax denotes the largest entry in W . Moreover, φ(x∗) = 2µ

µ+wmax
. Hence, we have

established the following lower bound:

λ(P−1M) ≥ 2µ

µ + wmax
.

On the other hand, if wmin < µ ≤ wmax, then both E and F are indefinite and
P−1M will have eigenvalues with nonzero imaginary part, in general. In this case,
the imaginary part of the eigenvalues is between −1 and 1, and the real part is between

2µ
µ+wmax

and 2. Hence, we have established the following result.

Theorem 4.1. Let wmin, wmax denote the smallest and largest entries, respec-

tively, of the diagonal matrix W , with wmin > 0. Let M be as in (3.2), and let P
denote the corresponding HSS preconditioner with α = µ. Also, let a := 2µ/(µ+wmax).
Then P−1M has m eigenvalues equal to 1, and the remaining n−m eigenvalues are

contained in the region

R = {x + iy ∈ C ; a ≤ x < 2, −1 < y < 1} ∩D(1, 1),

where D(1, 1) = {z ∈ C ; |z − 1| < 1}. If, moreover, the regularization parameter

µ satisfies µ < wmin, then the eigenvalues of P−1M are all real and contained in

{1} ∪ [a, 2).
Note that the inclusion region, R, is independent of K. The theorem implies that

no matter how ill-conditioned K is, the eigenvalues of P−1M remain bounded away
from zero, and they will all be real as long as µ is sufficiently small. Furthermore,
for a fixed value of wmax the real part of the eigenvalues of P−1M not equal to 1
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increases as µ grows, and all the eigenvalues not equal to 1 tend to the real value
λ = 2 as µ → ∞. Note, however, that the preconditioned matrix P−1M is generally
nonnormal. Hence, the condition number of the eigenvector matrix may also play a
role in the convergence of a Krylov subspace solver like GMRES; see [35, pp. 206–207].
Since the eigenvectors generally depend on K, so does the rate of convergence. Bounds
on the location of the eigenvalues like the one given in the foregoing theorem may be
useless if the eigenvector matrix of P−1M is highly ill-conditioned. Unfortunately,
bounds on the condition number of the eigenvector matrix are even harder to come
by than eigenvalue bounds. We have numerically estimated the condition number of
the eigenvector matrix in a few cases of interest; see the results in section 6.

In practice, µ is typically small and the largest entry in W can be rather large;
hence the lower bound a := 2µ/(µ + wmax) can be tiny. Numerical experiments
indicate that this lower bound can be orders of magnitude smaller than the actual
minimum of the real part of the eigenvalues of P−1M . Furthermore, as we will see,
taking α = µ does not lead to very good performance: better results are obtained
with a different value of α. Unfortunately, it is difficult to give meaningful bounds on
the eigenvalues of P−1M when α �= µ.

5. Nonlinear image restoration. In this section we discuss nonlinear image
restoration problems, an important class of applications leading to weighted Toeplitz
least squares problems.

In the literature on image restoration, a blurred image is often modeled as the
linear convolution of an original image with the point spread function of the blur.
However, in practice, image formation systems or image sensors usually incorporate a
built-in nonlinearity. For instance, the nonlinearity is introduced in the transformation
of light intensity to the output units of the imaging system such as current intensity in
photo-electric systems and photographic films. The modeling of sensor nonlinearities
was first studied by Andrews and Hunt [2]. In matrix-vector notation, the general
space-invariant imaging system with additive noise can be represented by the following
nonlinear equation:

f = s(Kx) + η,(5.1)

where f , x, and η represent the observed, the original image, and the noise vectors,
respectively. Here s(·) denotes a point nonlinearity, and the matrix K is a blurring
matrix. Because of the blurring process, the boundary values of f are not completely
determined by the original image x inside the scene. They are also affected by the
values of x outside the scene. We remark that K is block Toeplitz with Toeplitz blocks
(BTTB) when zero boundary conditions are applied, and block Toeplitz-plus-Hankel
with Toeplitz-plus-Hankel blocks (BTHTHB) when reflective boundary conditions
are used [29]. Both theoretical and experimental results in [29, 30] show that the
restoration results using reflective boundary conditions are better than those using
zero boundary conditions.

