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Abstract
Neuroprotection and brain repair in patients after acute brain damage are still major unfulfilled
medical needs. Pharmacological treatments are either ineffective or confounded by adverse effects.
Consequently, endogenous mechanisms by which the brain protects itself against noxious stimuli
and recovers from damage are being studied. Research on preconditioning, also known as induced
tolerance, over the past decade has resulted in various promising strategies for the treatment of
patients with acute brain injury. Several of these strategies are being tested in randomised clinical
trials. Additionally, research into preconditioning has led to the idea of prophylactically inducing
protection in patients such as those undergoing brain surgery and those with transient ischaemic
attack or subarachnoid haemorrhage who are at high risk of brain injury in the near future. In this
Review, we focus on the clinical issues relating to preconditioning and tolerance in the brain;
specifically, we discuss the clinical situations that might benefit from such procedures. We also
discuss whether preconditioning and tolerance occur naturally in the brain and assess the most
promising candidate strategies that are being investigated.

Introduction
Organisms have evolved mechanisms to protect against tissue damage and to compensate (or
even regenerate) in the event of injury. The two most elementary challenges, and thus the
greatest evolutionary pressures, for living organisms are infection and deprivation of substrate
or energy. Pathophysiological research has focused on mechanisms by which tissue is damaged
by noxious stimuli or processes and how to prevent this injury.

To identify endogenous mechanisms of protection and repair, and to make use of these
mechanisms therapeutically, biomedical investigators have developed preconditioning
strategies. Preconditioning is a procedure by which a noxious stimulus near to but below the
threshold of damage is applied to the tissue. Shortly after preconditioning or after a delay, the
organ (and therefore the organism) develops resistance to, or tolerance of, the same, similar,
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or even different noxious stimuli given beyond the threshold of damage. Preconditioning
thereby protects against subsequent injury.

Ischaemic brain injuries, resulting either from global or focal decreases in perfusion, are among
the most common and important causes of disability and death worldwide. The consequences
of global cerebral ischaemia after cardiac arrest (and successful resuscitation), focal occlusions
or disruption of brain vessels (ie, stroke, including subarachnoid haemorrhage and
intraparenchymatous haemorrhage), and ischaemic brain damage after cardiac or brain surgery
affect many millions of people in the USA alone.1,2 Research into preconditioning aims at
developing new therapeutic approaches to benefit these patients. On the one hand,
preconditioning is an attractive experimental strategy to identify endogenous protective or
regenerative mechanisms that can be therapeutically induced or supplemented. On the other
hand, preconditioning could be used as a therapeutic technique by inducing tolerance in
individuals in whom ischaemic events are anticipated, such as high-risk surgical cohorts or
patients with subarachnoid haemorrhage or transient ischaemic attack. Many articles have
reviewed various features of ischaemic preconditioning, tolerance, and endogenous
neuroprotection in the brain.3-18 In this Review, we give a brief overview of preconditioning,
including ischaemic preconditioning, and its clinical potential and discuss the therapeutic
exploitation of endogenous neuroprotection. Additionally, we hope to expand the neurocentric
view of preconditioning and tolerance held by neuroscientists and neurologists to include the
immune system.

Induction of ischaemic tolerance
Many pathological pathways converge on shared pathways of cell injury, death, and repair.
For example, although the causes of acute neurodegeneration (eg, stroke) and chronic
neurodegeneration (eg, Parkinson’s disease) are different, the mechanisms of cell injury—
including excitotoxicity, inflammation, and apoptosis—overlap,19 as do the pathways of
survival and regeneration. Therefore, the options for inducing preconditioning and tolerance
are not specific to the type of injury, which is important for the clinical adaptation of this
technique. The table gives an overview of the different types of preconditioning (cross, remote,
immunological, pharmacological, anaesthetic, mimetic, and effector).20-47

Preconditioning can protect the brain either almost immediately after stimulation (known as
early, rapid, or classical preconditioning) or after a delay of 1 to 3 days to induce protein-
synthesis-dependent protection (delayed preconditioning). Most stimuli can cause both early
and delayed preconditioning, and most, but not all, stimuli leave an unprotected time window
between early and delayed preconditioning.24 Irrespective of the rapidity of onset, protection
by preconditioning usually never lasts more than a few days. Of note, a recent study showed
that a series of repetitive hypoxic preconditioning stimuli can induce neuroprotection in the
retina that last many weeks. Such long-term tolerance might be associated with neuronal
plasticity, including long-term potentiation, or long-lasting cellular memory associated with
immune tolerance.48

