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Preconditioning and Two-Level Multigrid Methods
of Arbitrary Degree of Approximation

By O. Axelsson and I. Gustafsson

Abstract. Let A be a mesh parameter corresponding to a finite element mesh for an elliptic
problem. We describe preconditioning methods for two-level meshes which, for most prob-
lems solved in practice, behave as methods of optimal order in both storage and computa-
tional complexity. Namely, per mesh point, these numbers are bounded above by relatively
small constants for all h > h0, where h0 is small enough to cover all but excessively fine
meshes.

We note that, in practice, multigrid methods are actually solved on a finite, often even a
fixed number of grid levels, in which case also these methods are not asymptotically optimal
as h -> 0. Numerical tests indicate that the new methods are about as fast as the best
implementations of multigrid methods applied on general problems (variable coefficients,
general domains and boundary conditions) for all but excessively fine meshes. Furthermore,
most of the latter methods have been implemented only for difference schemes of second
order of accuracy, whereas our methods are applicable to higher order approximations. We
claim that our scheme could be added fairly easily to many existing finite element codes.

1. Introduction. Consider the numerical solution of elliptic boundary value prob-
lems discretized by finite element methods. We assume that the boundary is
polygonal or consists of planes. We note that in practical problems one often has a
fine enough grid already after the definition of the boundary and the minimal
number of vertices needed for a first (coarse) triangulation. Anyhow, if not so, in
most cases one makes only a few steps of mesh refinement. Hence the power of
multigrid methods—their optimal order of computational complexity—is most
often not achieved fully, because optimality requires a large number of recursively
defined meshes (for details see, e.g., [4] and for further references see [7]). Hence one
might as well consider other methods, perhaps simpler and more effective on a fixed
mesh, but which are not asymptotically optimal.

Here we shall describe a method which uses only a fixed mesh, but for which one
nevertheless achieves a low order of computational complexity and of seemingly
optimal order except for, from a practical viewpoint, excessively small meshes. To be
more precise, the computational cost per mesh point is bounded by c log N for
N < N0, where N is the number of mesh points, N0 is large enough to cover most
applications and c is small enough that the method is competitive with multigrid
methods. As is well known, the latter need recursion and the usual smoothing
followed by corrections of the solutions on the different mesh levels. We claim that
the new method is more suitable for implementation in existing finite element
packages. In fact most packages for the multigrid methods are only for second order
difference methods.
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220 O. AXELSSON AND I. GUSTAFSSON

The success of the new method is based on the following facts. Let p be the degree
of the piecewise polynomial functions used in the approximation of the solution.
Then,

(i) the number of vertex nodes in a " triangulation" of a domain in d dimensions
(¿ = 2,3) is only 0(A7//),

(ii) with a particular choice of basis functions one gets finite element stiffness
matrices with a 2 X 2 block structure, where the diagonal block of largest order,
namely that not associated with the vertex nodes, has a spectral condition number
which is bounded above by a number independent of h.

These observations were already made in [3] but there they were used only for a
diagonal block scaling (preconditioning). The diagonal block of smallest order was
supposed to be solved exactly by a direct or a multigrid method, and the diagonal
block of largest order was supposed to be solved by a simple iterative method.

We shall later see that a large gain in speed and in simplification of the method is
achieved if we use incomplete factorizations either of the diagonal blocks or as a full
block matrix preconditioning.

Although the method is applicable to a wide variety of partial differential
equation problems, in this study we consider only second order elliptic problems.

2. Preliminaries. We prove at first some general statements needed later. Let v, t, e
denote the number of vertex nodes (including those on a Dirichlet boundary),
triangles and edges, respectively, in a triangulation of a plane, bounded and
polygonal domain. Then e = v + t — 1. We assume that the triangulation is regular,
i.e., all angles exceed 60 > 0 where 60 is independent of TV, the number of nodes.

Let p > 2 be an integer. In addition to the vertex points, place p — 1 (disjoint)
nodes on each edge and (if p > 3), ip — l)ip — 2)/2 interior nodes on each
triangle. Note that the total number of nodes on each triangle is ip + l)ip + 2)/2
which equals the number of coefficients in a complete polynomial (in the Euclidean
coordinates *, y) of degree/). The nodes may be placed in regular positions on the
edges and in the interior as is illustrated in Figure 2.1, but in Section 6 we shall
present a more efficient choice of nodes (and basis functions) for/? > 3. We will also
then see that the method is applicable to the case/? = 1.

