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Abstract. Methods are discussed for the solution of sparse linear equations Ky = z, where K is
symmetric and indefinite. Since exact solutions are not always required, direct and iterative methods
are both of interest. An important direct method is the Bunch-Parlett factorization K = UTDU,
where U is triangular and D is block-diagonal. A sparse implementation exists in the form of
the Harwell code MA27. An appropriate sterative method is the conjugate-gradient-like algorithm
SYMMLQ, which solves indefinite systems with the aid of a positive-definite preconditioner.

For any indefinite matrix K, it is shown that the UTDU factorization can be modified at nominal
cost to provide an “exact” preconditioner for SYMMLQ. Code is given for overwriting the block-
diagonal matrix D produced by MA27.

The KKT systems arising in barrier methods for linear and nonlinear programming are studied,
and preconditioners for use with SYMMLQ are derived.

For nonlinear programs a preconditioner is derived from the “smaller” KKT system associated
with variables that are not near a bound. For linear programs several preconditioners are proposed,
based on a square nonsingular matrix B that is analogous to the basis matrix in the simplex method.
The aim is to facilitate solution of full KKT systems rather than equations of the form AD24TAx = r
when the latter become excessively ill conditioned.
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1. Introduction. Symmetric indefinite systems of linear equations arise in many
areas of scientific computation. We will discuss the solution of sparse indefinite sys-
tems Ky = z by direct and iterative means.

The direct method we have in mind is the Bunch-Parlett factorization K =
UTDU, where U is triangular and D is block-diagonal with blocks of dimension 1 or
2 that may be indefinite. Such a factorization exists for any symmetric matrix K
[BPT71]. (We shall refer to it as the Bunch—Parlett factorization, while noting that
the Bunch~Kaufman pivoting strategy is preferred in practice [BK77]. The principal
sparse implementation to date is due to Duff and Reid [DR82], [DR83] in the Harwell
code MA27. See also [DGRST89)].)

The iterative method to be discussed is the Paige-Saunders algorithm SYMMLQ
[PS75]. This is a conjugate-gradient—like method for indefinite systems that can make
use of a positive-definite preconditioner.

1.1. Preconditioning indefinite systems. One of our aims is to present a
new and simple result that shows how to use the Bunch—Parlett factorization of an
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indefinite matrix to construct an exact preconditioner for an iterative method such as
SYMMLQ. The intended use is as follows. 3

Given an indefinite system Ky = 2 and a related indefinite matrix K, we expect
that the Bunch—Parlett factorization K = UTDU will be computed, or will already
be available. We show that D can be changed cheaply to provide a positive-definite
matrix M = UTDU, such that SYMMLQ (with preconditioner M) will solve Ky = z
in at most two iterations. Hence, M should be a good preconditioner for the original
system involving K.

1.2. Optimization. As a source of indefinite systems, we are interested in bar-
rier methods or interior-point methods for solving linear and nonlinear programs in
the following standard form:

minimize Tz
X

(1)
subject to Az = b, <z <u,
where A € R™*" and

minimize F(x)
T

(2)

subject to c¢(z) =0, [<z<u,

where F(z) and c(z) have continuous first and second derivatives. We assume that
an optimal solution (2, 7*) exists, where 7* is a set of Lagrange multipliers for the
constraints Az = b or ¢(z) = 0.

1.3. KKT systems. When barrier or interior-point methods are applied to
these optimization problems, the Karush-Kuhn-Tucker optimality conditions lead
to a set of equations of the form

o (1T)&)-(2) w(5 7).

whose solution usually dominates the total computation. The vectors Az and Ax are
used to update the estimates of z* and 7*.

For quadratic programs or general nonlinear programs, H is typically a general
sparse matrix like A, and it is natural to solve the KKT system as it stands. The
Harwell code MA27 has been used in this context by several authors, including Gill et
al. [GMSTWS86] and Turner [Tur87], [Tur90] for sparse linear programs, by Ponceleén
[Pon90] for sparse linear and quadratic programs, and by Burchett [Bur88)] for some
large nonlinear programs arising in the electric power industry.

1.4. Avoiding AD?AT., If H is known to be nonsingular, it is common practice
to use it as a block pivot and solve (3) according to the range-space equations of
optimization:

AH'ATAT = AH 'g+r, HAz=ATAn—g.

For linear programs this is particularly attractive, since H is then a positive diagonal
matrix. For example, in a typical primal barrier method, H = uD~2 where D is
diagonal and g is the barrier parameter (1 > 0) [GMSTWS86]. The range-space
equations reduce to

(4) AD*ATAm = AD?g + pr, Az = %Dz(ATAﬂ' -9),
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and most of the work lies in solving the system involving AD?A”. When r = 0, the
numerical properties may be improved by noting that the equation for A reduces to
the least-squares problem

(5) min |Dg — DATAx|}s.

However, it is important to observe that the range-space equations may not give a
stable method for solving the KKT system if H is ill conditioned.

1.5. Example. Let

where ¢ <« 1, and consider the KKT system (3). This would arise when a primal
barrier method is applied to a 3 x 4 LP problem (1) having [ = 0, u = oo, when z is
the current estimate of «* and p is the current barrier parameter. Thus H = uD~2,
where D = diag(z;).

