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Abstract—We study the preconditioning of symmetric indef- In this paper, we present our findings in our study on one
inite linear systems of equations that arise in interior point preconditioning approach that exploits the block structure of
solution of linear optimization problems. The preconditioning the symmetric indefinite augmented matrix that arises in an

method that we study exploits the block structure of the aug- . - . .
mented matrix to design a similar block structure preconditioner interior-point method for LP. We first transform the augmented

to improve the spectral properties of the resulting preconditioned System into an equivalent reduceck 2 block system. Based
matrix so as to improve the convergence rate of the iterative on the transformed system, we design the preconditioning
solution of the system. We also propose a two-phase algorithm matrix by approximating the block structure of the inverse
that takes advantage of the spectral properties of the transformed ot tha transformed matrix. We also propose a two-phase
matrix to solve for the Newton directions in the interior-point . .
method. Numerical experiments have been performed on some algorithm that takes gdvantage of the spectral p_rOpe_rt'eS _Of
LP test problems in theNETLIB suite to demonstrate the potential the transformed matrix to compute the search directions in
of the preconditioning method discussed. the interior-point method. Phase one employs existing direct
or iterative method to compute the search directions via the
normal equations, while phase two will compute the search

The standard approach to solve the linear system of eqaérections based on the transformed equations by some pre-
tions in interior-point algorithm for linear programming (LP)conditioned iterative method.
uses direct methods based on sparse Cholesky factorizatiom the ensuing sections, we will discuss the construction
of the symmetric positive definite normal matrix, or Bunchef preconditioners, the two-phase algorithm, implementation
Parlett decomposition of the symmetric indefinite augmentégbues, and highlight some preliminary experimental results
matrix. However, as the size of the matrix becomes large, thehieved so far. Finally, we conclude with possible future
computational effort of direct methods grows in the order afirection on this work.
m?3, if the LP data is dense.

Iterative methods such as Krylov subspace methods have Il. PROBLEM EORMULATION
the potential to reduce the computation time by working
with approximate directions rather than exact directions. TheConsider the following LP problem:
amount of reduction achievable by any iterative method is

I. INTRODUCTION

H T
determined by the spectral properties of the coefficient matrix, m;n Z xi b
which determine the convergence rate of the iterative method. st /)x - (1)
Hence, it is important to precondition the coefficient matrix rt 5>6 “
xr,s >

to achieve a small condition number or good clustering of the
eigenvalues. n m mxn

It is known that the spectral properties of both the normalﬂ\;vbr:::qa g,fx(f), zai tf]Re ;‘olinf' R", A e R - The dual
matrix and the augmented matrix deteriorate as the interidr- '

point iterates converge to a solution. In general, however, min Ty — T

—Uuw
the normal matrix is more ill-conditioned than the augmented st. ATy—w+z=c )
matrix, and it is also harder to design a good preconditioner zw >0

for the former than the latter [2]. Hence, we focus our study
on the augmented system of equations. wherez,w € R", y € R™.



The corresponding first order optimality conditions are: In general, it is more difficult to design a suitable precon-
ditioner for the Schur complement matrix than the augmented

fis_:b u matrix, and the form_er i; Iike]y to _be.more ill-conditioned
ATy —w+z = ¢ 3) than. the latter at a given mterlqr-pomt iterate [2]. In the next
XZe = pe section, we study a transformation of the _augr_nented system to
SWe = pe an equivalent reduced system that we believe is more amenable

to the construction of good preconditioners.

where X, S, Z andW are diagonal matrices whose diagonals We use||-|| to denote either the vector or matthxnorm. For

are formed from the vectors, s, z and w respectively,e is any two non-negative numbets and 3, we write a = O(f3)

the n-vector of all onesy > 0 is a barrier parameter. if there is a moderate constantsuch thata < ¢5. We write
To solve for the search directions, we apply Newton's = Q(f8) to indicate thata = O(8) and 3 = O(«). For

method to (3) to obtain the following Newton system o& matrix M, we write M = O(f) to denote|| M| = O(5).

