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Abstract: In this paper, a numerical approach based on an m-set of general, orthogonal triangular functions 
(TF) is proposed to approximate the solution of Fredholm integral equations of the first kind. By using the 
orthogonal triangular functions as a basis in Galerkin method, the solution of linear integral equations 
reduces to a system of algebric equations. If the recent system become ill-conditioned then we will use the 
preconditioned technique to convert above problem to well-conditioned. The convergence of the proposed 
method is established. Some numerical examples illustrate the proposed approach.
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INTRODUCTION

The problem of solving the linear system 

Ax = b (1)

where x,b∈ℜn and A is a matrix of dimensions n×n is 
an important problem in numerical linear algebra. In 
general, when the dimensions and the condition number 
of A matrix are very large, problems such as (1) are 
ill-posed and small changes to the problem can make 
very large changes to the answers obtained. So,
preconditioned technique is a key fundamental for
solving very large linear system and it means the
transform of the original linear system into one which 
has the same solution. Suppose the recent system by 
using different basis obtained from the Fredholm
integral equation of the first kind. There are different 
iterative methods as preconditioned techniques [1].
Krylov subspace methods are one of the most important 
iterative methods for this work. The rate of their
convergence is slow and sometimes we encounter
breakdown [1]. The iterative method of conjugate
gradient is effective method for solving Eq. (1) and the 
speed of convergence depends on the condition number 
of the coefficient matrix [1]. Also conjugate gradient 
squared (CGS), generalized minimal residual (GMRES)
and bi-conjugate gradient (BICG) methods are
introduced in [1,2] for solving nonsymmetric systems. 
Gauss type preconditioning methods for nonnegative 
matrices and M-matrices linear systems are applied by 
Zhang in [3]. These methods are partly derived from the 
LU factorization method. A sparse approximate inverse 
preconditionear is developed in [4] for the conjugate 
gradient method and these recent preconditioners are

considerable interest for using on parralel computers. 
This paper is orgonized as follows. We first review a 
Gauss type preconditioning method [3] and in
section 3, we use orthogonal triangular basis to find 
numerical solution of Fredholm integral equations of 
the first kind. The convergence of the Gauss type
preconditioning method for preconditioned linear
systems is considered in section 4. Finally, section 5 
contains some numerical examples which are obtained 
by MATLAB software to show the simplicity and 
accuracy method.

PRECONDITIONER

Consider the linear system (1), we use precondition 
P as a matrix which approximates A. We want
transform system (1) into system 

PAx = Pb (2)

In this paper, we focus our attention on the solution 
of linear systems obtained from Fredholm integral
equations of the first kind. We first illustrate a
preconditioned iterative method based on Gauss
transformation matrices [3].

Gauss type preconditioning methods : We consider
preconditioers chosen to eliminate the off-diagonal
elements of the coefficient matrix of a linear system. 
The left Gauss type preconditioners applied for
nonnegative matrices and M-matrices linear systems 
which eliminate the strictly lower triangular elements 
and right Gauss type preconditioners are derived from 
the LU factorization method which eliminate strictly 
upper triangular elements [3].



World Appl. Sci. J., 7 (Special Issue for Applied Math): 162-167, 2009

163

Definition 1: A matrix A is a Z-matrix if aij≤0, i,
j = 1,2,…,n, i≠j [3].

Definition 2: A matrix A is a M-matrix if A has the 
form A = sI-B, s>0, B≥0 and s>ρ(B) (the spectral
radius of B) [3].

Definition 3: A nonsingular Z-matrix is called an M-
matrix if A−1≥0 [5].

Suppose A is a M-matrix, without loss of
generality we have 

A = I-L-U (3)

where I, -L and -U are the identity matrix, strictly lower 
triangular and strictly upper triangular parts of A,
respectively. If we choose M = I, N = L+U and M = I-
L, N = U, the classical Jacobi and Gauss-Seidel
iterative methods obtain, respectively.
The preconditioned form of the linear system (1) is 

PAx = Pb

where P is called the left preconditioner and the right 
preconditioner, respectively. Then a kind of iterative 
scheme can be written. 