Rapid preconditioning is appealing practically and clinically because this technique can be
applied therapeutically in the same setting as procedures with high risks of complication, such
as cardiac or brain surgery. Most of the experimental and clinical research in cardiology has
thus focused on early preconditioning. Conversely, because protection conferred by delayed
preconditioning seems to be more robust for the brain than that conferred early, delayed
preconditioning has received more attention in neurology. However, although there are
effective protocols for early preconditioning for the brain,49 there are few formal comparisons
of early and delayed procedures for neuroprotection.50
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The recently described event of postconditioning is commonly discussed in the context of
preconditioning. Postconditioning is a form of therapeutic reperfusion by which an organ is
intermittently reperfused, for example by a stuttering opening and closing of an experimentally
(or clinically, as in angioplasty or in organ transplantation) occluded artery. Postconditioning
is a new neuroprotective approach for lessening injury in focal ischaemia and reperfusion.51
The benefits of this procedure seem to be mediated, at least in part, by molecular pathways
similar to those that control preconditioning.52 As an experimental strategy postconditioning,
like preconditioning, might lead to the discovery of endogenous mechanisms of protection and
repair. However, postconditioning is unlikely to be of clinical relevance as a therapeutic
strategy for ischaemic brain damage, and therefore will not be discussed further in this Review.

Genomic reprogramming
The induction of ischaemic tolerance is accompanied by substantial change in gene expression,
suggesting that preconditioning stimulates a fundamental genomic reprogramming of cells that
confers cytoprotection and survival.6 The genomic response after ischaemic preconditioning
is a signature of the complex interplay of multiple signalling pathways. These highly
specialised pathways in different cell types of the brain seem to refine the cellular and systemic
response to combat the noxious stimulus. Hundreds of genes are either upregulated or
downregulated in response to ischaemic preconditioning stimuli.53-55 Changes in gene
expression differ between harmful ischaemia and ischaemic preconditioning. Preconditioning
seems to attenuate the response to ischaemia.54 Tolerance induced by ischaemic
preconditioning changes the expression of genes involved in the suppression of metabolic
pathways, immune responses, ion-channel activity, and blood coagulation.54

Gene expression is regulated by transcription factors but also depends on epigenetic
mechanisms such as DNA methylation and histone modification, which modify the chromatin
structure that controls access of transcription factors to regulatory loci. Inhibition of DNA
methylation and increased histone acetylation have neuroprotective effects in experimental
models of stroke.56 Ischaemic preconditioning induces substantial changes in acetylation of
the H3 and H4 histones, which are associated with neuroprotection (Yildrim F, Meisel A,
unpublished). These changes seem to facilitate widespread changes in transcription and support
the concept of genomic reprogramming by preconditioning. Pharmacological inhibition of
histone deacteylases with trichostatin A leads to increased histone acetylation and has a
neuroprotective effect.56-62 Inhibition of histone deacteylases increases the production and
function of regulatory T cells63 and might thereby augment protective immune mechanisms
associated with endogenous tolerance. Epigenetic mechanisms of gene regulation might
therefore provide another avenue of therapeutic neuroprotection.62

Hypoxia-inducible factor: a regulator of ischaemic preconditioning?
One of the key regulators of the genomic response after ischaemic preconditioning is the
transcriptional activator hypoxia-inducible factor (HIF). This protein is a heterodimer with an
unstable α-subunit (HIFα) and a stable β-subunit (HIFβ).64 HIF is regulated by an
evolutionarily conserved pathway mediated by oxygen-dependent post-translational
hydroxylation of HIFα. Under typical oxygen conditions, HIFα becomes hydroxylated at two
prolyl residues by members of the prolyl-4 hydroxylase domain family, generating a binding
site for a component of the ubiquitin ligase complex. Polyubiquitination tags HIFα for
proteasomal degradation. The activity of prolyl-4 hydroxylase domain proteins is fully
dependent on oxygen. Under hypoxic conditions, HIFα is not degraded; it accumulates,
dimerises with the HIFβ subunit, and transactivates about 100 genes. These genes encode
proteins involved in oxygen transport (erythropoietin), angiogenesis (vascular endothelial
growth factor [VEGF] and angiopoietin-2), vasomotor control (adrenomedullin and β-
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adrenergic receptors), cell survival (VEGF and erythropoietin), pH regulation (carbonic
anhydrases), and energy metabolism (glucose transporters and glycolytic enzymes).64 HIF
might thereby support tissue oxygenation and cellular energy preservation after cerebral
ischaemia. Ischaemic preconditioning activates HIF1—the best known member of the HIF
family—and its target genes.65-71 HIF1 activation is neuroprotective,47 whereas a neuron-
specific HIF1α deletion exacerbates brain injury in an experimental model of stroke.72
Furthermore, HIF and its target gene VEGF are upregulated in neurons that are connected to,
but remote from, the infarcted area.73 Because neurons projecting to an infarcted lesion are at
risk of delayed neuronal death through loss of trophic support (eg, growth factors and
excitation) by surrounding cells in the damaged area, upregulation of trophic cytokines might
prevent neuronal death and support axonal sprouting into the penumbra.74