The condition numbers of interest are cond(K) = 6 (independent of p) and
cond(AH1AT) = cond(AD?AT) ~ 0.5/u.) The latter becomes increasingly large
as a solution is approached (u — 0), even though K and the original linear program
are very well conditioned.

Similar examples are easily constructed. (Indeed, K can be well conditioned even
if H is singular.) Thus, we advocate direct or iterative solution of the full KKT system
(3) even for linear programs, rather than (4) or (5) according to current practice.

Gay [Gay89, pp. 16-17] has already drawn attention to the lurking numerical
difficulties and suggests a middle ground of working with AD?AT as long as possible,
then switching to a more robust alternative such as direct solves with K.

1.6. Iterative methods and preconditioning. The KKT systems we are con-
cerned with arise when Newton’s method is applied to the nonlinear equations defining
optimality conditions for barrier subproblems; see §3. In this context, there are not
many KKT systems to be solved {(compared to those in active-set methods), the sys-
tems need not be solved exactly [DES82], and the KKT matrix eventually does not
change significantly. It is therefore appropriate to consider iterative methods and
preconditioners for the indefinite matrix K.

Previous work on preconditioning for interior-point methods has focused on the
LP case and the Schur-complement matrix AD?AT, Most authors have used approx-
imate Cholesky factors of AD?AT; see, for example, [GMSTWS86], [Kar87], [KR88],
[Meh89a}. Exact LU factors of DAT have also been investigated [GMS89).

The success of preconditioned conjugate-gradient methods in this context lends
added promise to our proposed use of the much better conditioned KKT systems,
now that it is known how to precondition indefinite systems.

1.7. Summary. In §2 we consider general indefinite systems and derive a pre-
conditioner from the Bunch—Parlett factorization. In §3 we consider barrier methods
for nonlinear programs, and propose factorizing just part of the KKT system to obtain
a preconditioner for the whole system.

! We use the spectral condition number, cond(K) = ||[K~||2[|K ||z.
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Sections 4 to 6 deal with the LP case. In §4 we propose three preconditioners
based on LU factors of a square nonsingular matrix B (analogous to the basis in
the simplex method). Section 5 discusses some practical difficulties. Section 6 gives
numerical results on the condition numbers of K and AD2AT in a typical sequence of
barrier subproblems, and compares the preconditioned systems C~*KC~7 for several
preconditioners CCT.

2. Preconditioning indefinite systems. Let K be any symmetric nonsingular
matrix, and let M be a given positive-definite matrix. Also, let “products with K”
mean matrix-vector products of the form u = Kwv, and “solves with M” mean solution
of linear systems of the form Mz = y.

The Paige-Saunders algorithm as implemented in SYMMLQ [PS75] may be used
to solve Ky = z even if K is indefinite. As with other conjugate-gradient-like al-
gorithms, the matrix is represented by a procedure for computing products with K
(those generated by the symmetric Lanczos process).

The first steps towards accelerating the convergence of this algorithm were taken
by Szyld and Widlund [SW78], [SW79]. Given a positive-definite matrix M as pre-
conditioner, their algorithm used solves with M in the normal way, but was uncon-
ventional in also requiring products with M.

Subsequently, a variant of SYMMLQ was developed that requires only solves with
M [Sau79]. To solve Ky = z, this variant regards the preconditioner as having the
form M = CCT and implicitly applies the Paige-Saunders algorithm to the system

CIKCTw=C"1z,

accumulating approximations to the solution y = C~Tw (without approximating w,

which isn’t needed). An implementation is available from the misc chapter of netlib
[DG85].

2.1. Use of the Bunch—Parlett factorization. Given any symmetric nonsin-
gular matrix K, there exists a factorization of the form

K = PTUTDUP,

where P is a permutation, U is upper triangular, and D is block-diagonal with blocks
of dimension 1 or 2 [BP71]. If K is indefinite, some of the blocks of D will have
negative eigenvalues. Let the eigensystem of D be

D =QAQT,  A=diag();),
and let

D=QAQ%, A= diag()l),
be a closely related positive-definite matrix that can be obtained at minimal cost. If
we define C = PTUTD'Y/? it is easily verified that

K =C7'KC™T = diag()\;/|\j|) = diag(£1).
This means that the “perfect” preconditioner for K is the matrix
M =ccT = PTUTDUP,

since the “preconditioned” matrix K has at most two distinct eigenvalues and the
Paige-Saunders algorithm converges in at most two iterations.

In practice, M will be computed from the Bunch—Parlett factorization of an ap-
proximation to K.
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2.2. Modification of D from MA27. The block-diagonal matrix D is packed
in the MA27 data structure as a sequence of matrices of the form

(a) and (g f’).

In the 1 x 1 case, we do nothing if @ > 0; otherwise we reverse its sign. In the 2 x 2
case, we do nothing if ay > 32; otherwise we compute the eigensystem in the form

(5 5)-(c () 2)

where ¢? 4+ s2 = 1. We then form the positive-definite matrix

(53)-(0 ) (M) (2 2)

and overwrite the appropriate three locations of MA27’s storage.

The techniques for computing the 2x 2 eigensystem are central to Jacobi’s method
for the symmetric eigenvalue problem. They were developed by Rutishauser [Rut66].
We have followed the description in Golub and Van Loan [GV89, p. 446] with minor
changes to work with symmetric plane rotations.

A subroutine for modifying the D computed by MA27 is given in the Appendix.