(k 1) 1 (k) 1
p p px = M N x M Pb+ − −+ (4)

where PA = Mp - Np, k = 0,1,… and Mp is nonsingular.
By using the left preconditioners, the iterative

methods such as Jacobi and Gauss-Seidel type methods 
converge faster than the original ones [3]. Many
researchers have proposed the precondit ioning
techniques. For example, Kohno et al. considered a 
parameterized preconditioner [3] and recently Zhang 
et al. proposed the left Gauss type preconditioning 
techniques based on Hadjidmos et al. and LU
factorization method [3]. The following left
preconditioners are all lower tringular matrices with 
unity diagonal entries and they are considered by Zhang 
in [3] by using Gauss transformation matrix 

m m m 1 2 1P = M M ...M M− (5)

where m = 1,2,…,n-1 and the construction of Gauss 
transformation matrices is as follows [6]:
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where k = 1,2,…,n-1 and we have 

ij kB = ( b ) = M A   ,     j=1,2,...,n

where
ij
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ij i kj

a , i=1,2,...,k
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a a , i = k 1,...,n
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Now, we consider the elements of the preconditioned 
matrix ALm = PmA as
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We can write the usual splitting of ALm, namely, 

Lm Lm Lm LmA = D E F− −

where DLm, -ELm and -FLm are diagonal, strictly lower 
triangular and strictly upper triangular parts of ALm
respectively. If we define Mp = DLm, Np = ELm+FLm and 
Mp = DLm - ELm, Np = FLm, the Jacobi and Gauss-Seidel
types iterations obtain, respectively. Similarly, we can 
obtain the preconditioned matrix AQm and apply its 
properties to obtain iteration methods. The algorithms
of the right and left Gauss type preconditioners based 
on the elimination of elements are presented in [3].
Now, we consider the numerical solution of the integral 
equation based on orthogonal triangular functions.

PROBLEM STATEMENT

Definition 4: A set of BPF, ∩m(t) containing m
component functions in the semi-open interval [0,T) is 
given by 

[ ]0 1 1= ( ) ( ) ( ) ( )−
T

m i m(t) t t t t ∩ ♣ ♣ ♣ ♣ (7)

where […]T denotes transpose. 
We can generate two sets of orthogonal TFs,

namely T1m(t) and T2m(t) such that 
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Fig. 1: Dissection of BPF into two triangular functions

= +m m m(t) T1 (t) T2 (t)∩ (8)

Let ψ0(t) be the first member of an m-set BPF, we 
introduce

0 0 0( t )=T 1( t) T2 (t)ψ +

where T10(t) and T20(t) functions are shown in Fig. 1.
Consider the integral equation of the first kind as in [7]

b

a
k(s,t)f(t)dt=g(s)∫ (9)

where a≤s≤b, f (t) is the unknown function while g (s)
and k (s,t) are known in L2[a,b]. The Eq. (9) can be 
written as 

Kf = g (10)

where K:X→X is defined by

b

a
( f)(s)= k(s,t)f(t)dt , a s b≤ ≤∫K

We suppose in this paper X = L2[a,b].
In recent years, different methods are introduced 

for solving numerically the first kind of integral
equations which are based on orthogonal basis such as 
wavelet basis [8]. In this paper, we introduce a
complementary pair of orthogonal triangular function 
sets and we use them for solving the first kind of
integral equations.
Now we define the m-set triangular function vectors as 

T
0 1 2 i m 1=[T1(t ) T1 ( t ) T1 (t) T1 ( t ) T1 (t)]−mT1 (t)   (11)

The ith component of the vector T1m(t) is defined as 

i

(t ih)
1 , ih t < ( i 1)h

T 1 ( t ) = h
0 , otherwise

− − ≤ +



(12)

and the ith component of the vector T2m(t) is defined as 

i

(t ih)
, ih t < ( i 1)h

T 2 ( t ) = h
0 , otherwise

− ≤ +



(13)

where i = 0,1,2,…,(m-1) [9].
The condition of orthogonality for TFs is given in 

[9] by 

1
i j

0

1
i j

0

h i = j
T1( t )T1( t )d t= ,3

0 i j

h
i = j
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∫

∫

Also we know that 

1 1T T
0 0

hT1(t)T1 ( t )d t= T2(t)T2 ( t ) d t = I
3∫ ∫

1 1T T
0 0

hT1(t)T2 ( t ) d t= T2(t)T1 ( t ) d t = I
6∫ ∫

where I is m×m identity matrix. 
In general, a time function f (t) of Lebesgue

measure may be expanded into an m-term TF series in 
t∈[0,T) as 

[ ]
[ ]