By contrast with the events in focal cerebral ischaemia,72 neuron-specific HIF1α deletion
decreased brain damage in a mouse model of global ischaemia.75 Proapoptotic genes are
downregulated, whereas prototypical HIF-dependent neuroprotective genes are regulated
similarly in the absence and presence of HIF1α in the brain, suggesting a functional redundancy
of their transcriptional control in this experimental strategy.75 This suggestion is supported by
the observation that the transcriptional response to hypoxia is controlled not only by HIF1α
but also by EPAS1 (endothelial PAS domain protein 1; formerly known as HIF2α).76,77
Additionally, HIF1α knockdown mice maintain their ability to develop ischaemic tolerance as
a result of ischaemic preconditioning,72 supporting the conclusion that HIF1α is not essential
for conferring robust neuroprotection. However, the situation is much more complex because
HIF transactivates not only prosurvival factors but also proapoptotic proteins such as
BNIP3.78,79 As with other regulating factors involved in the stress response, HIF coordinates
both cell survival and death mechanisms.47

HIF1 indisputably has an important role in the complex transcriptional response to hypoxic-
ischaemic brain damage; however, whether the effects of HIF1 activation are predominantly
beneficial for the CNS is still unclear.80 Therefore, a comprehensive understanding of the
prosurvival and pro-death mechanisms of HIF is crucial for developing new pharmacological
strategies for stroke treatment. The prolyl-4 hydroxylase domain proteins, which regulate HIF,
are promising targets.

Of the three isoforms, prolyl-4 hydroxylase domain 2 is most important for HIF regulation;
81 the neuroprotective effect of inhibitors of these proteins is dependent on the ability of those
inhibitors to activate HIF1.72 Prolyl-4 hydroxylases belong to the iron (II) and 2-oxoglutarate-
dependent family of oxygenases.82 Chelators of iron such as desferrioxamine induce not only
HIF1 and its target genes but also neuroprotection.39,66,83 Because iron chelators might have
many unwanted side-effects, more specific HIF-stabilising prolyl-4 hydroxylase domain
antagonists that compete with the binding of the natural cofactors might provide
neuroprotection in stroke.47,84 Some of these small-molecule inhibitors such as FG-2216 are
being investigated in phase II clinical trials in anaemic patients with chronic kidney disease.

Improving outcome after stroke
The endogenous response aimed at improving outcome after decreased substrate delivery to
the brain (ie, ischaemia), which is at least partly mediated by HIF, relies on four basic actions:
increased substrate delivery, decreased energy use, antagonised mechanisms of damage, and
improved recovery. Preconditioning can modulate all four of these actions.

Increased substrate delivery
Substrate delivery to the brain depends mainly on cerebral perfusion. At the cellular level,
delivery is mainly affected by substrate storage and uptake. Perfusion changes in cerebral blood
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flow might be implicated in ischaemic tolerance. Many studies investigating cerebral perfusion
in animals that did and did not receive preconditioning in the acute phase after detrimental
cerebral ischaemia showed no notable increases in cerebral blood flow in the tolerant state.
85-88 By contrast with the acute phase, an increase in cerebral blood flow in the subacute phase
after ischaemia is seen in the penumbra of cerebral ischaemic lesions in animals that have
received preconditioning.89 Furthermore, ischaemic tolerance is associated with the
preservation of microvascular perfusion during stroke.90 In immature brains, preconditioning
attenuates the decrease in cerebral blood flow during severe ischaemia. The preservation of
cerebral blood flow is accompanied by the induction of many genes involved in vasoregulation
and angiogenesis, as well as by an increased vascular density as early as 24 h after
preconditioning.91 Angiogenesis has an important role in neuroregeneration after stroke67,
92 and the growth of new vessels is stimulated by the VEGF and erythropoietin cytokines that
are regulated by HIF1.67,93,94 Adrenomedullin, another HIF1-regulated cytokine, is also
involved in ischaemic tolerance.95 This cytokine improves recovery after stroke and is
associated with an induction of angiogenesis and increased cerebral blood flow.96,97
Ischaemic preconditioning enhances angiogenesis within the first 2 weeks of stroke in the
ischaemic penumbra.98

The decrease in post-ischaemic brain oedema by ischaemic preconditioning has been
attributed, at least in part, to the protective effects of preconditioning on cerebral endothelial
cells.99 Post-ischaemic microvascular endothelial apoptosis is mitigated by ischaemic
preconditioning via the induction of the phosphoinositide 3 (PI3)-Akt kinase pathway.100 The
kinase activates survivin, which antagonises apoptosis-inducing factor.100-102 The PI3-Akt
kinase pathway is crucial for inducing the tolerant state in the CNS103,104 and is mainly
activated by growth factors and cytokines (such as VEGF and erythropoietin), which induce
antiapoptotic mechanisms. Nitric oxide generated by endothelial nitric oxide synthase is
important for vascular function, and nitric oxide has vasodilatory, anti-inflammatory, and
antithrombotic properties. Augmentation of nitric oxide production increases cerebral blood
flow, which can lead to neuroprotection during brain ischaemia. Endothelial nitric oxide
synthase regulated by the PI3-Akt kinase signalling cascade contributes to ischaemic tolerance.
105