2.3. Aasen’s method. In general, Aasen’s tridiagonalization method [Aas71] is
considered competitive with the Bunch-Kaufman approach [BK77) for solving dense
indefinite systems. Aasen’s method computes a factorization of the form K = UTTU
where T is tridiagonal.

We do not know of a sparse implementation, but in any event we note that it
would not be ideal for producing a preconditioner in the manner described above,
since the eigensystem for T would involve far more work than for the block-diagonal
D of the Bunch-Parlett factorization.

On the other hand, we could compute a (very special) Bunch-Parlett factorization
of T' and modify the associated D as described above.

3. Barrier subproblems. We return now to the optimization problems (1)—(2).
In barrier methods, the bounds ! < z < u are absorbed into the objective function
and we solve a sequence of perturbed subproblems, typically of the form

minimmize Fu(z)=F(z) - ui(ln(xj = 1;) + In(u; — z;))
j=1

(6)

subject to ¢(z) =0,

where the barrier parameter y takes decreasing positive values that are eventually
very small. If I; = —o0 or u; = oo for some j, the corresponding terms In(z; — I;) or
In(u; — z;) are omitted. If z; has no bounds, both terms may be omitted.

The following quantities are needed:

Ly(z,m) = Fu(z) — nTc(z) the Lagrangian function,
gu(z) = VF,(x) the gradient of the barrier function,
g:.(z,m) = gu(z) — A(z)Tmw the gradient of the Lagrangian,
Hy(z,7) = V2F,(z) — Y m;V2c;i(z) the Hessian of the Lagrangian, and
A(x) = Ve(z) the Jacobian of the constraints.
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For convenience we assume that A(z) € R™*™ has full row rank m, and that the
scaling of the problem is reasonable, so that ||A(z)l| = 1.

3.1. Newton’s method and the KKT system. The optimality conditions
for (6) are the nonlinear equations

(7) g.(z,m) =0,
(8) c(z) = 0.

Newton’s method may be applied directly, or to some equivalent system. Given
suitable initial values for the primal and dual variables (z, 7), the key set of equations
for generating a search direction is the KKT system

H, AT Az \ a.
® (% 7)) --(%)
where the KKT matrix and right-hand side are evaluated at the current point (x, ).
A positive steplength « is then chosen to reduce some measure of the size of the

right-hand side (g.,c), and the variables are updated according to z « z + aAuz,
m — 7 + aAxn. (Sometimes a different & may be used for z and =.)

3.2. A preconditioner for K. In general, some of the variables converge to
values near their upper or lower bounds. For such variables z;, the Hessian H,
includes on its diagonal a term that becomes very large: u/(z; —1;)? or pu/(u; — ;)%
which are O(1/u). Let the KKT matrix be partitioned accordingly:

_ [ K1 K
(10) K_ ( K3 K2 ’

where K is the part of H, associated with variables near a bound, and K5 looks like
a smaller KKT system associated with the remaining variables. This partitioning is
crucial to the sensitivity analysis in [Pon90]. Of course, the partition depends on the
measure of closeness to a bound, but it is not critical here except that the dimension
of K, should not exceed n — m.

One possible approximation to K is

b (" ).

where D, is a diagonal matrix containing the diagonals of K3, which by construction
are large and positive. Applying the method of §2, we can now obtain a positive-
definite preconditioner for K as follows:

_ T _{ D
(12) Ky =U; DyUs, M = ( U2TD2U2 ) ,

where D, is obtained from D, at nominal cost.

3.3. Discussion. In broad terms, we need to estimate which variables are going
to be “free” (away from their bounds) at a solution. If m <« n, the KKT system K,
associated with the free variables may be much smaller than the whole of K, and the
cost of the Bunch-Parlett factorization of K3 may be acceptably low.



298 P. GILL, W. MURRAY, D. PONCELEON, AND M. SAUNDERS

For the early iterations of Newton’s method, the estimate of Ky will usually be
poor, and the diagonal term D; will not be particularly large. However, following the
inexact Newton approach [DES82], only approximate solutions to the KKT system
are needed, and the iterative solver need not perform many iterations.

As the Newton iterations converge and the partition (10) becomes more sharply
defined, the preconditioner should become increasingly powerful and produce the
increasingly accurate solutions required at an acceptable cost.

3.4. Performance of SYMMLQ with the MA27 preconditioner. The ap-
proach of §§2 and 3 has been tested by Burchett [Bur89] within a barrier algorithm
for solving some large nonlinear problems in optimal power flow.

Normally, MA27 is used to factorize K at each iteration of the barrier algorithm,
with H, and A in (9) changing each time. For experimental purposes, the factors
of K at iteration k¥ were used to construct a preconditioner for iteration k + 1 (via
subroutine syprec in the Appendix). The dimension of K was 6000 for one problem
and 16,000 for another.

Initially, SYMMLQ required about 30 iterations to solve the KKT systems to mod-
erate accuracy. As the barrier algorithm (and A) converged, the number of iterations
required by SYMMLQ fell to about 10. This performance seems very promising.

4. Preconditioners for linear programming. For linear programs the struc-
ture of the partitioned KKT system (10) can be investigated more closely, given that
optimal solutions are often associated with a vertex of the feasible region. We partition
the constraint matrix into the form A = (N B, where B is square and nounsingular,
and N in some sense corresponds to the n — m variables that are closest to a bound.