Different nonlinear image restoration algorithms have been proposed and ana-
lyzed. For instance, Andrews and Hunt [2] proposed using Taylor series expansion
about the mean value of the observed image to approximate (5.1) by a linear equation.
An approximate filter for linear image restoration can then be derived. Trussell and
Hunt [39] applied the maximum a posteriori probability (MAP) estimation scheme
in nonlinear image restoration algorithms. This approach results in an iterative so-
lution algorithm the computational complexity of which is very large. Tekalp and
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Pavlović [37] also proposed to transform the noisy and blurred image into “the ex-
posure domain” using the inverse of the nonlinear sensor characteristics. A linear
minimum mean square error deconvolution filter was derived by using the linear con-
volutional model in the presence of multiplicative noise in the exposure domain. In
this paper, we consider solving nonlinear least squares problems with regularization,

min
x

‖f − s(Kx)‖2
2 + µ‖x‖2

2,(5.2)

to restore the original image. In [41], Zervakis and Venetsanopoulos have considered
using the Gauss–Newton method to solve the nonlinear least squares problem (5.2).
Given an initial guess x(0), for j = 0, 1, . . . , we solve the linear least squares problem

x(j+1) = arg min
x

{
‖f − s(Kx(j)) −D(j)

s K(x− x(j))‖2
2 + µ‖x‖2

2

}
(5.3)

until ‖x(j+1) − x(µ)‖2 is small enough, where x(µ) is the solution of (5.2) with regu-

larization parameter µ. Here D
(j)
s is a diagonal matrix with diagonal entries

[D(j)
s ]ii =

∂s

∂ξ

∣∣∣ξ=∑
l
Kilx

(j)
l

.

We remark that under the practical assumption on the nonlinear function s(·), the

diagonal entries of D
(j)
s are always positive values; see Andrew and Hunt [2]. The

least squares problem (5.3) is equivalent to

[µI + KT (D(j)
s )2K](x(j+1) − x(j)) = KTD(j)

s [f − s(Kx(j))] − µx ,

i.e.,

[µI + KT (D(j)
s )2K]x(j+1) = KTD(j)

s [f − s(Kx(j)) + D(j)
s Kx(j)].(5.4)

In the Gauss–Newton method, it is important to choose a good initial guess. We
propose the following algorithm to compute x(0):

(1) Solve f = s(f̂) for f̂ (in many practical applications, s−1 can be easily ob-
tained).

(2) Choose a suitable parameter µ0 and solve

(µ0I + KTK)x(0) = KT f̂ .(5.5)

Numerical results in the next section show that the use of image x(0) as initial
guess is quite effective for the nonlinear least squares problem in (5.2). We also
see that in computing the initial guess and in each Gauss–Newton iteration, we are
required to solve BTTB-related systems with diagonal matrix D = I (cf. (5.5)) and

D = (D
(j)
s )2 (cf. (5.4)), respectively.

6. Numerical examples. We first test the two preconditioners on a sequence
of weighted Toeplitz least squares problems of the form (3.1), where K = (kij) is an

n-by-n full Toeplitz matrix defined by kij = 1/(
√
|i− j|+ 1), D is an n-by-n positive

diagonal random matrix with κ2(D) ≈ 103 (so that κ2(W ) ≈ 106), and µ = 10−3.
Note that because D is randomly generated, this set of test problems should not
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Table 6.1

Comparison of preconditioners, 1D problem with well-conditioned K, µ = 0.001.

n CG GMRES HSS(α = µ) HSS(α = 0.05) HSS(α =
√
µ) CP

64 159 48 13 7 6 3
128 424 66 13 7 7 3
256 > 1000 90 18 7 7 3
512 > 1000 132 57 16 17 3
1024 > 1000 168 72 14 16 3

be thought of as a sequence of increasingly finer discretizations of one and the same
underlying continuous problem. Nevertheless, all the generated problems share similar
characteristics. Because of the element of randomness in D, we repeated this set of
test runs several times. The iteration counts were found to be fairly stable. Here we
report average iteration numbers over five test runs. The initial guess was always the
zero vector, and the stopping criterion was a reduction of the initial residual norm by
seven orders of magnitude.