Figure 2.1
An example of regularly placed nodes for p = 3

The condition that all angles are bounded from below by 60 > 0 is easily achieved
in the following way. Let fi, be a coarse mesh constructed by a triangulation of the
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PRECONDITIONING AND MULTIGRID METHODS 221

polygonal domain. This mesh is in general not uniform and may, for instance, be
finer in some parts of the domain where we expect that the solution is less regular.
With it we associate a mesh parameter h = 1. Let 60 be the smallest angle of all
triangles in the mesh. The coarse mesh is now uniformly refined by dividing each
edge by A"1 (an integer). Then the angles are preserved in the resulting mesh tth so 60
is still a lower bound; see Figure 2.2. For the following we assume also that the
original mesh has no angle > 7r/2. Hence this is so also for ßA. Actually, the mesh
refinement can be made locally, and still the angles are preserved as Figure 2.3
shows.

Figure 2.2
Uniform mesh refinement; solid lines correspond to mesh ß, and solid lines U dotted lines
correspond to mesh Q]/2

Figure 2.3
Local, angle-preserving mesh refinement

With every node (except those on a Dirichlet boundary) we associate a basis
function with the usual compact support and whose restriction to the triangle is a
polynomial of degree at most p and such that the set of the basis functions is linearly
independent. Then each polynomial of degree at most p is uniquely represented as a
linear combination of these basis functions. Note in particular that three, but not
more, of the basis functions defined on any one triangle may be linear.
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222 O. AXELSSON AND I. GUSTAFSSON

The total number of nodes in the triangulation is

(2.1) N = v + ip-l)e+{p-l)ip-2)t,

and as N -» oo, e/v -» 3 (and therefore t/v -* 2). Hence by (2.1),

(2.2) v/N^p-2,       N^oo.

If the interior nodes are ehminated by static condensation (see Section 6), then the
number of remaining nodes is

TV« v + ip — l)e

and

ü/TVo-(3/7-2)-',       TV-* oo.
In a similar way, one finds that for a corresponding three-dimensional problem the
ratio of vertex and total number of nodes

v/N ->p~3,       N -» oo.
Another fundamental result we shall need later is the following.
Consider the boundary value problem

(2.3)
« = o,x e r„ 2a>jj^ni= «>x e r ~ ri = r2'

i.j J

where «, are the components of the unit normal. We assume that the (symmetric)
matrix [a¡jix)]fj=x is uniformly positive definite, b > 0, | at. | and ¿> are uniformly
bounded from above on fi and that meas(r,) J= 0. It is only for ease of presentation
that we have not considered more general boundary conditions. With this boundary
value problem we associate the bilinear form

aiu,v) = f
Ja

v      3«  3t)   ,  ,
3*, 3*,'.7 '        J

dil. u, v E V,

V= {veHxiQ),v = OonVx}

and the variational formulation

a(u,v)= jfvdti+<£ gvdT2,   Vu e V.

a (•, •) is symmetric, coercive and bounded so that, as is well known, for every
/ G L2(ß), g G L2iT2) there exists a unique solution m G V.

The generalized C-B-S inequality,

|fl(a,o)|< [aiu,u)aiv,v)}x/2   Vu, c G F,

is easily proven.
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PRECONDITIONING AND MULTIGRID METHODS 223

The upper bound is not taken if V«, Vt> are linearly independent, but it may (for
instance if b = 0) become arbitrarily close as V«, W become closer to being
linearly dependent. If Vx, V2 are finite-dimensional subspaces of V with only the
trivial element in common and such that Vx contains the constant function we get an
even stronger result:

(2.4)    \a(u,v)\^y{a(u,u)a(v,v)}x/2,       0 < y < 1, Vw G Vx, Vu G V2,

vxnv2={0).
Here y depends on the type of basis functions chosen for Vx, V2 but it is independent
on h. For the previously defined triangulation we let Vx be the subspace spanned by
the set of basis functions {X,} associated with the vertex nodes. These basis
functions should be such that the constant function is contained in the subspace. In
particular, we may let the basis functions be a complete set of linear functions. V2 is
spanned by the remaining set {fy} of basis functions and hence the constant
function is not contained in V2. For a particular mesh the corresponding number
y0ih) may be calculated in the following way. Consider the bilinear form

a,(u,v)= f v      du  dv1 a,7â7 — f buv
•>j 3*, 3*, dti,

where e, is the Ith triangle (in an arbitrary ordering of the triangles). The correspond-
ing number