equations: For a vectorr, we usex~! to denote the vector whosigh
a1
A 0 0 0 o0 Az " component isz; ~.
I OT I o0 0 Ay Ty [1l. CONDITIONING OF THE NORMAL EQUATIONS
0 4 0 I -1 As - rd () It is well known that the ill-conditioning of the matrix
Z 0 0 X 0 Az pe — XZe ) . . : :
0 0 W o0 S Aw Je — SWe D in (7) is often due to the separation of its diagonal
elements into two clusters with different orders of magnitude,
where where one cluster corresponds to non-active constraints while
ro— b— Arx another corresponds to active constraints. Supgesmn be
7"2 — w—T—s (5) partitioned as
rg = c— ATy — 2+ w D [Dl 0 }
By substituting 0 D
Az = X_l(ue—XZe—ZAg;) Wherq dlangl = uDl, and dlang) = DQ/M with
As = r, — Az (6) diag(D;),diagD;) = Q(1). Let the corresponding partition
Aw = S~ (ue — SWe — WASs) in A andg be
into (4_1), we can reduce the set of N_ewton equations to the A=[A1, As], Az— Axy . 9| (10)
following augmented system of equations: Axy 2
_D AT Az] [y 7 Let M be the coefficient matrix of the normal equation (8).
A 0 Ay | — | mp ™ When 4 is small, strict complementarity of the iterates z)
and (s, w) imply that we have
where
. 1 -
D = XﬁlZ+571W D1 = ,UDl, D2 = 7D2
o)

g =rqi— X Y ue—XZe)+ S (ue — SWe) — S~ Wr,
This can further be reduced to the normal equations where diagD;) = (1) for i = 1,2. In this section, we shall
assume that < 1.

AD'ATAy = AD g+, (8) For the analysis below, we consider the SVRD; "/ =
UxVT = U3, V{7, whereX; is the square diagonal matrix of
positive singular values. Ldf, be the matrix whose columns
form an orthonormal basis 0¥ (D; /2 AT) = N'(AT). Note
that U, is a null matrix iff V'(AT) = {0}, i.e., iff A; has full
Az = D HATAy —g). (9) row rank. Let, fori,j = 1,2,

The normal matrixAD~'AT in (8) is the Schur comple-
ment of the augmented matrix in (7). After solving Ay in
(8), we may computé\z through

In each iteration of the primal-dual interior-point algorithm, Wij = Ul'(A2Dy ' AD)U;. (11)
solution of either (7) or (8) hgvg to.be cc_)mpute.d. numerically. Lemma 3.1:Assuming thatd has full row rank, theri?/;,
Very often, however, the matri® is highly ill-conditioned, es- . .

. o oo .~ .Is nonsingular.
pecially when the interior point iterate approaches optimality.
This typically causes the coefficient matrix to be highly illProof. Since A has full row rank, it is easily shown that
conditioned even ifA is well-conditioned. Applying iterative N'(AT) N (AT) = {0}. We show thatAZU, has full
solutions such as Krylov subspace method to such systecodumn rank by contradiction. SupposélUsv = 0 for
often encounter exceedingly slow convergence. Furthermoseme v # 0. Then Uy € N(AL). Since we also have
constructing an effective preconditioner for such a systemi§v € N'(AT), this leads to a contradiction. Thag A, has
extremely difficult whenD is ill-conditioned. full row rank andWs, is nonsingular. O



Proposition 3.1:(a) If A; has full row rank, thems(M) ~ By addingAlFl‘1 times (16) to (17), we have
H(AlDflA,{)