The Hessian for the barrier function is a diagonal matrix H, which we partition
as H = diag(Hy, Hy). The KKT system is then

H, NT
K = H, BT
N B

As convergence occurs, the diagonals of Hy — oo (and in general cond(K) — c0). In
degenerate cases, some diagonals of Hp may also become very large.

In various primal, dual, and primal-dual interior-point algorithms for LP, similar
matrices K arise with varying definitions of H (e.g., {Meg86], [KMY88], [LMS89],
[Meh89a], [Meh90]). The discussion hereafter applies to all such methods.

In the following sections we introduce a series of preconditioners of the form
M = CCT. To improve the convergence of SYMMLQ, the transformed matrices K =
C~'KC~Tshould have a better condition than K or a more favorable distribution of
eigenvalues (clustered near +1). We make use of the quantities

V=BTH,B™!, W =NH;Y?

and are motivated by the fact that V' — 0 and W — 0 in nondegenerate cases. The
effects of degeneracy are discussed later.

4.1. The preconditioner M,;. The first preconditioner is diagonal and is in-
tended to eliminate the large diagonals of K:

Hy
(13) M, =C,Cf = I )



PRECONDITIONERS FOR INDEFINITE SYSTEMS 299

I w7t
(14) K,=Cr'kcyT = H, BT
W B

With diagonal preconditioning, there is no loss of precision in recovering solutions
for the original system. Thus as Hy becomes large, the preconditioned matrix K,
tends to represent the true sensitivity of the KKT system with regard to solving linear
equations.

We will use K, later for comparing condition numbers.

4.2. The preconditioner M,. The second preconditioner is block diagonal:

Hy
(15) M, =C,CT = BTB ,
I
I wT
(16) K,=C;lKkC;T = v I
w I

Since V and W tend to become small, M, tends towards being an exact preconditioner
for K. We see that a Bunch-Parlett factorization is no longer needed. In order to
solve systems involving M,, we may use any sparse factorization of B or BT.

4.3. The preconditioner M;. The third preconditioner is designed to eliminate
the submatrix V in (16), for degenerate cases where V is not adequately small:

H1/2
N
(17) M, =C,CY, C53= BT lH,B™! |,
I
. I -iwtvy wT
(18) Ky =Cy'KC;T = -vw I
w I

The off-diagonal term in (17) can be derived by observing that for a KKT matrix of

the form
H BT
K= ( B ) , B square,

we would like M = CC7 to satisfy
CKCT = ( L ) =7,

or equivalently, CJCT = K. Letting C be of the form

BT E
(" 1)

we find that E should satisfy EB + BTET = H. The simplest choice is then to set
E= %H B,

Though V has been eliminated, we have now introduced the term —%VW, and
solves with Mj cost twice as much as solves with M,. The expected benefit is that
%VW should be smaller than V itself.
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4.4. The preconditioner M,. The fourth preconditioner also eliminates V/,
using the factorization BT = LU, where we intend that L be well conditioned:

HY?
(19) M, =C,CF, C, = ( L IH,L™T ) )
UT
) I -twVv wT
(20) K,=C'KC;T=| —-3VW I i,
I

where
V=L'H,L7T, W=UTNHY?

As before, letting C be of the form

L E
=(" o)
and requiring CJCT = K, we find that ELT+ LET = H, and we take E = $HL™T.
Solves with M, are cheaper than with M;. Comparing (18) and (20), a further

advantage is that VW = UVW tends to be smaller than VW, although W = U~TW
is probably larger than W.

4.5. The preconditioner M,. We mention one further diagonal preconditioner
that has appeared implicitly in the literature for the case H = uD~2 with D diagonal.
It does not depend on the N-B partitioning, and gives a transformed system that does
not involve u:

D——2
(21) M, = C,Cy = ( A )
- g I DAT
(22) K, =C'kKC,;T = ( AD )

The matrix K, is associated with weighted least-squares problems of the form (5), as
discussed in [GMSTW86]. Turner [Tur87], [Tur90] has investigated the use of MA27
to obtain exact factors of both K and K »- An important practical observation was
that MA27 produced much sparser factors for K, than for K.

Unfortunately, the numerical examples in §6 show that K, has essentially the
same condition as AD?A7, which tends to be much more ill conditioned than K, (14).
We therefore cannot recommend the use of K.

Indeed, when |AD|| = 1 as we have here, it can be shown that cond(K,) ~
cond(AD)?. To improve the condition of K, we should use

a—l D—2
23) M, =of= (T ),
- _ _ al DAT
(24) K,=C;'kC;T = ( AD )
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for some a € (0,|AD||s], since it is known that cond(K,) ~ cond(AD) can be
achieved if @ & o min, the smallest singular value of AD (Bjérck [Bjo67], [Bjo91]). Ex-
periments in this direction have been performed by Arioli, Duff, and De Rijk [ADR89]
(who also give error analyses) and by Fourer and Mehrotra [FM91].

For the sake of both direct and iterative methods for solving KKT systems, it is
hoped that further development of MA27 will result in greatly improved sparsity in
the factors of K and/or K,. At the time of writing, a new code MA47 holds much
promise (see Duff et al. [DGRST89)]), as does an analogous code described in [FM91].