Iteration counts for various methods are shown in Table 6.1. Here we have de-
noted by “CG” the conjugate gradient method on the normal equations (1.4) without
preconditioning, by “GMRES” the GMRES method applied to the augmented sys-
tem (3.1) without preconditioning, and by “HSS(α)” the GMRES method with HSS
preconditioning with parameter α applied to the augmented system. Finally, under
“CP” we report results for the (modified) constraint preconditioner applied to the
augmented system (1.3). As the results show, the number of CG iterations (without
preconditioning) grows very fast as the size of the least squares problem goes from
n = 64 to n = 1024. The number of GMRES iterations grows much more slowly, but
it is still prohibitive (note that this is full GMRES; no restart was used). When HSS
preconditioning is used, the convergence is generally faster. Using α = µ, however,
is not satisfactory, since the number of iterations still grows fairly quickly with n,
and of course each iteration is now more expensive due to the additional O(n log n)
operations per iteration required by the preconditioner solve. Much better results
are obtained with α = 0.05. In the last column we show the iteration counts for
α =

√
µ ≈ 0.0316, a value not too different from 0.05. The results are very similar

to the case with α = 0.05, showing that the performance of the preconditioner is not
overly sensitive to the value of α. A nice property of the HSS preconditioner is that
for the problems considered in this paper, the same value of α works well for all values
of n. Note also that the number of iterations appears to be leveling off as n grows.
Nevertheless, the results in the last column show that the modified constraint pre-
conditioner works best, with convergence taking place in three iterations regardless
of problem size.

In Figure 6.1 we show plots of the eigenvalues of the following matrices: the
normal equation matrix KTD2K +µI, the augmented matrix M in (3.1), the matrix
M preconditioned by the HSS preconditioner with α = µ, and M preconditioned by
the HSS preconditioner with α =

√
µ. The eigenvalue plot for the case α = 0.05 is

qualitatively similar to that for α =
√
µ. Here n = m = 128.

Note the logarithmic scale on the y-axis in Figure 6.1(a), and the 10−4 factor
multiplying the x-axis in Figure 6.1(b). Also note that the tiny nonzero imaginary
part of the eigenvalues in Figure 6.1(c) is due to round-off: the eigenvalues are actu-
ally all real, and in fact in this example the conditions for a real spectrum given in
Theorem 4.1 are satisfied. In this problem the matrix K is fairly well conditioned, and
most of the ill-conditioning is due to the weighting matrix D. We have also observed
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Fig. 6.1. Eigenvalue plots, 1D problem with well-conditioned K.

that the preconditioned matrix appears to be diagonalizable with a well-conditioned
matrix of eigenvectors, a typical value of the condition number being around 60.

In Figure 6.2(a) we show the spectrum of the augmented matrix preconditioned
with the modified constraint preconditioner: note the tight clustering of the eigenval-
ues near 1.

The second set of experiments is similar to the first one, but now K has entries

kij =
1√
2πσ

exp

[−|i− j|2
(2σ2)

]
.

Choosing σ = 2 results in a highly ill-conditioned Toeplitz matrix with rapidly de-
caying singular values. The results are reported in Table 6.2. The value α = 6 · 10−5

was found to be the optimal value of α for n = 64, and we used the same value of
α for all values of n. Under “HSS(α = αbest)” we report the best result we could
obtain by fine-tuning α. In all cases the value of αbest was quite close to 6 · 10−5, and
the corresponding iteration counts not very far apart. This shows, again, that a good
value of α can be found on a small problem and used for larger problems of the same
type.
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Fig. 6.2. Eigenvalue plots, modified constraint preconditioner.