(2.5) Y/(M =      max     \\ai(u,v)\{a,(u,u)al(v,v)yi/2]
u £ V\, v £ V2

is calculated, and by summation we get

Io(u,v) 2 | a,(u, v) |< 2v/a/(". ")     a¡(v, v)
i i

1/2

YoCOl 2a,(u,u)2a,(v,v)
i i

1/2
y0(h){a(u,u)a(v,v)} 1/2

where y0ih) = ma\,y,ih). Note that because of the uniform mesh refining, there
exists ay, y0ih) < y < 1, which is independent of the mesh parameter h. (In fact,
YoCO ~* y as h ~* 0.) For some particular examples, see Section 3.

Consider now the element matrix &, associated with the triangle e, and associate
the local orders 1,2,3 to the vertex nodes and 4,5,... ,q with the remaining nodes.
For e¡, being an element at a Dirichlet boundary, we consider subsets of these nodes,
and we then proceed in a similar way as follows: The matrix &¡ has a 2 X 2 block
form

where

«,=
A,    C,

C\    B,
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224 O. AXELSSON AND I. GUSTAFSSON

A,= B/ =
0     0
0    B,

Let
'A,    0"

.0     0.
and consider the following quotients between the quadratic forms associated with &,
and with the diagonal block part of &,.

Note at first that by (2.4) we have (since | axa2 \< jia2 + a\))

(2.6) (l-y)[a(u,u) + a(v,v)]

< a(u, u) + a(v, v) + 2a(u, v) = a(u + v, u + v)

<(l + y)[a(u, u) + a(v, v)]    Vu G Vx, Vv G V2.

With

u = 2 «W, » = 2 «,°#> w = u + v,
i=\ 1=4

we get

a<'y&ia(l) = a,(w,w),       a(V') = fl/(«.")    and   a<'>'B,a<'> = fl/(o, o).

Hence by (2.6)

(1 - y^a^A, + B,)a<'> < o^a« < (1 + y,)«^, + B,)^",
where y, is the constant defined in (2.5).

Finally, by summation over all triangles e„ we get the global correspondence

(2.7) (1 -y)a'(A + B)a<o'(îo<(l + y)a'(A + B)a   Va£R".
We then make a global ordering of nodal points such that vertex nodes are

numbered first. Then the resulting assembled matrices have the following properties,
which was already observed in [3].

Lemma 2.1. Let the set of basis functions {X,} and [<bj] be defined as above. Then
the matrices A = [aiXj, À,)] and B = [aity, <>,-)] are positive definite and have spectral
condition numbers k, = 0(/T2), h -> 0 and k2 = Oil), h -> 0, respectively.

Proof. The result for the matrix A is well known (see e.g. [4]). In particular,
positive   définiteness   follows   because   meas(r,) ¥= 0.   For   the   matrix   B, =
[«/(^.4>,)]^=4Weget

0 < /xt/tya, < a,(v, v) < ffîa'.a,   Vu = 2 <*i,<t>,'\
¡ = 4

where u*/*, ¡uf* are the extreme eigenvalues of B¡. Note that n(¡X) is positive because
constant functions are excluded from the space V2. By summation over the triangles
e¡ we get

0 < min/x'/Wa < a'Ba </?0 max ¡ifWa,

where p0 ( = 2) is the largest number of triangles meeting at any same nonvertex
node. Hence

k2 = k(5) </>0 max/^0)/min/4l),

and this number is bounded above by a number independent on h, because of the
uniform mesh refining.    D
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PRECONDITIONING AND MULTIGRID METHODS 225

Lemma 2.2. The spectral condition number of

&,       &■■
A

LC
is bounded from above by (1 + y)/(l — y) and \\F\\2 < y, where F = A X/2CB x/2.

Proof. The first part follows at once from (2.7) because

a'âa
(2.8) l-y< 1 + y   Va G R*, a ¥= 0.

a'(A + B)a

For the second part we note that

A'i/2     °  U^172     °       l1   F

so by (2.8), the eigenvalues of [°, £] are in the interval [-y, y]. Hence

\\F\\2={P(FF')Y/2<y,
where p( • ) is the spectral radius.    D

Note that the above upper bounds are independent of h, that is of the number of
nodes N. The first part of Lemma 2.2 was proved in [3] in a slightly different way.