Astrocytic glycogen, which provides the main energy reserve in the brain during cerebral
ischaemia,106 is neuroprotective.107,108 Preconditioning in immature brains increases
glycogen and delays energy depletion caused by ischaemia,109 which suggests that glycogen
contributes to energy preservation during cerebral ischaemia. Glucose transport is crucial for
neuronal survival during anoxia. Preconditioning increases glucose transport activity, whereas
blocking glucose uptake in neurons abrogates anoxic tolerance induced by preconditioning.
110

Metabolic downregulation?
Metabolic downregulation, as well as channel arrest, are major mechanisms of hibernation and
anoxic tolerance in vertebrate species.111 Preconditioning induces evolutionarily conserved
responses to low blood flow and oxygen availability that also occur during hibernation.6,
104,112,113 Preconditioning regulates genes that decrease ATP use or lead to channel arrest
and thereby might decrease energy metabolism.54,114 However, direct measurement of brain
energy metabolism has not shown a clear metabolic downregulation after preconditioning.114

Ischaemic preconditioning preserves mitochondrial membrane integrity and function after
severe ischaemia.115-117 Several mechanisms that refine mitochondrial function have been
described.3,11 Tolerance, at least in part, is based on HIF1-dependent reprogramming of the
basal cellular metabolism that involves mitochondrial genes.118,119 HIF might actively
downregulate oxidative metabolism by lowering mitochondrial biogenesis, augmenting
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glycolysis, decreasing metabolite entry into the citric acid cycle, promoting removal of free-
radical-generating mitochondria by autophagy,120,121 and optimising respiratory efficiency
by the differential regulation of cytochrome oxidase subunits.119

Antagonism of mechanisms of damage
Neuronal excitotoxicity is important in the pathophysiology of cerebral ischaemia. Excessive
extracellular concentrations of the excitatory neurotransmitter glutamate are neurotoxic.122
Ischaemic preconditioning might induce tolerance either by lowering excessive glutamate
release or by increasing glutamate uptake. This preconditioning inhibits excitatory pathways
through the downregulation of NMDA and AMPA receptors123,124 and ameliorates
excitotoxicity.125 Additionally, a shift from excitatory glutamate-mediated neurotransmission
to inhibitory GABA-mediated neurotransmission was seen in the tolerant state.114,125
Glutamate uptake by specific transporters is the most effective mechanism to maintain
glutamate concentrations below excitotoxic concentrations.126 The glial glutamate transporter
1-excitatory amino acid transporter 2 (GLT1-EAAT2) is involved in the bulk of glutamate
transport in the brain,127 and specific overexpression of the GLT1-EAAT2 transporter in
astrocytes is neuroprotective.128 β-lactam antibiotics induce neuroprotection via upregulation
of the glial GLT1-EAAT2 glutamate transporter. Ischaemic preconditioning causes
upregulation of this transporter in astrocytes via the ligand-activated transcription factor
peroxisome proliferator-activated receptor γ (PPARγ), leading to a subsequent decrease in
ischaemia-induced glutamate release129,130 and brain ischaemic tolerance.131 In human
beings, increased plasma concentrations of the endogenous PPARγ receptor agonist 15d-
prostaglandin J2 are associated with better outcome in ischaemic stroke.132 Agonists of the
PPARγ receptor are also neuroprotective in experimental models of stroke.133,134

The neuronal cellular environment—including astrocytes, microglia, and endothelium—
protects neurons against ischaemia. Several cytokines that act in an autocrine and paracrine
manner are involved in endogenous neuroprotection. For example, preconditioning stimulates
the expression of several HIF1-dependent cytokines (eg, erythropoietin, VEGF, and
adrenomedullin). Neuroprotection induced by preconditioning is mediated partly by these
cytokines,70,71,95,135 which exert neuroprotective effects via the PI3-Akt kinase pathway,
thereby blocking proapoptotic mechanisms either by upregulation or activation of antiapoptotic
proteins such as BCL2L1 (formerly known as BCLXL), BCL2, and survivin or by inactivation
of proapoptotic regulators such as BAD.70,117

Improved recovery
Ischaemic preconditioning induces the expression of gene programmes involved not only in
cytoprotection but also in restorative mechanisms such as neurogenesis and angiogenesis. In
adult life, neurons are continuously generated from the progenitor cells in the subventricular
zone of the lateral ventricles and the subgranular zone in the hippocampal dentate gyrus.
Neurogenesis can be triggered by tissue injury, and ischaemic stroke enhances endogenous
neural progenitor cell proliferation and differentiation.136-140 Although most studies found
inflammation and microglia activation detrimental to the survival of the new neurons, recent
experimental evidence indicates that, under certain circumstances, microglia can be beneficial
and can support neurogenesis, progenitor proliferation, survival, migration, and differentiation.
141 Strategies to increase endogenous neurogenesis might be desirable to improve recovery.
142