(b) If A; does not have full row rank, then

A FT B Az + Adiag(Fy Y, Dy YAT Ay = rp + Adiag Fyt, Dy g

The above equation, together with (16) scaledrby/? gives

1 -
k(M) ~ — || A, Dy AT ||| Wigtl. 12) @3). D
(M) Mgll 1Dy AL [[Way |l (12 4
Note that||IW,,"|| = O(1) sinceWs, is nonsingular. K| < 2maX{HH||, 18], ||\I/||}.
Proof. (a) The result is obvious and we shall omit the proofo,,t The proof is easy and we shall omit it. 0
(b) The matrixM can be written as Lemma 4.3:The inverse of the reduced augmented matrix
in (7) is given b
M = AD'AT 4 A,D; AT (7) Is given by
L/ oy m o =4 . H-Y2(I-P)H"'? H'BS™!
= (Alp1 AT 4 12 A, D; Ag) : K~! = R o1 | @
Thus whereS = BTH-'B + U, andP = H-'/2BS—'BT H~/?
M- 1 22+ Wi Wi T satisfies the conditiod < P < I, i.e., P and I — P are
- ; 2w 112 Wos ’ positive semidefinite. Furthermore,

and we have 1K~ < zmax{||H—1||,||s—1H}

., G 4G WRQ T WEGT! —GT Q! ,+Proof. The proof of (18) can be deduced from [3, p. 389]. By
a —Q'wig ! %Q*l the definition ofS, we have0 < S-Y/2BTH-1BS-1/2 < T,
g and thus||H~'/2BS~1/2|| < 1. This implies that

M~t =

where Q = Way — (PWHG Wi with G = 52 + 12 Why. o 3 - - .
It is clear that M| ~ [|A,D7'AT|/p and (M~ ~ NHT'BSTH < |H V2 \H=Y2BS™Y2|| |S—1/2
1Q1|/p ~ |[Wys'[| /1, and the required result (12) follows V25

readily. 0

N

IN

IV. REDUCED AUGMENTED SYSTEM

Let £, be a given positive definite diagonal matrix withit is easy to see that
the same dimension aB,. (Usually we choose&r; to be a
positive multiple of the identity matrix.) Instead of computing & 'l < 2m«“JLX{IIH_I/Q(I - P)H 2|, |H"BS!, IIS_IH}

max ([H], 7).

Ax andAy from (7), we propose to compute them by solving . .
a smaller augmented system given in the next lemma. < Qma"{”H I 118 ”}
Lemma 4.1:The solution of (7) can be computed from the 0
following reduced augmented equation (RAE): Letthe SVD ofBbe B = UXVT = U; %, VT, whereX; is
H B Ay h the diagonal matrix of positive singular values. H&keandV;
BT _y Ay = F’I/Qg (13) are the matrices whose columns form an orthonormal basis of
! ! R(B) andR(BT), respectively. Let/; andV; be the columns
K of U and V other than those ii/; and V;, respectively.
whereFy} = E1 + D, and Then the columns ot/ and V; form an orthonormal basis
Ty _ T H
A#y = F; V25 Auy of N(B") _A./(Al) and_J\/(B), respectively.
o D -1 Lemma 4.4:The following results hold.
= M1y -
H = Adiag(Ffl, D2—1)AT (14) (a) Consider the matrif! := BBT 4+ uW. We have
—1/2
B = AFY pH™' = UsWy'UF + O(p), (29)
h = + Adiag F; ', Dy 1)g - . )
where Wa, = UIWU,. Thus [[H7Y| = |[Wy'||/n if

Once Ay has been computed\z, can be readily computed N(AT) # {0}.
from the equation

(b)
Azy = Dy (ATAy — go). 15
2 = Dy(A280 - 02) -1 BTH'B = Vi(I + O(u)V. (20)
Proof. By substituting the partitions oD, A and g into (7)
and usingAz, = Dy (AT Ay — g»), we get If B has full column rank, the®”H='B = I+ V,0(u)V{L.
DAz + ATAy = ¢ (16) (c) ConsiderS = BTH~'B 4 ¥. We have

~ —1
AAzy + AsDy AT Ay = o+ AsDylge.  (17) pS™t = 1/2(1/2TD1E;11/2) Vy' +O0(n).