Table 6.2

Comparison of preconditioners, 1D problem with ill-conditioned K, µ = 0.001.

n CG GMRES HSS(α = µ) HSS(α = 6 · 10−5) HSS(α = αbest) CP
64 761 117 55 43 43 37
128 > 1000 224 106 74 74 67
256 > 1000 410 159 95 84 125
512 > 1000 770 236 127 117 271
1024 > 1000 > 1000 250 129 117 553

We further observe that this problem is much harder than the previous one, and
that using HSS with a good value of α results in much faster convergence than using
the modified constraint preconditioner. Also note that, again, the number of itera-
tions with the HSS preconditioners appears to level off as n increases. Eigenvalue
plots for this problem are given in Figure 6.2(b) for the modified constraint precon-
ditioner and in Figure 6.3 for the remaining cases. Note the presence of tight clusters
of tiny eigenvalues in all cases, except for HSS preconditioning with the optimal α
(Figure 6.3(d)), for which there is a visible (albeit small) gap separating the smallest
eigenvalues from zero. The condition number of the eigenvectors of the preconditioned
matrix is now O(104) or less. While larger than in the previous example, this value
can still be considered moderate.

Next, we consider the solution of nonlinear image restoration problems. We test
two 128 × 128 images: Bridge (Figure 6.4(a)) and Cameraman (Figure 6.4(b)). The
pointwise nonlinearity employed is of the logarithmic form,

s(x) = 30 log(x)

(tested in [41]), and the discrete point spread function is given by

k(x, y) = exp

[−(x2 + y2)

2

]
.

We construct the observed image by forming the vector f = s(Kx) + η, where x is
a vector formed by row ordering the original image. Here the reflective boundary
condition is employed, and therefore the matrix K is BTHTHB. In our tests, the
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Fig. 6.3. Eigenvalue plots, 1D problem with ill-conditioned K.

noise η is set to Gaussian white noise with noise-to-signal ratios of 40dB and 30dB.
Observed images for noise-to-signal ratio of 40dB are shown in Figures 6.4(c) and (d).

In the preconditioned method for solving the system (5.5), we use the zero vector
as the initial guess, and the stopping criterion is ‖r(i)‖2/‖KT ĝ‖2 < 10−7, where r(i)

is the residual after i iterations.
In the preconditioned GMRES(30) methods for solving the augmented system

corresponding to (5.4), we use the solution of (5.5) as the initial guess, and the
stopping criterion is

‖r(i)‖2

‖KTD
(j)
s [f − s(Kx(j)) + D

(j)
s Kx(j)]‖2

< 10−7,

where r(i) is the residual after the ith iteration.
In Figures 6.5(a) and (b), we present our initial guesses for the restored images,

i.e., the solutions of (5.5). The optimal regularization parameter µ0 is chosen such
that it minimizes the relative error of x(0)(µ0); i.e., it minimizes

R0 =
‖x− x(0)(µ0)‖2

‖x‖2
.
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Original Images
(a) (b)

Observed Images
(c) (d)

Fig. 6.4. Original and observed images of Bridge (left) and Cameraman (right).

Table 6.3

Relative errors in the restored images (the number in the bracket refers to the corresponding
optimal regularization parameters).

Bridge Cameraman
SNR R0 R1 R0 R1

40dB 0.0532 (2.0 × 10−3) 0.0512 (7.5 × 10−3) 0.0548 (5.0 × 10−3) 0.0504 (3.0 × 10−4)
30dB 0.0622 (1.0 × 10−2) 0.0612 (4.0 × 10−3) 0.0824 (2.0 × 10−2) 0.0801 (1.2 × 10−3)

The restored images are shown in Figures 6.5(c) and (d). Again, the optimal regular-
ization parameter µ is chosen such that

R1 =
‖x− x(µ)‖2

‖x‖2

is minimized, where x(µ) is the solution of (5.4). It can be seen from the figures
that the quality of restored images is visually better than that of initial guess images.
The errors R0 and R1 are reported in Table 6.3, and their corresponding optimal
regularization parameters are also given. We also found that the relative errors of
the restored images computed by several iterations of the Gauss–Newton method do
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Initial Guess Images
(a) (b)

Restored Images
(c) (d)

Fig. 6.5. Initial guess and restored images of Bridge (left) and Cameraman (right).