Ischaemic preconditioning encourages cell survival and differentiation of neural progenitor
cells.98,143,144 Proliferation and differentiation of progenitor cells is mainly controlled by
growth factors.93,136,145 Ischaemic preconditioning stimulates the expression of many
growth factors, including insulin-like growth factor 1, fibroblast growth factor 2, transforming
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growth factor β1, epidermal growth factor, brain-derived neurotrophic factor, erythropoietin,
VEGF, glial-derived growth factor, and platelet-derived growth factor A.69-71,93,135,143,
146-149 Such growth factors are involved in ischaemic tolerance and improve outcome in
experimental stroke.135,150-157 Although these growth factors have antiapoptotic and anti-
inflammatory effects, part of their effect might be attributable to their role as mediators of a
neurorestorative response. The presence of newly generated glial and neuronal precursors
might be a neurorestorative response to ischaemic preconditioning.143,158 The proposed
mechanisms for endogenous neurogenesis include neuronal replacement, self-regeneration,
and release of neurotrophic substances.159 Angiogenesis, which is augmented by ischaemic
preconditioning98 and stimulated by growth factors,93,155 plays an important part in
neuroregeneration after stroke.92 Proliferating endogenous progenitor cells seem to have not
only neurorestorative properties but also direct neuro-protective effects that are essential to the
establishment of tolerance after preconditioning.160 The discovery of endogenous
regenerative capacity in the mature CNS will improve our understanding of how brains can
heal themselves and might provide new therapeutic strategies.161

Immunological tolerance
Activation of the innate immune response is a consequence of stroke, and preclinical data
indicate that inflammation in the immediate post-stroke period contributes to ischaemic brain
injury.162 Clinical data attribute a detrimental role to post-stroke inflammation. The most
convincing of these data came from a trial aimed at preventing leucocyte influx into ischaemic
brain tissue. The protein used in this trial, however, induced a systemic inflammatory response
associated with worse outcome.163 Furthermore, patients who develop infection after stroke
have worse stroke outcome; this association, in part, indicates that patients with more severe
strokes are at high risk of infection, but also suggests that the systemic inflammatory response
accompanying an infection has a detrimental effect on the ischaemic brain.164

Inflammatory stimuli can also induce ischaemic tolerance. For example, preconditioning with
lipopolysaccharide, a potent trigger of the innate immune response, stimulates anti-
inflammatory and suppresses proinflammatory pathways.6 The production of proinflammatory
cytokines is initiated by signalling cascades involving Toll-like receptors, which recognise
host-derived molecules released from damaged tissue as well as common molecular motifs of
invading pathogens. These proteins can exacerbate ischaemic injury;165-167 for example, a
polymorphism in the gene that encodes Toll-like receptor 4 is associated with ischaemic stroke.
168 Receptors 2, 4, and 9 are mediators of ischaemic tolerance in the brain,7,169,170 and others
might be involved.9 Ligands of Toll-like receptors, such as lipopolysaccharide, induce a state
of tolerance to subsequent ischaemia.171 Although recent data indicate that stimulation of
Toll-like receptors leads to specific genomic reprogramming that is different from the gene
expression pattern induced by ischaemic preconditioning, the degree of protection is similar.
Toll-like receptors are thus promising targets for neuroprotection.7,171 Small doses of
lipopolysaccharide or other agonists of these receptors given before an ischaemic insult can be
protective, whereas the inflammatory response associated with infection after stroke can be
detrimental. The timing and dose of stimulus application are therefore important to mediate
the effects of preconditioning.

Cerebral ischaemia might activate adaptive immunity and innate immunity. The adaptive
immune response is characterised by lymphocytes that recognise and respond to specific
antigens; however, this response depends on the environment in which the lymphocyte was
initially familiarised to the antigen.172 For a lymphocyte to become activated to an antigen,
that antigen must have been encountered in the context of the MHC II and a co-stimulatory
signal must be received. The cytokine milieu at the time of encounter then drives the
differentiation into different effector cell types. For example, T-helper-1 cells, which are
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important for cell-mediated immune reactions, develop in the presence of interferon γ, and T-
helper-2 cells, which are important for humoral immunity and the response to parasitic
infection, develop in the presence of interleukin 4.173 T-helper-17 cells are newly described
CD4-positive effector cells associated with autoimmune disease. These cells develop in the
presence of interleukin 6 and transforming growth factor β1. If the cell encounters its antigen
in the presence of transforming growth factor β1 but not interleukin 6, a regulatory T cell
develops. A separate type of regulatory T cell develops in the presence of interleukin 10. These
inducible regulatory T cells secrete cytokines that modulate the immune response (either
transforming growth factor β1 or interleukin 10) and are distinct from naturally present
regulatory T cells, which function through direct cell contact.173