0 1 2 i m 1

1 2 i m 1 m
T T

f(t ) c c c c c

c c c c c

=C1 C2

−

−

≈

+

+

m

m

m m

T1

T2

T1 T2

 

  (14)

where, the constant coefficients are the samples of
function such that [3]

ci = f(ih) (15)

( )t0
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where i = 0,1,…m-1, m.
Now we return to integral equation (9), If we

expand the f (t) function into an m-term TF series in 
t∈[0,1) as Eq. (14), we will have 

m 1

m k k k 1 k
k=0

f ( t ) f ( t )= [c T1 (t) c T2 (t)]
−

+≈ +∑ (16)

The constant coefficients m
k k=0{c }  are unknown,

substituting Eq. (16) into Eq. (9), yields 

b
m

a

m 1 b
k k

ak=0
m 1 b

k 1 k
ak=0

r (s)=g(s) k(s,t)f(t)dt

=g(s) c k(s,t)T1 (t)dt

c k(s,t)T2 (t)dt

−

−

+

−

−

−

∫

∑ ∫

∑ ∫

(17)

where a≤s≤b and we expect the residual rm (s) tends to 
zero.
It means that [7]

(rm, T1k) = 0 (18)

where k = 0,1,…,m-1, (.,.) denotes the inner product 
and one of the Eqs. (19) in the following is considered 
simultaneously:

(rm, T2k) = 0 (19)

where k = 0,1,…,m-1.
By using Eqs. (17-19), we get the linear system of 

(m+1) equations and (m+1) unknown which gives the 
coefficient of fm(t).

CONVERGENCE THEOREMS

We consider a comparison between the Gauss 
preconditioner method and the Gauss-Seidel iterative 
method in the following theorems so we need some 
definitions and theorems. 

Definition 5: [5] Let A be an n×n real matrix and
A = M-N be a splitting of A, then the splitting is called
(i) Regular splitting if M is nonsingular, M−1≥0 and 

N≥0.
(ii) Convergent splitting if ρ(M−1N)<1.

Lemma 1: (Zhang et al. [3, Lemma 1]) If A is an 
M-matrix, then for any 1≤m≤n-1

(i) ALm exists. 
(ii) Mm≥0 and Pm≥0.
(iii) Both ALm and Lm4 are M-matrices.

Lemma 2: (Niki et al. [5,Theorem 2.4]) Let A = M-N
be a regular splitting of matrix A. Then, A is
nonsingular with A−1≥0, if and only if ρ(M−1N)<1.

Theorem 1: Suppose A = I-L-U be a nonsingular 
M-matrix. Then the preconditioned matrix ALm = Mp-
Np is regular and convergent splitting. 

Proof: If we consider the splitting matrices of ALm
which is introduced in [3],

L1 L1 12
Lm Lm Lm

L4 L4 14

D 0 0 0 F F
D = , E = ,F =

0 D 0 E 0 F
     
     
     

(20)

we will have 

1
L11 1

p Lm Lm p Lm1
L4 L4

D 0
M = ( D E ) = , N = F

0 (D E )

−
− −

−

 
 −
 − 

Since both ALm and (DL4-EL4) have nonzero
diagonal elements, then 1

L1D−  and (DL4-EL4)−1 exist. so 

M−1 is exist. For a Z-matrix A, "A is a nonsingular M-
matrix if and only if there is a positive vector x such 
that Ax>0", [10, Theorem 6-2.3]. Therefore, for a
positive vector x (>0)∈ℜn, we have from Lemma.1 ALm
x = PmAx>0. In addition to, since for a Z-matrix the 
statement "A is a nonsingular M-matrix" is equivalent 
to "all the principal minors of A are positive", [10, p. 
136]. Therefore, ALm = Mp-Np is a regular splitting of 
matrix A. By using Lemma.1 and multiplying the
relation Mpx≥Npx by M−1, we have 1

p pM N x x− ≤ .

Therefore [5, Theorem 2.7] is shown that ALm = Mp≥Np
is convergent splitting.