4.6. Regularizing K and AD?A”. Since A often does not have full row rank,
it is important to include a regularization parameter 6 > 0 in the KKT system. Thus
(3) becomes

H AT Az —g
(25) (A —61)<—A7r>‘(r)'
Systems of this type have been studied in the context of sequential quadratic pro-
gramming by Murray [Mur69], Biggs [Big75], and Gould [Gou86].
In practice, a wide range of values of § may be used without inhibiting conver-
gence, particularly with methods that do not maintain primal feasibility (AAz = 0).
For example, we would recommend values in the range 10~8 < § < 10~ on a machine

with about 16 digits of precision, assuming || 4| ~ 1.
Note that the corresponding system (4) becomes

(26) (AD?AT + u6I)Anw = AD?g + pr.

When p is as small as 1070 (say), one would have to choose a rather large § (say,
8 > 1072) to achieve any degree of regularization of AD?AT. This constitutes a large
perturbation to the underlying KKT system (25).

In other words, a much smaller § is sufficient to regularize (25) than (26). Thus,
KKT systems again show an advantage over AD?AT.

With regard to the preconditioners, § introduces terms —8I, —6I, —sU - TU 1
into the bottom corner of K,, K, K,, respectively. For K, it appears that § must
be chosen quite small and that the choice of B must be flexible enough to prevent U
from being excessively ill conditioned (see §5.3).

5. Use of LU factors. For linear programs, the “small” KKT matrix in (10) is

of the form
_( Hp BT
K= (7).

As in the general nonlinear case we could obtain a preconditioner from a Bunch-—
Parlett factorization of K2, and in practice this may prove to be a good approach.

The preconditioners M,, M3, and M, were derived on the assumption that it
should be cheaper to compute sparse factors of just the matrix B. We propose to
use the package LUSOL [GMSW87] to obtain BT = LU, where L is a permuted
lower triangle with unit diagonals. A user-defined tolerance limits the size of the
off-diagonals of L (typically to 5, 10, or 100), thereby limiting the condition of L as
required.
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5.1. Choice of B. One of the main practical difficulties will be in choosing a
“good” square matrix B at each stage. The current values of = and/or the estimated
reduced costs z = ¢ — ATr should provide some guidance. For example, the diagonal
matrix H is defined in terms of these quantities, and the smallest m + s diagonals of
H could be used to pinpoint a submatrix A of A (for some moderate s > 0). LUSOL
could then be used to obtain a rectangular factorization AT = LU. The first m pivot
rows and columns may suggest a suitable B.

Alternative approaches to choosing B have been suggested by Gay [Gay89], Tapia
and Zhang [TZ89], Mehrotra [Meh89b], and others. These remain to be explored.

5.2. The effects of degeneracy on V and W. In general, primal degeneracy
will mean that certain elements of Hy do not tend to zero, so that not all of V or V
will become small. Similarly, dual degeneracy will mean that certain elements of Hy
will not become large, and not all of W or W will become small.

The main effect is that the preconditioners will be less “exact.” Either form of
degeneracy is likely to increase the number of SYMMLQ iterations required.

5.3. Singular systems. Whatever the method for choosing a square B, it is
probable that B will be singular (since in many practical cases, A does not have full
row rank). At present we propose to rely on the fact that LUSOL will compute a
stable singular factorization of the form

and the solve procedures will treat this as if it were the factorization of a nonsingular

matrix
AT [ L1 U, U,
= ) (%)

User-defined tolerances determine how ill conditioned U; is allowed to be (and hence
determine its dimension).

Alternatively, we may use the factorization BY = LiU; to transform most of K
as already described. Certain rows of A will not be transformed in the preferred way,
and again the effect will be to increase the number of SYMMLQ iterations required.

6. Numerical examples for the LP case. Here we investigate the effect of the
preconditioners described in §4. For test purposes we have used MATLAB™ [MLB87]
to implement a primal-dual interior-point algorithm for the standard LP problem min
¢’z subject to Az = b, z > 0. The linear system to be solved each iteration is

H AT Az —g
e (5 %) ()-(7)
where H = X717, X = diag(z;), Z = diag(z;), r = b— Az, g = ¢ — ATr — pX e,
and e is the vector of ones. The search direction for z is Az = X~ !(ue — ZAz) ~ 2.
The rows and columns of A were scaled to give ||A|| = 1. The starting values
were z = e, z = e, m = 0 (so that H = I initially), and § was fixed at 10~8, with the
machine precision on a DEC VAX system being around 16 digits. The parameter y

was reduced every iteration according to the steplengths for z and 2: p — pu — a,u,
where o, = min(og, @,,0.99), and a,, a, were limited in the usual way to be at most
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TABLE 1
Condition numbers for problem expl.

k /.l/ AD2AT KD K Kl K2 K3 K4 B ra;nk-def
1 1.9e-2 1.2¢el l.1lel 1.1el 1.1lel 3.lel 2.6el 1l.lel
2 4.5e-3 6.5¢l 3.1el 6.8¢2 1.9el 5.5el 2.7el 2.7el
3 4.8¢e-4 1.2e3 2.2e3 4.4ed4 6.9el 4.6e2 5.7el 1.6el
4 1.3e4 1.7e5 3.1eb 1.0e6 4.2e3 4.4e3 1.5e3 1.6e3 2
5 3.2e-5 2.9e5 5.3eb 1.3e6 7.7¢2 2.3e3 5.4e2 5.6e2 1
6 1.be-b 4.0eb 5.8¢56 3.1ed 6.3¢2 2.8e3 7T.4e2 7.5e2 1
7 4.6e-6 4.0eb 5.8¢5 1.6ed 1.2¢2 3.0e2 1.1le2 1.1le2 1
8 1.6e-6 4.7eb 6.3¢5 3.0e5 3.9el 1.4e2 19el 8.4e0
9 14e-7 9.1e5 1.1e6 4.9e5 2.0el 4.7¢0 1.3e0 1.5e0

10 7.8e-9 8.4eb 1.0e6 3.5e¢6 1.7el 1.1e0 1.1e0 1.3e0

1 or 0.99 times the step to the boundaries z > 0, z > 0, respectively. See [KMY88],
[MMS89], [LMS89], and [Meh90] for related details.