Table 6.4

Comparison of preconditioners for the nonlinear image restoration problem.

Bridge Cameraman
Method 30dB 40dB 30dB 40dB

CG 289 273 334 768
Circulant-PCG 183 167 189 195

GMRES > 1000 > 1000 > 1000 > 1000
HSS (α = 0.01) 82 76 98 69
HSS (α = 0.05) 48 46 51 45
HSS (α = 0.10) 39 37 38 49
HSS (α = 0.50) 95 87 105 270

CP 312 295 378 > 1000

not improve, and the visual quality of these restored images are about the same as in
Figures 6.5(c) and (d).

The number of iterations for CG and GMRES(30) with various preconditioners
for solving the augmented system corresponding to (5.4) is listed in Table 6.4. We
see that HSS-preconditioned GMRES(30) converges much faster than the other meth-
ods tested. These include the unpreconditioned conjugate gradient method applied
to (5.4) (under “CG”), unpreconditioned GMRES(30) applied to the corresponding
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augmented system (under “GMRES”), the preconditioned conjugate gradient method
with the circulant preconditioner (under “Circulant-PCG”), and GMRES(30) with the
modified constraint preconditioner (under “CP”). We note that the cost per iteration
of the conjugate gradient and the GMRES methods depends mainly on the Toeplitz
matrix-vector multiplications. This product can be formed with two two-dimensional
FFTs of size 2n-by-2n, i.e., at about the same cost as four two-dimensional FFTs
of size n-by-n. With circulant, HSS, and CP preconditioners, we have to solve their
corresponding systems in each preconditioned CG/GMRES iteration, and thanks to
their special structure, they can be solved by using two two-dimensional FFTs of size
n-by-n. Thus the overhead of using different preconditioners is about 50%. Therefore
the costs per iteration using different preconditioners are comparable.

7. Conclusions and future work. We have investigated the application of two
types of preconditioners to the solution of weighted Toeplitz least squares problems
written in augmented system form. Theoretical considerations and numerical ex-
periments indicate that the modified constraint preconditioner is extremely effective
when the problem is well conditioned or moderately ill conditioned and m = n. On
the other hand, this preconditioner is not effective for the highly ill-conditioned cases
that arise from the solution of ill-posed problems.

The HSS preconditioner was found to perform quite well (though not as well
as constraint preconditioning) for moderately ill-conditioned problems. For harder
problems the convergence rate, while not spectacular, was much better than with
constraint preconditioning; moreover, for large enough n the rate of convergence ap-
pears to be constant. A positive observation is that the iteration parameter α in the
HSS preconditioner can be fine-tuned on a small problem instance and then used,
with good results, on larger problems.

Although we limited ourselves to the simplest possible form of the regularization
term, the techniques used here can easily be applied to the case where the regular-
ization term is of the form µ||Lx||22, where L is a smoothing operator. In particular,
HSS preconditioning can be efficiently applied as long as L has a nice structure, such
as Toeplitz or Toeplitz-related.

We conclude by mentioning another possible use of HSS preconditioning. In some
applications (see, e.g., [5]) it is necessary to solve problems of the form

(KTK + βD)x = KT f ,(7.1)

where K is a Toeplitz-related matrix, β > 0, and D is a diagonal matrix with positive
entries on the main diagonal. Clearly, problem (7.1) is equivalent to the augmented
system

[
I K

−KT βD

] [
y
x

]
=

[
f
0

]
,(7.2)

for which the HSS preconditioner is well suited.
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