Proof. (a) LetW := UTWU be written as A. Residual vectors

Wi Wis Lemma 4.5:SupposeAy is computed approximately from
W = wT W ; the normal equation (8) with residual vector = r, +
12 22 AD 'g — AD7'ATAy. Assume that oncedy is given,
whereW;; = UTWU, for i,j = 1,2. We have Ax can be computed without rounding errors from (9), and
oo ’ ’ Az, As, Aw are also computed exactly from (6). Then the
H—u S+ Wi pWio T residual vector associated with the Newton equation (4) is
Wi ((Was : given by
Thus [v; 0; 0; 0; 0].
Gl —pGTIWQ T WEGTE GTWiQ Tt Proof. The proof is straightforward and is thus omitted.[]
H' = U uT
Q71W$G71 _lQ—l
s Lemma 4.6:SupposeAy and Az, is computed approxi-
whereG = %2 + uWy; and Q = —Way + uWhLG~1W,.  mately from the RAE (13) with residual vector
L =L S )L an ]
pH™' = —U,Q 'UL +0(n) = UaWay UL + O(p). " g, BT - || Az
This completes the proof of (19). Assume that oncAy andAz, is given,Azs, can be computed

without rounding errors from (15), anflz, As, Aw are also

(b) Note that we have computed exactly from (6). Then the residual vector associated

BTH'B = Wy, (G - /LG71W12Q71W1€G71) ¥, ;' with the Newton equation (4) is given by
Since G~ = X172 + O(y), we get the result in (20) readily. € — AF V0, (% : 0): 0; o} .
When B has full column rank}; is an orthogonal matrix, Proof. It i iiv sh that
and henced/, VT — I. roof. It is easily shown tha
(c) It is clear thatS can be written in the form ~DAz+ATAy = g—[F?p; 0]
¢ _ v I'+0(p) +p¥i p¥is VT ANz = 7, — (§ —AlFf1/277),
T )
P12 #¥22 and the required result follows readily from the above equa-
where W;; = V7D, E;V;, for i,j = 1,2. Using the same tions. 0
proof as in (a), the required result is easily shown. a

" V. PRECONDITIONING APPROACH
Proposition 4.1: Assume thaj < 1 so that|| | < || B|.

For the reduced augmented matrix in (13), the effect of
an ill-conditioned D is less prominent, thus we expect the
construction of an effective preconditioner to be easier. We

k(K) = O(1) max{L, || B||?} max{|(BBT) |, 1}; shall _study an approach of designing the preconditioner that

herwi exploits the block structure of the inverse of the reduced
Otherwise, augmented matrix in this section.

(K = o) max{1, | B} max{u|(BBT) |, (Vi D1 BT Va) 1|1} The two gen_eral gwd_ellnes to design a preconditioning
15 matrix P for a given matrixX are:

(b) If A; does not have full row rank, then 1. P should approximatek such thatP~'K has
o1 _ L good spectral properties.

K(K) = i)max{l,|\B|\2}max{\|W221||, 12" Dr B V) 71} (21) 2. Linear system withP as the coefficient matrix

should be much easier to solve than the original

system.

In this section, we shall attempt to construct a precondi-

is nonsingular, we havgH~'|| = [(BB );1” +T07(lf)- I tioner for the reduced augmented matrix by approximating the
Ay also has full column rank, the§ = B*(BB")™'B + pjock structure of its inverse, as proposed in [4].

> _ -
v :_1[ Tab |mply|njg EqatHS Hl'=1+0(u). Thus  consider the block structure of the inversefof
[ = O() max{[|(BBT) |, 1}. 1 g-lpe-lpTH-1 p-1pg-1
—1 H='—-H'BS™'B'H H='BS
(b) From lemma 4.3, we havéH | = W'/, &K = §-1pTH-1 _g-1 (22)
and |51 = (V5" DBy Ve) !/ Thus [K-Y| =
O max{ W'l (Vs Dy ' V2) 11}) /. and the  re-
quired result follows readily. a S = BTH'B+ 0. (23)

(@) If A; has full row rank, thenBB” is nonsingular and if
A; has full column rank