Because inflammation seems to worsen stroke outcome, induction of regulatory T cells to limit
CNS inflammation presents a new opportunity for stroke treatment. Such regulatory T cells
can be induced with mucosal tolerance, which can be described as immunological
preconditioning when done before an ischaemic insult. Although these cells are activated in
an antigen-specific way, they secrete cytokines that modulate the immune response in an
antigen non-specific way. Inducible regulatory T cells can thus be used to control the immune
response wherever their cognate antigen is present, irrespective of whether that antigen brings
about the immune response, an event referred to as bystander suppression.174 In experimental
models of stroke, regulatory T cells primed to the CNS antigens myelin basic protein and
myelin oligodendrocyte glycoprotein were associated with decreased infarct size for both
antigens.175-177 Animals with an increased number of regulatory T cells specific to myelin
basic protein also have improved long-term outcome as assessed by several behavioural
measures.178 Induction of regulatory T cells to the vascular antigen E-selectin is associated
with similar benefits, decreasing the risk of stroke in spontaneously hypertensive stroke-prone
rats and reducing infarct volume.179,180

There are dynamic changes in the cytokine milieu of the brain after stroke, suggesting that
different types of T-effector cells and regulatory T cells could emerge depending on the timing
of the lymphocyte-antigen encounter. Experimental data indicate that endogenous regulatory
T cells are upregulated after stroke.181,182 There are limited data on the development of T-
effector cells after stroke but, under healthy conditions, T-helper-1 cells directed towards the
brain (ie, myelin basic protein) are distinctly unusual.181 If an animal has a systemic
inflammatory stimulus at the time of stroke, however, the situation changes. For example,
lipopolysaccharide, a component of the gram-negative bacterial cell wall and a Toll-like
receptor 4 agonist, predisposes animals to develop a T-helper-1 response to myelin basic
protein.181 This effect of lipopolysaccharide is probably multifactorial, but upregulation of
costimulatory signals on antigen-presenting cells and an increase in interferon γ secretion could
be important. This autoimmune response is associated with worse stroke outcome, which
suggests at least one explanation for why individuals who develop an infection after stroke
have worse outcome.164

Clinical use of preconditioning
Preconditioning has been successful as an experimental procedure to identify mechanisms for
brain protection and regeneration. Important examples of strategies to modulate these
mechanisms include erythropoietin, activators of mitochondrial KATP channels, and volatile
anaesthetics.

Because of the high risk of neurological complications associated with coronary artery bypass
grafting and carotid endarterectomy, patients scheduled for these procedures could potentially
benefit from therapeutic preconditioning. These complications include stroke and cognitive
deficits, which result either from haemodynamic compromise or embolism (both
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macroembolism or microembolism).183,184 However, late cognitive decline after coronary
artery bypass grafting is not specific to the use of cardiopulmonary bypass. Characteristics of
patients, particularly the degree of pre-existing vascular disease in the brain, might have a more
important role for patients undergoing these procedures.185 Nevertheless, neuroprotective
strategies such as preconditioning, or the use of mimetics or preconditioning effectors could
be initiated before surgery. The approach might be useful in subarachnoid haemorrhage
because about 20-30% of patients have delayed neurological ischaemic deficits associated with
vasospasm several days after the initial event.186 Similarly, up to 10% of patients with transient
ischaemic attack will have a stroke within a month of the event.187

By contrast with conventional neuroprotection trials, in which neuroprotective drugs are given
after the ischaemic event, preconditioning strategies have the advantage of antagonising the
deleterious mechanisms at the earliest possible time, because the intervention precedes the
injury. Moreover, a baseline assessment of neurological status before patients have an
ischaemic insult is included (figure 1). The disadvantage of such a clinical trial strategy, which
has been proposed as a promising approach to provide clinical proof of concept for
neuroprotection studies in stroke research,188 is that a large sample size is needed because of
the overall low rates of neurological complication.

Several clinical trials are underway to test the safety and efficacy of preconditioning strategies
for protecting the brain against anticipated damage. For example, one randomised controlled
trial aims to determine whether remote ischaemic preconditioning (by thigh cuff inflation; see
below) decreases subclinical cerebral and myocardial damage in patients undergoing carotid
endarterectomy.189 A pharmacological preconditioning strategy (ie, preloading) is being
tested by treating patients with subarachnoid haemorrhage with erythropoietin α to prevent the
delayed ischaemic neurological deficits and their consequences.190 Several trials have been
or are assessing post-treatment of cerebral ischaemia with preconditioning effectors such as
erythropoietin,191 nitric oxide,192,193 and interleukin 1 receptor antagonist.194