Condition numbers of various matrices were obtained using MATLAB’s function
rcond. The square matrices B for the preconditioners of §4 were obtained from the
columns of A for which H;; < 20. The diagonals H;; were first sorted and up to 1.2m
of the smallest were used to select a rectangular matrix A from A. In practice, a sparse
LU factorization of A or AT would extract a full-rank submatrix, but here we used
MATLAB’s function gr(A) to elicit a full-rank set of columns (via a QR factorization
with column interchanges), and a second QR factorization of part of A to pinpoint
a full-rank set of rows. The dimension of the resulting matrix B is generally less
than m. The “rank” was determined from the first QR factorization by requiring the
diagonals of R to be greater than 1074,

6.1. A nondegenerate example. To illustrate ideal behavior of the precon-
ditioners, we chose a nondegenerate problem expl [Bla82] in which A4 is 10 by 17
(including 10 unit columns associated with slack variables). The lack of primal or
dual degeneracy means that near a solution, m = 10 diagonals of H are substantially
less than 1, and n — m = 7 diagonals are significantly greater than 1. The choice of
B is ultimately clear cut.

Table 1 lists various condition numbers for each iteration of the primal-dual al-
gorithm. For interest, we include AD?AT and K, which were defined in terms of
D = X = diag(z;) (see §4.5) and incorporated the same regularization § (§4.6). It
may be seen that both AD?AT + ;61 and K, become increasingly ill conditioned in
step with K, in contrast to the “meaningful” condition of K reflected by K, (in which
the large diagonals of H have been scaled to 1).

The preconditioned systems K,, K5, and K, show an increasing, though appar-
ently mild, improvement over K. Their effectiveness depends on the choice of B and
whether or not it has dimension m. The column labeled “B rank-def” records the
corresponding rank-deficiency. The conditions of B, L, and U were less than 25, 7,
and 40, respectively, for all iterations.

Low conditions are always a good sign, but high ones tell an incomplete story.
Figure 1 shows more clearly the increasing improvement of the preconditioners M,,
M;, M, in terms of the clustering of the eigenvalues of K,, K3, K, around +1. The
KKT systems have dimension m+n = 27. Eigenvalues in the range (—5, 5) are plotted
exactly; the remainder are compressed into the ranges (—6,—5) and (5,6). Thus, K,
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40 T T L L} L
B + ++
K + HHE
35 4 + + + o+ 4+ o+ e
+ ++ + o+ W+ 4
+ + ++ + 4+ e+ + +
++ * + 4+ e +
++ * + + ++
30 + + 4+t ++ 4+ + + -1
+ + o+ + HH 4+ +
+ + +HH I + +
2 i
3T . . -
K, + -
+ + + 4+ +
+ + + + W+ +
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Fic. 1. Eigenvalues for Kz, K’a, K'4 for problem expl.

has one or two eigenvalues greater than 5 for the first eight iterations, whereas K,
has its eigenvalues inside (—5,5) at all times. (The vertical axis is “iteration number”
shifted by 1 for K,, 14 for K, and 27 for K,. Each horizontal line gives the spectrum
of one of these matrices at the corresponding iteration.)

It is evident from Fig. 1 that K and K, have more favorable eigenvalue distri-
butions than K,, and that K, is marginally better than K, the main benefit being
that it is more cheaply obtained. There is a striking absence of eigenvalues in the
range (—1+ 8, —B) for some small 8, though we have no immediate explanation. This
range broadens to (-1 + 3,1 — 3) for all systems at the final iteration, as we may
expect.

6.2. A more typical example. Table 2 and Fig. 2 give similar results for the
well-known problem afiro [Gay85]. The matrix A is 27 by 51, including 19 slack
columns. We see that AD?AT + uéI and K, again become extremely ill conditioned
in step with K.

The KKT systems have dimension 78. As before there is a clear division between
large and small diagonals of H near a solution, but in this case only m — 5 are
substantially smaller than one. The rank of the corresponding columns of A is m — 7,
consistent with B’s final rank-deficiency of 7. The conditions of B, L, and U were
again low: less than 35, 13, and 34, respectively.