Proof. From lemma 4.2, and noting thgff|| ~ || B||?, it is
easy to see thatK|| = O(max{l, IBI?}). (@) SinceBBT

where S is the Schur complement matrix &€, that is,



This naturally leads us to consider a preconditioRewith  With the above expression, it is easy to see that the result

the following block structure stated in the theorem holds true. 0
~ ~ . ~ ~ . Proposition 5.1: Suppose we taked = diag H). The
1 H-'-H'BS'BTH-' H-'BS™! op PP 9H)
pl— 1 > = (24) matrix
c SleTHfl —571

e Y =G+ (I-G)H Y?HH'/? (30)
whereH and.S are positive definite approximations &f and
S, respectively. hasp positive real eigenvalues clusteredlat O(yx), and the
To apply the preconditione®, in a Krylov subspace femainingm — p positive real eigenvalues are(y).
mgthod, the preconditioning step ' [u; v] can be computed proof Let 7 — BTH-1/2. Then
efficiently as follows:
_ T T —1
Compute w = H 1y G =+
C te » — §-1(BT . which has the same form as the matrix in part (b) of lemma
ompute z = 57 (B w —v); 4.4. ThusG = Py(I + O(u))Pf, where the columns oP;
Compute P71 [u; v] = [frl(u — Bz); z|. forman orthonormal basis A (JT). It is easily deduced that

I+0() 0 } O(p)

We avoid explicitly computingﬁ—1 by pre-computing the Py P o o o

sparse Cholesky factorization §f and then solve the resulting
linear system each time we need to evaluate S~ (BTw— Now
v) in the preconditioning step. Similar remark holds for.

Thus if H and S are effective approximations df and.S
which are relatively simple to compute, the resulting precon- B L14+0(n) O(w)
ditioned system is expected to perform better than the original B [ O(p) O(n) ] 7
system under an iterative solution method. . . . . .

Theorem 1:(a) Suppose§ — BTH B+ is used inP.. whereX; is the diagonal matrix of positive singular valu%s of
Then P! K hasp eigenvalues clustered at The remaining i —

: ; Remark 5.1:The advantage of factorizingB* B =

m real eigenvalues are those of the matrix F*1/2A1TA1F*1/2 compared toBBT — A F-LAT is the

Yi=G+ (I-G)H V?HH /2, (25) following. If the partition of D does not change from one
IPM iteration to the next, we can make use of the factorization
R R R AT Ay = LAL™ to factorize BT B = LAL" in the next IPM
G = H'Y?BS'BTH'2 iteration, wherel, = F~1/2L. But the same cannot be done

Il T
(b) Supposefl = H is used in the precondition?,. Then 0" 55"
P7'K has 1 as an eigenvalue with multiplicityn. The V1. TWO-PHASE ALGORITHM DESIGN

c

remainingp eigenvalues are those of the matix 1.

0 ~ -
} PTHY2HH-'/2P.
I

PTH'?HH'?P = PT(JT )P+ uP"(HPWH )P

where

From the discussion in the previous sections, we can

Proof. It is easily verified that deduce the following features of the preconditioner:
H'H-H'BS-'BT(H'H-1) H'B5'(S-BTH'B-1V)
PcflK — R N R N . (26)
S1BT(H'H —I) S"YBTH 'B+0)
€) SinceS = BTH-1B + 1, the (2,2) block in (26) reduces _
to I,. Thus 1. Spectral properties of the reduced augmented
N R . R matrix K in (13) improves as elements i, get
. H™'H-H'BS'BY'(H'H-1) 0 smaller andD, get larger. In the context of interior-
PoK = S -(27) point algorithm, we expects to become better-
STBN(HTH —1) Iy conditioned as the optimal solution is approached.
It is clear thatP; ! K has1 as an eigenvalue with multiplicity 2. Certain amount of computational work is required
p, and the remaining eigenvalues are determined bylit$) to compute, S and the preconditioning step de-
block. Note that the(1,1) block of above preconditioned scribed in the previous section. HencH, and S
matrix is similar to should be simple enough for efficient computation,
—~ ~ yet sophisticated enough for effective precondition-
G+ (I-GH'?HH™'2 (28) ing.