3. Preconditioned Iterative Methods. The discretized version of (2.3) is

(3.1) a(u,v)= f fvdx+j) gvds   Vu G Vh(p) = Vx ® V2,

where u G Vj¡p) and V¡¡p) is the finite-dimensional subspace of V consisting of
continuous, piecewise polynomials of degree at most p. With the previously defined
ordering of the nodes we get a linear system of algebraic equations on the form

(3.2)

Let

A
C

& = A
a

,   where tk= j fv dx + j gv ds, v
k
k

1,
2.

U = (U!,U2)',     f=(f1,f2)'.

Then (3.2) is equivalent to éBu = f, and we shall study iterative methods to solve this
system of equations. A basic iterative method can be stated

(3.3) e(u(m+1)-u(m)) = -j8m(tîu(m)-f),       m = 0,1,...,

where G is a so-called preconditioning matrix and ßm are iteration parameters. Q will
be chosen as a product of two sparse triangular matrices and is symmetric, positive
definite. It has the same block partitioning as 6B. The rate of convergence of (3.3)
depends on the spectral condition number k, of Q~X/2&Q~X/2. For instance, if the
conjugate gradient method is used to accelerate (3.3), then the number of iterations
to reach a fixed relative accuracy is bounded above by a number proportional to \kx,
see, e.g., [1].

In the sections to follow we shall consider various choices of Q. The most efficient
among these involve (modified) incomplete factorizations of the block diagonal
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226 O. AXELSSON AND I. GUSTAFSSON

matrices A and B. We briefly recall the basic results regarding modified incomplete
Cholesky (MIC) factorizations; for details see [6]. These methods are modifications
of the methods presented in [9].

The MIC methods will be applied to the matrix A and can be stated

LV = À = A + D + R,

where D is a positive diagonal matrix and R is the defect matrix being positive
semidefinite and having row sums equal to zero. The degree of accuracy of the
factorization can be controlled by letting L contain more or less nonzero entries. For
well-structured (model) problems, where A has nonzero entries only in certain (sub-)
diagonals, we use the notation MIC(ú?) to indicate that L contains d more nonzero
diagonals than (the lower part of) A.

Applied to a weakly diagonally dominant matrix, the MIC factorizations are
stable. If further A is an L-matrix, i.e., if atJ =£ 0, /' =£j (which is the case in our
applications), then «(i-'/^i"1/2) = Oih~x), h^O (while k(^) = 0(/T2)). More
precisely, there exist constants C,, C2, C3 independent of h such that

(3.4) C, < z'Az/z'Äz < C2 + C3h-X   Vz G RN',

where N' = 0(A"2) is the order of A. For instance, for a model Laplace problem
over the unit square with uniform right-angled triangulation and linear i.e., (3.4)
holds with C, = 2-, C2 = 1, C3 = 1/tt for the MIC(O) method and C3 = 0.68/tt for
the MIC(l) method.

4. Diagonal Block Preconditioning. In this section we let 6 = fy = [$ ¿] where
A, B may be regarded as approximations of A, B, respectively. We assume that they
are symmetric and positive definite.

Let a¡iu,v), b,iu,v) be the bilinear forms corresponding to Ä, B, i.e., the
restrictions to the /th element of a'Äß, a'Eß, with

«= 2 «/></>,    v=ißl$\
i=\ 1=4

Let a(,), b°\ i = 0,1, be positive numbers such that

3
a<%(«, u) ^ a¡iu, u) < a^àiiu, u)    Vm = 2 «i(*(/\

/=!

b<%(v, v) *£ a,(v, v) < bf>b,(v, v)     \/v=2 ßt^P-
i=4

(4.1)

We have
\'/2„ /..   .^1/2(4.2)     \al(u,v)\<yla,(u,u)/ al(v,v)/  < {yt¡a,(u, u) + \yfcxa,(v, v),

where f, > 0.
In the following theorem we give an upper bound for the condition number of

öD-'/^öD"'/2.
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PRECONDITIONING AND MULTIGRID METHODS 227

Theorem 4.1. Let &, fy be defined as above. Assume that (4.1) and (4.2) are
satisfied. Then
(4.3)   k, = «(öD-'/^öD"1/2)

<max-¡ i  ¿>r
l-Y,2^

i4 i+^,(0)

¿><°>

7(0)
1-^

X 1 M'> 1 - „<•)

bf>'
a)     , i

*i°

1/2

1/2

+ Ä*
/Voo/. An upper bound for the eigenvalues of ty x& is found in the following way.