Theorem 2: Let A be a M-matrix and both A = M-N
and ALm = Mp-Np be the Gauss-seidel convergent 
splitting. Then the following inequality holds. 

1 1
p p(M N ) (M N) <1− −ρ ≤ ρ

Proof: Since 

1 1
Lm mA =(P A)− −

1
m m 1 2 1=(M M ...M M A ) −

−

1 1 1 1 1
1 2 m 1 m= A M M ...M M− − − − −

−
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From the construction of Gauss transformation
matrices Mk, for k = 1,2,…,m in Eq. (6) and Lemma.2, 
we have 1 1

LmA A 0− −≥ ≥ . Therefore,

1 1 1 1
Lm p p p p0 A x = ( I M N ) M N x− − − −≤ −

1
1 1 1

1
(M N)

A Nx = ( I M N ) M Nx = x
1 (M N)

−
− − −

−
ρ

≤ −
− ρ

by using [5, Theorem 2.7], we get 

1 1
p p

1 1
p p

(M N ) (M N)
1 (M N ) 1 (M N)

− −

− −

ρ ρ≤
−ρ −ρ

it implies 
1 1

p p(M N ) (M N) <1− −ρ ≤ ρ (21)

Remark 1: Let us present an error analysis in the 
orthogonal triangular function domain. If we note to the 
Eq. (15), we will see the coefficients ci for i = 0,1,…,m
are not optimal and this show that the minimum 
integral square error (MISE) is not minimized [9].

Of course, we know obviously that the coefficients
ci's and di's are samples of f (t) for deriving a 
piecewise linear solution and we don't require the
integration formula. Furthermore, it can be shown that 
the optimal coefficients and error estimations for
optimal approximations with triangular function can 
reduce eMISE, [9]. Now, we denote the eMISE by

MISE me = f (t) f( t )− (22)

where fm (t) and ( )f t  show the approximate and exact 
solutions of the first kind Fredholm Integral Equations,
respectively. By using MATLAB software, the solution 
of the linear resolve system is approximated.

NUMERICAL EXAMPLES

In this section, we considered some examples from the 
first kind of Fredholm integral equations by using the 
proposed preconditioned technique for m = 8 and the 
representational errors eMISE are shown in Table 1. Also 
numerical results are shown in Fig. 2 for m = 16 to 
illustrate the efficiency of this technique.

Fig. 2: Results for Examples (1-3) with m = 16
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Table 1: Errors eMISE for examples 1-3 with m = 8
t Example.1 Example.2 Example.3
0.000 0 0 0
0.125 0.1E-9 0.7E-9 0.1E-8
0.250 0.5E-9 0.4E-9 0.1E-8
0.375 0.2E-9 0.1E-9 0.1E-8
0.500 0.2E-9 0.6E-7 0.1E-8
0.625 0.2E-9 0.6E-9 0.7E-8
0.750 0.1E-8 0.3E-9 0.1E-8
0.875 0.1E-9 0.2E-9 0

Example 1: Consider the following integral equation,

21 2
20

(t s)
f ( t ) d t= 0.487495s 0.532108s 0.179171

1 t
−

− − +
+∫

and exact solution f ( t )= t , 0≤t≤1.

Example 2: Consider the following integral equation, 

1

0
(sin(s t) exp(t)cos(s t))f(t)dt

=1.4944cos(s) 1.4007sin(s)

+ + −

+

∫

and exact solution f (t) = cox (t), 0≤t≤1.

Example 3: Consider the following integral equation,

1

0

exp(s 1) 1exp(st)f(t)dt=
s 1
+ −
+∫

and exact solution f (t) = exp (t), 0≤t≤1.
It is noted that by using the TF (optimal), the 

representational error is the least. For obtaining more 
information about the recent results and comparing 
them with the results of the other basis such as BPF and 
SHF, one can see [9].

CONCLUSION

Based on the structural properties of orthogonal 
basis, a complementary pair of orthogonal triangular

function (TF) sets was extended to approximate the 
solution of the first kind Fredholm integral equations. 
Also for the solution of Ax = b which is obtained from 
the Galerkin method, some preconditioners based on 
Gauss type preconditioning techniques are applied and 
these preconditioners retain the efficiency and
robustness of the primitive version. 
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