It is encouraging to observe that Fig. 2 is qualitatively similar to Fig. 1 in spite
of the rank-deficiency in B. The main difference is two eigenvalues close to zero on
the last iteration, in keeping with the difference between m — 5 and m — 7. Results
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TABLE 2
Condition numbers for problem afiro.

k 7 ADAT K, K K, K, K, K, B rank-def
1 2.6e-2 6.0el 2.2el 3.3el 2.3el 1.3e2 1.8¢2 9.8el 1
2 9.9e-3 3.1e2 2.0e2 18e3 1.2e2 7.0e2 1.1e2 4.4el 1
3 1.8e-3 2.5e3 3.6e3 3.0e4 4.7¢2 9.4e3 3.1e3 4.9e2 1
4 5.4e-4 1.7e4 3.4ed4 1.1e6 2.2e3 4.1ed 1.1ed 7.0e3 1
5 2.9e-4 8.2e3 1.7e4 3.0eb 6.9e2 2.4e4 1.2e3 3.1e2 3
6 3.3e-5 8.5e3 1.8¢4 4.5e4 1.0e2 1.1e3 4.6e2 2.9e2
7 2.4e-5 2.0e4 3.9e4 1.4e6 3.8¢2 3.0e3 6.5¢2 4.8e2 1
8 8.5e-6 2.6eb 4.3e5 1.8e7 9.0e3 1.6e4 2.5e3 2.9e3 3
9 3.1e-6 1.7e7 2.7e7 1.1e8 7.8e4 5.3e3 2.5e3 2.2e3 6
10 4.3e-7 2.0e8 3.1e8 2.0e9 1.7¢6 9.6ed 2.3e4 1.6ed 6
11 4.3e-9 2.e10 4.e10 4.ell 5.7e8 3.7eb 3.9edb 2.6e5 7
40 T T T T T
* + + HHHE
- + R
_ i N
35F K, + 4 W+ 4+ + N
+ o+ + + I+ + + +
+ H 4 . HHE S B+ + + +
+ + + + ++ +HF A+ 4+ + + 4+ + o+
+ + o+ + - + o+ +
30+ + 4+ O HHE B + 4
+ + O 4+ + +
+ o+ O HENEE R R+ 4 +
251 TR -
K + HH +
3 Py W + 4+
+ o+ WEHE I+t +
20F + e HE HH HEHE-E + m
+ + + B ¥ + +
+ + HHEHHE A -HEHI HH + o+
++ + - AH I + + +
+ + + A + HHHHH + + +
15+ + + o+ + MR+ HHAEE W+ + 4+ + .
+ o+ + o+
10+ K, Tiheses wmar  + + * 4
B kT | e +
A A I + + +
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B A T T ++ o+ H++
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o MR A R +
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O A L L 1 1
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F1c. 2. Eigenvalues for K,, Ka’ K, for problem afiro.

are similar for the second to last iteration. We can expect a low number of SYMMLQ
iterations will be required as the barrier algorithm converges, as in the ideal nonde-
generate case.

6.3. Performance of SYMMLQ with the LP preconditioners. As a fur-
ther experiment we modified the barrier LP algorithm to solve (27) using SYMMLQ
with the first four preconditioners M,-M, of §4. We applied the LP algorithm to prob-
lem expl with and without scaling of the data. The iterations required by SYMMLQ
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TABLE 3
SYMMLQ iterations with various preconditioners on problem expl.

Scaled Unscaled
M1 M, M3 M4 M, M, M3 My
17 21 24 17 4 21 25 82
28 25 21 21 72 80 68 98
29 27 19 19 9% 76 72 91
31 29 17 21 88 73 69 83
23 18 22 55 51 52 57
27 19 14 16 51 36 29 42
25 14 12 14 42 27 25 31

OW=-JO ULk W3
(]
-

24 12 9 11 37 20 20 26
23 8 8 9 35 12 12 18
10 23 6 6 7 32 9 9 13
11 21 4 4 4 29 6 6 7
12 19 3 3 3 28 4 4 6
13 18 3 3 3
14 12 3 3 3

are shown in Table 3 for each iteration k of the barrier algorithm. For simplicity
the partition A = (N B) was chosen to be the same for all £, with B being the
optimal nondegenerate basis determined by the simplex method. As expected, the
preconditioners M,—M, improve markedly as the LP solution is approached.

Iterative solution of each KKT system is easier for the scaled problem because
BT = LU is better conditioned:

Scaled Unscaled

cond(B) 14 443
cond(L) 4 4
cond(U) 17 235

For the scaled problem the stopping tolerance for SYMMLQ was taken to be
rtol = 107° (a loose value since the KKT systems need not be solved accurately).
However, rtol terminates solution of the preconditioned system. For the unscaled
problem it was necessary to set rtol = 10710 to obtain sufficient accuracy in the search
direction for the first few values of k. In general it seems that high precision would
be needed for safety: rtol ~ 10715, (This appears to be a general difficulty. If the
original system is Kz = b and the preconditioner is CCT, SYMMLQ terminates when
[C~Y(b— Kx)|| < |C K C~T||||C%x| rtol, since the terms involved can be estimated.
There is no certainty that ||b — Kz|| < ||K||||z||rtol, although ||b — Kz| < ||b||rtol
could be tested after the fact.)

On nondegenerate problems such as this, preconditioners My-M, can be expected
to perform similarly, at least in the scaled case. We expected M, to show an advantage
in the unscaled case, but this did not eventuate. Greater variation can be expected on
degenerate problems when V' does not become suitably small. Further experiments
in this direction remain for the future.

7. Conclusions. For symmetric indefinite systems of linear equations, we have
shown that the Bunch—-Parlett factorization can be used to provide a preconditioner
for the Paige-Saunders algorithm SYMMLQ (§2). This general result led us to con-
sider iterative methods for the KKT systems arising in barrier methods for QP and
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nonlinear programming. The preconditioner (12) should play an important role in
future interior-point implementations for large-scale constrained optimization.