By (2.6) and (4.2),
a,iu + v, u + v) < (1 + y,S,)a,iu, u) + (l + y,^x)a,(v, v)

< (i + tA)«î^i(«, «) + (i + v¿r>,0)¿>, o).
Hence

(4.4) a,(M + v,u + v)<(l+ y,ßt)af>[ä,iu, u) + £,(©,©)],

if f, is such that (1 + y^,)^ = (1 + y,?,"1)*^, that is,
ll/2¿><>;o)-i , /¿r/ap-iy, bp

\ 2y,
+

7«>)

Hence

(1 + y,?,K> = (¿><°> + a<°>)/2 + {[(¿W) - «<°))/2]2 + ^%(0)Y/2)'/2.
(Note that the upper bound (4.3) is sharper than the trivial upper bound we get with
f, = 1, namely

a,(« + », u + o) < (1 + Y,)max(aJ0), ft}"») [^(u, ii) + i,(o, ©)].

Assume that ¿>{0) 5= a;(0). (This can always be achieved by scaling.) Then in fact

(l+Yi)Af»-(l + Y,A)flP

= y,*,*0' 1 - af\
i,(0) _  „(0) / / A(0) _     (0) \ 2 \ V

=o.)

Similarly we get a lower bound. Let y, < £, < y, '. Then

(4.5) a,(u + v,u + v)>(l- y¿Jx)a,(u, u) + (1 - y,*,)«,^, c)

>(i-Y/€i)*íI)[a/(«.«) + ¿i(«'.o)].
where £, is such that

(1 - y¿;x)a^ = (I - y,m\
i.e.,

(i)

2Y, j        6}»

i/i
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228 O. AXELSSON AND I. GUSTAFSSON

and
(1 - TAW*

= «»(1 - Y;2) *}«> + a\in b^ + a^\2 + aMW
1/2

>0.

Finally from (4.4) and (4.5) the result follows by summation over all elements.    D
We note that in the case è{0) = af\ ft}1' = a(,X) (4.3) reduces to the trivial bound

'l+Y/*Pl
(4.6) k, < max-, T

Y/ ftj»

In particular, for A = A, B = B we have

(4.7) - f HK, < max-.
1+Y
1-Y/J       l-Y

which we already derived in Lemma 2.2.
We also remark that we can often obtain a sharper bound than that given in (4.3)

by calculating (on each element) upper and lower bounds X(}\ X^ of the quotient

(4.8)

Then,

a,iu + v,u + v) _ v *
a,(«,«) + 0,(0,0) ,=, (=4

k, ^maxX^'/minXV*.

(A similar approach was used in [2].)
In Figure 4.1 we have plotted the bound on the condition number k, as a function

of h'x when B = diag(5) and Ä is a MIC(l) factorization of A. Here p = 2,
[au]2j=x = I, 6 = 0VxGß = {(*,, *2) G [0,1] X [0,1]} and we assume a uniform
right-angled triangulation of Q. This problem shall be referred to as the model
problem. The bounds a¡0) and a}1' for the eigenvalues of Ä~XA were taken from (3.4).

160 i

80

20

2 4 8 16 32 64 128 h"1

Figure 4.1
The upper bound for the condition number k , as a function of h'] for p = 2, B = diag( B ) and À
a MIC( 1 ) factorization of A. Model Poisson problem. The scales are logarithmic and the slope of
the "line" k = Ch~' is indicated.
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PRECONDITIONING AND MULTIGRID METHODS 229

We note that the condition number is only slightly increasing for h > h0, say
h0= 1/8, but for h « h0 it grows like 0(A_1), h -> 0. By use of a more accurate
incomplete factorization one can make h0 smaller; see the numerical tests in Section
6.

By calculating upper and lower bounds of the quotient (4.8) we have also found
that k, is (often) rather insensitive to k0 = k(ä"'5). For our model problem and
p = 2, k, increases only by a factor 3/2 when B = B (k0 = 1) is replaced by
É = diagiB) (k0 » 6).

5. Full Block Incomplete Factorization. Let, as before, LXL\ = Ä and L2L2 = B be
two incomplete factorizations of A and B, respectively. We consider precondition-
ings of & by a full block incomplete factorization on the form

e=<$= L2       0 v2
0

L2XC B C
C    Ä + CB-XC

Note that we have reordered the system so that

& = \B    C'~[C    A .
Since Ä and B are symmetric and positive definite, so is 'S. Let a¡, b¡, i = 0,1, be
lower and upper bounds of the following quotients of the bilinear forms correspond-
ing to B, B and A, Â = Ä + CB~XC, respectively:

0<p, <a(ü,o)/£(o,o) <o0    VoGK2,

0 < a, < a(u, m)/J(m, u) < a0    Vm G Vx.