(b) Whenk = K, the preconditioned matrix in (26) becomes Note that point 1 is in contrast to the situation commonly
1 a1 encountered in applying preconditioned conjugate gradient

I, K 'B(I-S7'9) : :
P'A = R . (29) method to the normal equations, where the linear system
’ 0 S-1s usually becomes more ill-conditioned as the interior-point



algorithm progresses, thus slowing the convergence rate of g, the algorithm switches to phase two, where we solve the
iterative solution towards the end. reduced augmented equations (13) iteratively with symmetric

Hence, we propose a two-phase algorithm to solve for th@asi-minimal residual (SQMR) method [1]. The implemen-
Newton step directions in the interior-point iterations. In th&tion of our algorithm can thus be summarized as follows:
initial phase of the interior-point algorithm, we apply some
existing iterative method to solve for the step directions. To-
ward the end of the Newton iteration, when it is advantageous
to employ the proposed reduced augmented system, we switch
over to this system of equations.

By now we can identify a few issues in the design of this
two-phase algorithm, namely, the criterion used to switch from
phase 1 to phase 2, and partitioning of the mafidnto D,

S1. Initialize the interior-point algorithm iniesoL

S2. If elements inD; are not much smaller than
those inD», then

(Phase ) Solve for the search directions using PCG
on the normal equations;

else

(Phase 2 Solve the resulting reduced augmented
system of equations for the search directions by

and Do SQMR method.
A. Switching criterion S3. If the interior-point iterate converges, stop the
. . ) iteration. Otherwise, solve for the next search direc-
There are a few switching criteria that seem to work fine: tions

1. Switch when the duality gap falls below a certain

threshold. In the experiment, we used incomplete Cholesky factoriza-

2. Switch when the elements of matria form 2 tion of the normal matnx as the preconditioner mlPC.G. The
- drop tolerance for the incomplete Cholesky factorization was
distinct clusters. set t010-3

3. If an iterative method is employed in phase 1] , .
switch when it takes excessive number of iterations VW& assigned elements it that are less tham to D, and

to converge. the rest toD,. When the geometric mean @l, is more than
108 times larger than that ab;, we switch to phase 2 of the

Cri\tlgﬁoire still in the process of fine tuning the SWHChm%Igorithm.
| _To perform the preconditioning step in SQMR, we chose
B. Partitioning of matrixD H to be the diagonal matrix formed by taking the diagonal of

When the elements oD form two distinct clusters of H, and chose5' to be
different orders of magnitude, a convenient partition is to
assign the cluster with smaller value 3, and the other
cluster to D,. However, sometimes no obvious cluster ca
be determined. In that case, one strategy is to assign elemerit
in D that are less than to D, and assign the rest tDs. The interior-point algorithm in LPsoL settles on a solu-
This simple strategy looks reasonable on most of tiEFINB  tion when the feasibility and duality gaps are small enough.
LP problems. We are still fine tuning the strategy to determirgpecifically, a solution is considered to have converged when

S = BTH B+

SStopping criteria

the clusters inD. the following condition is satisfied:
VII. NUMERICAL EXPERIMENTS B 7] Irall Irall 1272 + sTw)| ~10-%
In this section we present some experimental results of "\ 1+ 16" 1+ |lcl]” 1T+ |lull” n+mny '

applying the proposed two-phase algorithm and the precon-

ditioned reduced augmented system to solve some of the Wperen, is the number of nonzeros im, and the rest of the
problems in the MTLIB suite. The purpose is to demonstrat¥ariables are taken from the residual equations in (5).