For linear programs, the sensitivity analysis associated with the partitioned KKT
system (10) led us to consider the true sensitivity of K, as reflected by the pre-
conditioner M; and the transformed system K, (13), (14). In turn, the fact that
cond(K, ) is typically much smaller than cond(AD?AT) motivated development of the
preconditioners M,, My, M, (15), (17), (19).

Subject to effective methods for choosing B, we expect these KKT precondition-
ers to bring improved reliability to interior-point LP algorithms. Implementations
based on direct or iterative solves with AD?AT are often remarkably effective, but
the extreme ill-conditioning of the AD?AT systems as solutions are approached makes
their use tantamount to walking the razor’s edge.

A switch to the full KKT system should be beneficial as Gay [Gay89] suggests, par-
ticularly when A contains some relatively dense columns that prevent exact Cholesky
factorization of AD?AT. Fortunately, since B becomes more sharply defined near a
solution, the KKT preconditioners will become most effective when they are most
needed.

Appendix: A preconditioner from the Bunch-Parlett factorization.
The following Fortran 77 routine illustrates the construction of a positive-definite
matrix M = UTDU from the Bunch-Parlett factorization A = UTDU produced by
the Harwell MA27 package of Duff and Reid [DR82], [DR83].

Subroutine syprec overwrites the representation of D in the MA27 data structure.
A typical application would contain calls of the form

call ma27ad( n, nz, ... )
call ma27bd( n, nz, ... )
call syprec( n, la, ... )
to factorize A and compute D, followed by muitiple calls of the form
call ma27cd( n, a , ... )

to solve systems involving M.

X = m—memmmmmm—— — _—

subroutine syprec( n, la, liw, a, iw, negl, neg2 )

implicit double precision ( a-h, o-z )
double precision a(la)

integer*2 iw(1liw)

integer negl, neg2

syprec (SYmmetric PREConditioner) takes the factors

A=U"DU
from Duff and Reid’s Harwell subroutine MA27BD and changes the
block-diagonal matrix D to be a positive-definite matrix Dbar with
the same 1x1 and 2x2 block-diagonal structure.

The eigensystem D = § E @’ is used to define Dbar = Q |E| Q’,
where |E| contains the absolute values of the eigemvalues of D.
The matrix

Abar = U’ Dbar U
is then an exact preconditioner for A, in the sense that SYMMLQ
would take only 2 iterations to solve Ax =D (or 1 iteration if

* K X O® X X K ¥ ¥ X X X ¥
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D = Dbar is already positive definite).

If the original matrix A is close to some other matrix K,
Abar should be a good preconditioner for solving K x = b.

Note that MA27 stores the elements of D(inverse) and ( - U )
within A and IW. However, modifying a 2x2 block of D(inverse)
looks the same as modifying the 2x2 block itself.

10 Mar 1989: First version.
Systems Optimization Laboratory, Stanford University.

* X X ¥ X X X ¥ X ¥ ¥ ¥

intrinsic abs , sqrt

integer alen, apos

logical single

parameter ( zero = 0.0d+0, one = 1.0d+0, two = 2.0d+0 )

negl 0
neg2 =0
nblk abs( iw(1) )
ipos = 2
apos 1

do 100, iblk = 1, nblk
ncols iw(ipos)

if (ncols .1lt. 0) then
nrows = 1
ncols = - ncols
else
ipos = ipos + 1
nrows = iw(ipos)
end if

* Process the diagonals in this block.

alen = ncols
single .true.

do 50, k = ipos + 1, ipos + nrows
if ( single ) then
alpha = a(apos)
J iw(k)
single j -gt. 0

if ( single ) then
if ( alpha .1t. zero ) then

* —— o 1t s e

The 1x1 diagonal is negative.
*x  eme————— -
negi = negl + 1
a(apos) = - alpha
end if
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else
beta = a(apos+l )
gamma = a(apos+alen)

if ( alpha * gamma .1t. beta**2 ) then

The 2x2 diagonal is indefinite.
Find its eigensystem in the form

s )

( alpha beta ) = (¢ s ) (el ) (¢

( beta gamma ) (s -¢c) ( e2 ) (s -¢c)
tau = ( gamma - alpha ) / ( two * beta )

t = abs( tau ) + sqrt( tau**2 + omne )

t =~one / t

if ( tau .1t. zero ) t = - t

c = one / sqrt( t**2 + one )

s = t *c

el = alpha + beta * t

e2 = gamma - beta * t

Change el and e2 to their absolute values
and then multiply the three 2x2 matrices
to get the modified alpha, beta and gamma.

if ( el .1t. zero ) then

neg2 = neg2 + 1
el = - el
end if
if ( e2 .1t. zero ) then
neg2 = neg2 + 1
e2 = =~ e2
end if
alpha = c*%2 ¥ el + sx*2 * 2
beta = c*s *(el - e2)
gamma = s*%2 * el + c**2 * @2
a(apos ) = alpha
a(apos+l ) = Dbeta
a(apos+alen) = gamma
end if
end if
else
single = .true.
end if
apos = apos + alen
alen = alen -1
continue
ipos = ipos + ncols + 1

100 continue

309
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* end of syprec
end
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