We assume that Ä and B are scaled such that

bx<l<b0<y-2,   ax^l<a0<y-2.

Theorem 5.1. Let &, <S:, a¡, b¡, i = 0,1 be defined as above. Then

«(^"'éE) = max/x y min/x,,
i

where

(5.1)     maxju, < 1 1        aj-' + ftr'
1-Y2

1

+ «r1 - b\1 \2
+ (b~xx - l)(axx - l)r

1/21

(5.2)     minu^l
1-Y2

1 - < + v

"è^2+(l-a0-')(l-ô0-')Y2
1/2
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230 O. AXELSSON AND I. GUSTAFSSON

Proof. We assume at first that a, < 1. Let o = 2 a,d>,, u = 2 jß,A,, and let ti, be the
eigenvalues ot&~x<5. We have

M:=[«',0']^p]/k,0']ff
_ ft*(o, o) + 2a(o, ») + a(m, u)

a(u + o, « + o)

_ .   .  bjv, v) - ajv, v) + a(u, u) - aju, u)
a(v, o) + 2a(o, u) + a(u, u)

(o,1- l)fl(o,o) + (fl1-1-l)a(«,«)

(1 - yÇ)a(v,v) +(1 - y$-])a(u,u)

We choose f such that

< 1 + ,     Y<f<y-1,VMGF,,oGK.

¿I1 - 1 _    1 - Yf
axx - 1       1 + y$-

i.e. f = l-'o
2y + 2y

1/2

Then (5.1) follows, and because of symmetry (a, <-> bx) we realize that this bound is
valid also for a, = 1. In the same way we get

^      (l-fc0-|)a(o,o) + (l-q0-1)fl(«,»)

11' (l-y|)a(o,o) + (l-yr,)a(«,M)'

where

t
1 -s0

2y +
2y       +S°

1/2 1 - fro'
1 - fl¿'

Hence (5.2) follows and the theorem is proved.    D
We consider now some special cases:
Case (i): B = B. Then bx = b0 = 1 so

(5.3) KÍ^-'ffi) ay - Y

*o' - Y2
= ic(i-U) 1 -q,y2

1 - «oY2
Co«? (ii): B = B, a0 = 1. Then from (5.3)

k(A~xA) - y2
K(f-'rl)

1-Y2

In particular, if B = B, Ä = A, then from Lemma 2.2, A < À < Ail + y2). (Here,
inequality stands for inequality between the corresponding quadratic forms.) Hence

(5.4) K($-xâ)<l/(l-y2).

Case (iii): Ä = A, É > B. Then ax = (1 + y2)"1, a0 = b0= 1, 6, = *"', where
k0 = kíB~xB), and we get

(5.5)    k($-x&)<1 1 Y2 + k„-1

1-Y2[ 2

•^Ko/(1-Y2)    asK0^oo.

+
1-Y2\2

+ («c0- Oy4
1/2
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Case (iv): Ä = A - CÉ~XC' (that is A = A), B> B. Then a, = a0 = bx = 1,
bx = KqX and

(5.6) K(f-xâ)^(K0-y2)/(l-y2).

Case (v): Ä = A — CB~XC, B = B where É is any matrix, e.g. a diagonal matrix,
such that B > B. Then b0 = bx = a0= 1, a, = [1 + (1 — Kö')y2]"', where k0 =
k(B'xB) and

(5.7) K(f-'S)<(K0-y2)/(Ko(l-y2)}.

We note that Cases (iv) and (v) involve making an (incomplete) factorization of
A — CB'XC' (or A — CB~XC), which makes it necessary to assemble this matrix.
However, in practice k0 is often much larger than y (see Section 6), which leads to
minor differences between the (estimates of the) condition numbers in Case (ii) and
Case (v) and in Case (iii) and Case (iv), respectively. Hence it does not pay off to
make the more complicated factorization (of A — CB'XC).