that the proposed preconditioning approach and the idea of th&y Lemma 4.5, the stopping criterion used in PCG for
two-phase algorithm have the potential to solve such probleg@ving the normal equations is

efficiently. All the numerical experiments were carried out in

MATLAB on a Pentium Ill 1 GHz PC with 256MB of RAM. vl < spT
A. Implementation wherek p is a constant parameter to be set in the experiment.
We implemented our two-phase algorithm on thavAB - Similarly, by Lemma 4.6, the stopping criterion used in

based software packagelAsoL [5], which employs the SQMR for solving the reduced augmented equations is
predictor-corrector primal-dual interior-point method to solve 1y 12
linear programs. The numerical experiment was run by replac- <||§ — Ak, Tl [IFy ?7|> < ror

ing the direct solver in LlPsoL with our two-phase algorithm. 1+ 0 "1+ el

In phase one, we use the preconditioned conjugate gradient

(PCG) method to solve the normal equations (8) iterativeltherer is a constant parameter to be set in the experiment.
When the elements i; become much smaller than those in The values we set fotp andxg were both equal ta0—2.



C. Experimental results VIII. CONCLUSION

In our numerical experiment, we tested our two-phase In this report we have presented a preconditioning approach
algorithm on several problems from theeRLiB collection that transforms the augmented system into a reduced system
of LP test problems. The vital statistics of these problems atteat is likely to become better-conditioned toward the end of
summarized in Table I. the interior-point algorithm. A preconditioner is then designed

We have generated three sets of results from the experimentapproximating the block structure of the inverse of the
as presented in Table II. The first column displays the runnimigansformed matrix to further improve the spectral properties
time taken by direct solution of the normal equations, thaf the transformed system. Capitalizing on the special spectral
is, the original LpsoL was used to solve the problemsproperties of the transformed matrix, we also proposed a two-
The second column shows the results of applying PCG phase algorithm that solves the linear system using an existing
the normal equations, while the last column contains thiechnique such as PCG in the beginning, and then switches to
results generated by our two-phase algorithm, which issalve the reduced augmented system when the interior-point
hybrid of PCG on the normal equations and SQMR on theerates approach a solution.
reduced augmented equations. A cros$inh the table under  The experimental results presented in the last section have
a particular method indicates failure to converge to a soluti@emonstrated the potential of our proposed method in solving
for the corresponding problem using that method, while a dalstige scale LP problems. In particular, we have seen that
=" under the hybrid column means that the algorithm did nat greatly enhances the performance of iterative solution of
switch phase. In the experiment, the number of PCG iteratiothg linear equations. The results have also highlighted several
was capped ahax(500, m), wherem is the size of the normal areas of the method that need to be further developed and
matrix. refined.

Tables Ill and IV show a detailed breakdown of the number 1) Fine tune the Switching mechanism to make Optimum
of iterations taken by the iterative methods on the problems  yse of the complementary methods in phase one and
pds-06 and maros-r7 , respectively. In each table, the two.
leftmost column indicates the interior'pOint iterates, the next 2) |mprove the preconditioner design to minimize the com-
two columns show the number of PCG iterations in the putationa| effort and yet remain effective in improving
predictor and corrector step of each interior-point iterate, while  the spectral properties.
the last two columns show the number of iterations used by3) Handling of dense columns and rows in the constraint
the two-phase algorithm. matrix in PCG and SQMR, respectively.

D. Discussion Finally, the next step that we can explore to take this

We can observe from the experimental results that tiigratlye approach to the next level may include the following

number of PCG iterations on the normal equations generaﬁ{/eas' ) ) o
increases as the interior-point progresses, while that of the rel) Reduce the computational effort in the preconditioning
duced augmented equations generally decreases as the interior- Step of the reduced augmented system by using incom-
point approaches a solution. The results also indicate that the Plete Cholesky factor of' rather than the exact factor.
PCG method fails to converge to a solution for some of the 2) Experiment with another form of block preconditioning

problems. by letting H be incomplete factorization o and .S be
With the two-phase algorithm, the success rate is much diag(5S).
higher, and it converges to a solution faster than using the REFERENCES
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SOLUTION TIME IN SECONDS, ' X’ INDICATES FAILURE TO CONVERGE -’