Preconditioning is an invaluable technique in basic neuroprotection research and lends itself
to new designs of clinical trials. Short episodes of spontaneous ischaemia (such as angina or
transient ischaemic attack) might induce endogenous protection against subsequent longer and
potentially deleterious episodes of organ ischaemia. For example, when an acute myocardial
infarction is preceded by preinfarction angina, the resultant infarction is milder, with fewer
cardiac arrhythmias and better left ventricular function than those without preceding angina.
195 This observation has motivated the therapeutic use of brief balloon inflations before longer
coronary interventions to protect the heart (early preconditioning approach) and promoted the
development of delayed preconditioning mimetic compounds such as nitro glycerin.196 Both
strategies have been successfully tested in randomised controlled trials.196,197 Data from two
retrospective studies of stroke showed that in patients with previous transient ischaemic attack
the severity of subsequent stroke was attenuated and the outcome better than those without a
preceding event.198,199 In a small prospective study, despite similar size and severity of the
perfusion deficit, patients with previous transient ischaemic attack had smaller initial diffusion
lesions and final infarct volumes and showed clinical deficits that were less severe than in those
without a preceding event.200 Together with other clinical evidence,201,202 these
observations suggest that endogenous preconditioning triggered by a transient ischaemic attack
is present in the human brain. A criticism of these studies, however, is that patients with
previous transient ischaemic attack might fundamentally differ from those without, particularly
with respect to cause of stroke. This problem is further exacerbated by the heterogeneity of
stroke and the people who have it; furthermore, some transient ischaemic attacks are associated
with MRI evidence of infarction and others are not.203 Two other retrospective studies showed
no association between previous transient ischaemic attack and low stroke severity.204,205
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Therefore, whether the clinical event of a transient ischaemic attack is neuroprotective and
associated with less brain injury from subsequent strokes is unclear.

Clinical use: challenges and opportunities
A central belief in preconditioning research is that the preconditioning stimulus must be sub-
threshold and should not cause damage. The postulated dose response of the preconditioning
stimulus therefore ranges from no response at low intensities to the protected state at higher
intensities; a further increase in stimulus intensity will cause overt damage. The therapeutic
range of preconditioning is narrow.4,71 Most preconditioning studies are short in duration,
with limited periods of survival (up to 1 week); these studies might therefore have missed the
maturation of damage. Furthermore, few studies have used techniques sensitive enough to
detect subtle structural injury. Increasingly, sophisticated brain imaging suggests that transient
ischaemic attack (ie, a potential preconditioning equivalent) commonly leads to structural
damage to the brain.203 Sommer206 postulated that “ischemic PC [preconditioning]
necessarily involves some form of brain damage, leading to functional impairment with
behavioral deficits, although without any lesion”. If true, titration of the preconditioning stimuli
so that it has an effect but does not cause damage to the tissue might not only be difficult but
potentially impossible. Whether preconditioning mimetics, such as mild inhibition of
mitochondrial respiration by aspirin35 or activation of mitochondrial KATP channels,207 are
non-toxic is unclear. Because of these potential problems, preconditioning effectors could be
a safer way to provide endogenous brain protection than preconditioning mimetics or
preconditioning itself. Another caveat is that medication such as anti-inflammatory drugs or
statins could interfere with signalling cascades involved in the induction of preconditioning
and therefore could diminish (or even potentiate) protective responses to preconditioning.

Immunological preconditioning and other interventions that modulate the immune response to
induce neuroprotection and enhance repair pose specific challenges. First, the immune response
can stimulate recovery at more delayed time points after stroke;208 therefore, prolonged
immunomodulation could interfere with these important restorative processes. Most animal
studies focus on early stroke outcomes (days) and might therefore miss important intervention
effects weeks to months after treatment. Second, most immunomodulatory drugs are non-
specific and affect the immune response in the brain and elsewhere. Because patients with
stroke are already predisposed to infection,209 drugs that might further increase this risk are
of limited benefit. The strategy of inducing immunological tolerance to CNS antigens is
appealing210 because this approach would lead to an immunomodulatory response only where
the antigen is present and accessible to the immune system, thus localising the effects of the
therapy to the brain during times of compromise of the blood-brain barrier. However, studies
of mucosal tolerance for the treatment of multiple sclerosis show that slight differences in
antigen treatment could affect both the efficacy and safety of this strategy. For example,
mucosal delivery of antigen can give rise to a T-helper-1 response to that antigen. Such a
response could potentially lead to encephalitis, as was seen in the vaccine trials of amyloid β
for Alzheimer’s disease.211 However, if the CNS immune response was completely
suppressed, the susceptibility to infection such as progressive multifocal leukoencephalopathy
might increase, as was seen in the studies of natalizumab for multiple sclerosis.212,213

Search strategy and selection criteria

References for this Review were identified through searches of PubMed by use of search
terms that included “preconditioning”, “ischemic tolerance”, “neuroprotection”, “brain
repair”, “brain ischemia”, “brain hypoxia”, and “stroke” (“tolerance” and “preconditioning”
were common modifiers), with various search periods (from January, 1980, to December,
2008). The full list of search terms is available from the author on request. The
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bibliographies of the most recent articles were also screened to fi nd other previously
unidentified articles. Only papers published in English were reviewed. Further references
were obtained from personal reprint files.

Additional factors need to be understood before considering preconditioning for clinical
application, even if safe strategies are identified. For example, preconditioning stimuli and
effectors in the neuroprotective signalling cascades might be specific to sex,44,214 dependent
on age,215-217 and affected by diet110,218 and medical comorbidities.219,220 Because the
target population for preventive neuroprotection is usually elderly patients with several medical
problems, investigators who undertake preclinical studies are advised to take these factors into
consideration.