We assume that B is obtained by a (stable) IC factorization of B so k0 = k(5"'5)
= Oil), h — 0. (In particular B might even be equal to diag(Z?).) Since B is in
general not an Af-matrix, it might be necessary to use shifted incomplete factoriza-
tions (SIC) [8] or in some other way ensure a stable factorization. For Ä = A we
then easily see that k(tÎ"'(î) = 0(1), h -» 0 as well. As in the diagonal block
reconditioning, we get kí<5~x(1) = 0(/i"'), h -> 0 if Ä is a MIC factorization of A,
where values of a0, a, can be derived from (3.4). However, the condition number
behaves in the same way as in the diagonal block case, i.e., it is almost independent
of h for h > h0, where h0 is dependent on the degree of accuracy of the MIC
factorization.

Let us now compare the upper bounds for the condition numbers «(^'(î),
*(§""'(£) of the diagonal and full block preconditionings. At first note that in the
case B = B, Ä = A, by (4.8) and (5.4),

kÍ<%-x8,)/kÍ<5-x&) = (1 + y^ ~ y2>) = (1 + y)2 < 4.

In practice y is close to one, and hence we can expect about twice as many iterations
for the diagonal block as for the full block preconditioning. On the other hand, the
full block method needs more computational work per iteration (e.g. the solution of
6 triangular systems) so it will be preferable only if we use incomplete factorizations
of B (and A).

In the full block preconditioning the bounds of k(^_16Î) are proportional to k0,
while (as already pointed out in Section 4) in the diagonal block method «(^"'él) is
fairly insensitive to k0. This indicates that the full block factorization is more
effective relative to the diagonal block factorization for more accurate (but not too
accurate) incomplete factorizations of B than for less accurate factorizations.

6. Examples and Numerical Tests. As our model problem we take

/6 i) |-v(flV«)=/    infi,
1 u = 0 on 3ñ,

where fi is the unit square, a = 1 and / is a constant function. We make a uniform
right-angled triangulation (with triangle sides of length h,hJ2h)io obtain Qh.
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In case p = 2 we choose linear basis functions associated to vertex points and
quadratic functions associated to the midpoints of the edges, see Figure 6.1. For
p = 3 we add four cubic basis functions, the standard Lagrangian cubic basis
functions associated with one point on each side and the midpoint; see Figure 6.2.

=   l-x-y 4xy

|>5  = 4 (l-x-y) y

K  = 4(l-x-y)x

Figure 6.1
Basis functions for p = 2 ion basic element)

t>7  = ^-(y-l/3)xy

t>8 = ^(2/3-x-y)y(l-x-y)

27
(l-x-y)/(x-l/3)x

'10 27(l-x-y)xy

Figure 6.2
Additional basis functions for p = 3

The corresponding element matrix is

«i

6    -3
-3       3
-3_     0
-8 " ~4~
4    -4
4      0

-3
4
4

4 i   16
0 i  -8

-4 i  -8

4       4
-4       0
0     -4

16
0

0
16
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for p = 2 and

l
240

240 -120
120 120
120 _ _0_
320 160
160 -160
160 _ _0_
180 90
90 -90
90 _ _0_
0    0

-120
0

J20
160
0

-JI60
90
0

-90
0

-320
160
J_60_" 640

-320
-3_20_" 360

-72
-288_

0

160
-160

0 _
-320
640
0 _

-504
144
0 _

432

160
0

-160
-320

0
640
-72"

-216
360
432

-180
90
90_

360
-504
-72_
810
81
81_

-486

90
-90

_ 0
-72"
144

-216
81

810
_ 0
-486"

90
0

_-90
-288

0
_360

81
0

810
0

0
0

_0_
0

432
432

-486
-486

_0_
1944-1

for/? = 3.
Construction of Local Finite Element Matrices. We note that the 3 X 3 and 6X6

principal submatrices of the element matrix for /? = 3 are the element matrices
corresponding to /? = 1 and p = 2, respectively. In general, for p > 2 we add to the
set of basis functions for V¡¡P~X), p + 1 complete basis functions for V¡¡p) \ Vj¡p~x).
In this way we can build up the element matrix for p = q successively from those for
/?= 1, /? = 2,...,/? = q— 1. For /? s* 3 we now eliminate all interior nodes (by static
condensation), i.e. in the case /? = 3 node nr. 10, see Figure 6.2. In general the
number of interior nodes is (/? — 2)(/? — l)/2. Besides the reduction of the number
of unknowns this has the desired effect of reducing the condition number k0 =
kíD'xB), D = diag(-B). (In our model problem with /? = 3 k0 was reduced by a
factor about 2/3.)