Problem Rows Columns Nonzeros
afiro 27 51 102
adlittle 55 137 417
israel 174 316 2443
fffff800 501 1005 6283
ship12s 466 2293 6556
ganges 1137 1534 6593
sctap3 1480 3340 9734
bnl2 2268 4430 14914
pds-02 2788 7551 16230
degen3 1503 2604 25432
d2g06¢ 2171 5831 33081
pilot 1441 4657 42300
pds-06 9617 29087 62582
pilot87 2030 6460 72479
pds-10 16239 49613 106802
fitad 25 10524 129042
osa-07 1118 25067 144812
maros-r7 3136 9408 144848
pds-20 33250 107627 231155
TABLE |
PROBLEM STATISTICS
Problem Direct method PCG Hybrid metho
afiro 0.24 0.26
adlittle 0.37 0.50 0.51
israel 1.33 X 2.98
fffff800 1.96 28.97 10.74
shipl2s 0.92 X 3.61
ganges 1.82 X 11.85
sctap3 1.81 5.11 5.04
bnl2 8.95 X 256.36
pds-02 9.59 48.31 34.07
degen3 12.88 X 90.71
d2g06¢ 19.50 X 390.10
pilot 31.28 X 258.55
pds-06 163.41 520.21 345.67
pilot87 144.80 X 1025.68
pds-10 884.67 X 891.10
fit2d 20.29 20.00 -
osa-07 33.08 X 73.29
maros-r7 152.19 X 118.33
pds-20 10839.64 X 5996.89
TABLE ||

INDICATES NO SWITCHING HAS TAKEN PLACE

P PCG Hybrid 1P PCG Hybrid
step| P C|[ P Cstep] P T C P]C
1 2 1 2 1| 24 67 62 | 67 62
2 1 2 1 2|25 62 59 | 62 59
3 2 2 2 2 |26 69 64 | 69 64
4 3 3 3 3| 27 67 63 | 67 63
5 3 3 3 3| 28 72 67 | 72 67
6 3 4 3 4 | 29 72 67 | 72 67
7 3 2 3 2 | 30 77 72 | 77 72
8 3 3 3 3131 78 75 | 78 75
9 2 3 2 3|32 86 76 | 86 76
10 2 3 2 3 |33 98 90 | 74 52
11 2 3 2 3|34 90 91 | 67 60
12 3 3 3 31|35 111  113| 77 46
13 5 5 5 5 | 36 125 122 | 67 49
14 6 7 6 7 |37 158 146| 68 41
15 8 7 8 7 | 38 181 178 | 52 37
16 9 8 9 8 | 39 175 160| 48 35
17 12 8 | 12 8 | 40 237 237| 50 37
18 18 17| 18 17| 41 249 242| 36 29
19 20 19| 20 19| 42 358 292| 48 9
20 32 29| 32 29| 43 500 500| 2 0
21 53 53| 53 53| 44 358 190| 2 0
22 73 71|73 71

23 56 48| 56 48

TABLE Il
PROBLEM pds-06 : NUMBER OF ITERATIONS TAKEN BY PCGAND
HYBRID METHOD FOR PREDICTION(P) AND CORRECTION(C) IN EACH
INTERIOR-POINT (IP) STER THE HYBRID METHOD SWITCHES PHASE
AFTER 32 IPSTEPS

IP PCG Hybrid
step] P | C PJC
1 1 0 1 0
2 1 1 1 1
3 2 1 2 1
4 2 1 2 1
5 6 5 6 5
6 4 3 4 3
7 6 5 6 5
8 10 9 10 9
9 36 32 | 36 32
10 210 206| 2 2
11 500 500| 3 3
12 500 500| 3 3
13 500 500| 4 4
14 X X 4 4
15 4 3
16 2 2
17 2 2

TABLE IV
PROBLEM maros-r7 : NUMBER OF ITERATIONS TAKEN BY PCGAND
HYBRID METHOD FOR PREDICTION(P) AND CORRECTION(C) IN EACH
INTERIOR-POINT (IP) STER THE HYBRID METHOD SWITCHES PHASE
AFTER 9 IP STEPS