Despite these challenges, several promising strategies to elicit endogenous brain protection are
under clinical development. As patients’ safety is the main concern, compounds or strategies
that are already in use for other indications in which they have shown safety are highly attractive
candidates. For example, HIF1 mediates the activation of a large cassette of genes involved in
the adaptation to hypoxia and ischaemia.47 The iron chelator desferrioxamine is clinically
approved for various indications, including thalassaemia and other iron-overload syndromes.
Erythropoietin is approved for treatment of anaemia and seems safe and effective for critically
ill patients who are anaemic and have had trauma.221 Various inhalational anaesthetics used
in human beings (eg, sevoflurane) induce preconditioning and tolerance against brain
ischaemia and act as brain protectants after ischaemia in preclinical experiments.43,222,223
These compounds are safe and effective in eliciting early preconditioning in patients
undergoing coronary artery bypass graft surgery in randomised controlled trials.224 These
drugs also elicit delayed preconditioning in human beings.225,226 Another promising
approach in clinical testing is the induction of early remote preconditioning in patients
undergoing carotid endarterectomy. In a randomised controlled trial, patients who receive
ischaemic preconditioning have a thigh cuff inflated on one leg until flow in the pedal arteries
stops.189 After 5 min the cuffis moved to the opposite thigh. The cycle is repeated so that each
leg has two 5-min periods of ischaemia followed by 5 min of reperfusion. Another attractive
concept, albeit still in an early clinical development stage, is the induction of mucosal tolerance
(immunological preconditioning) against E-selectin via a nasal spray to lower stroke events
and reduce the effect of cerebral ischaemia.227

Conclusions
Preconditioning (ie, induced tolerance) is an experimental technique in which protective and
regenerative mechanisms of the brain can be isolated from deleterious mechanisms. The
molecular signalling cascades of endogenous brain protection—from stimulus and sensor to
transducers and effectors—are being identified (figure 2). Research has led to the discovery
of several promising strategies for the treatment of patients with acute CNS injury.
Additionally, studies of preconditioning have led to the preloading concept of preventively
inducing protection in patients who are at high risk of damage to the brain in the near future.
Preconditioning-derived strategies include haemopoietic cytokines, immunological tolerance,
and physical measures such as remote ischaemic preconditioning. Some of these interventions
seem to be safe and effective in protecting the ischaemic heart, and they are now being tested
in randomised clinical trials to protect the brain. However, there are still many uncertainties
about this therapeutic approach, including which doses of preconditioning or mimetics are safe
and effective, and whether transient ischaemic attacks are an ischaemic preconditioning
equivalent in human beings. Even in cardiology, where preconditioning strategies have been
clinically studied and applied for more than a decade, conclusive evidence for the efficacy and
safety of preconditioning or the use of mimetics is scarce. Consequently, therapeutic guidelines
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for the treatment of heart disease do not yet advocate its use, and there is still little clinical
evidence for the use of preconditioning to protect the brain. Such basic factors need to be
resolved before randomised controlled trials of preconditioning for the treatment of cerebral
ischaemia can be done.
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Figure 1. Comparison of conventional and preconditioning neuroprotection trials
Note that the preconditioning trial enables a complete baseline assessment and leads to organ
protection before ischaemia (or trauma).
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Figure 2. Signalling cascades of preconditioning
Various stimuli lead to protection via modules of sensors, transducers, and effectors. Adapted
from Dirnagl et al,4 with permission from Elsevier. A1R=adenosine receptor type 1.
ADO=adenosine. Akt=a serine/threonine kinase family. BDNF=brain-derived neurotrophic
factor. CRE=cyclic AMP response element. EAAT=excitatory amino-acid transporter.
EPO=erythropoeitin. ERK=extracellular signal-regulated kinase. FGF2=fibroblast growth
factor 2. GDNF=glia-derived growth factor. GluR2=glutamate receptor subunit 2.
GLT=glutamate transporter. HIF=hypoxia-inducible factor. HK2=hexokinase 2. HSP=heat
shock protein. IEG=immediate early gene. IGF1=insulin-like growth factor 1. IL=interleukin.
IL1RA=interleukin 1 receptor antagonist. JAK=janus kinase. JNK=c-Jun N-terminal kinase.
KATP=ATP-sensitive potassium channel. MAPK=mitogen-activated protein kinase.
NALP=NACHT-containing, LRR-containing, and pyrin-domain-containing protein.
NFκB=nuclear factor κB. NGF=nerve growth factor. NMDAR=NMDA receptor. NO=nitric
oxide. NOS= nitric oxide synthase. OFR=oxygen free radicals. PDGFA=platelet-derived
growth factor receptor A. PI3K=phosphoinositide-3 kinase. PKB=protein kinase B.
PKC=protein kinase C. STAT=signal transducer and activator of transcription.TNF=tumour
necrosis factor. TLR=Toll-like receptor. TRAF=TNF receptor-associated factor.
VEGF=vascular endothelial growth factor.
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