The Case of Linear-Linear Basis Functions. The method presented in this paper
can also be applied to /? = 1 in the following way. Let the basic triangle consist of
four uniform triangles of size h/2, see Figure 6.3. To the vertex nodes we associate
the same linear basis functions as in the case /? = 2,3. To the remaining nodes we
associate piecewise linear basis functions which are linear on each subtriangle, i.e.,
the standard linear basis functions corresponding to h/2.

l-x-y 0

2x-2y-l

2y

2x

2y

l-2x

0

< i-2y

(x,y) e I

(x,y) c II

(x,y) e III

(x,y) e IV

(x,y) e I

(x,y) e II

(x,y) <l III

2-2x-2y     (x,y) e IV

(x,y) € I

2y (x,y) e II

2-2x-2y     (x,y) e III

0 (x,y) e IV

Figure 6.3
Basis functions for p = 1
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We get the following element stiffness matrix, where the entries are obtained by
assembling over the four subelements;

r*,=

6
-3
-3
-6

3
3

3
3
0
3

-3
0

-3
0
3
3
0

-3

-6
3
3

12
-6
-6

3
-3

0
-6
12
0

3
0

-3
-6

0
12

We note that here Vx = V¿X), V2 ® Vx = V¡¡%, vxnv2 (0}, and hence the
method can be regarded as a two-level method for linear finite element approxima-
tions.

Comparisons of Various Diagonal and Full Block Preconditioning Methods. Since we
have a uniform mesh and constant material coefficients, we can calculate y and k0
from one single element matrix not meeting a Dirichlet boundary. These numbers
are then also valid as upper bounds for elements at a Dirichlet boundary since then
we consider subsets of nodes (basis functions).

Let X0 be the largest eigenvalue of B, and let k0 = k(D"'5), D = diag(5). We will
consider some different preconditionings already discussed in Sections 4 and 5.
These give rise to the methods <D1L/, /' = 1,...,6, with condition numbers «,, / =
1,...,6, as described in Table 6.1. In Table 6.2 we give values of y and the
corresponding bounds of k¡, i = 0,...,6, calculated from the general expressions
given in Sections 4 and 5, for our model problem and p = 1,2,3. k2 is calculated by
direct use of (4.8).

Table 6.1
Various diagonal block (DB) and full block (FB) preconditioning methods

Method DB/FB Case in Section 5

DB

DB

FB

FB

FB

73

V
V

-1 -ItA-A  CD  C

A-AQ1CD 1Ct

(ii)

(iv)

(iii)

(v)

Table 6.2
The values of y, «,,1 = 0,... ,6, for our model problem with p = 1,2,3

.707

.816

.846

5.9

5.9

17.6

5.9

9.9

12.0

10.4

15.2

31.9 3.6

10.7

15.5

59.4

11.4

16.9

61.1

1.84

2.7

3.4
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As was pointed out already above, the gain in the condition number by making a
factorization of A - X'¿CD~XC' (methods <Dt4, 91t6) instead of A (methods 9H5, 9H3)
is minor. In all tests we got the same number of iterations for ty\L4 and 91t5 as well as
for ^?1L6 and 91t3. We also recall that we can come arbitrarily close to the results for
exact factorizations of A by using accurate enough incomplete factorizations. Also
note that the factorization work for A is relatively small compared to that for B and
other arithmetic operations in the method, because the order of A is relatively small.

In Tables 6.3 and 6.4 we give the number of iterations needed in the conjugate
gradient (CG) method to reduce the relative residual error by a factor e = 10"4 for
various preconditioning methods and for different values of/? and h. The iterations
were stopped when (r\r*) < e2(r°,r°), where r* = éEu* — f, A: = 0,1,..., and
u° s 0. Later on we will also consider more accurate starting approximations. In the
tables we indicate the methods 91L,, i = 1,2,3,5 for which the analysis is made in
Sections 4 and 5 and for which the bounds of the condition numbers are given in
Table 6.2.

Table 6.3
The number of iterations for the diagonal block factorization methods for various (incomplete)
factorizations of A and B and for p = 1,2,3, e = 10"4 and different sizes of the mesh

-1

Exact fact.of B

Factorizations of A

MIC(O) MIC(2) MIC(4) exact

B appr. by D

Factorizations of A

MIC(O) MIC(2) MIC(4) exact

IC(0) of B

MIC (4)

of A

10

13

18

9

9

10

12

13

16

21

10

11

12

14

10

10

10

11

10

10

10
10

10

12

lb

19

9
10

10

il

10

10

10

9

10

10

10

13

14

17

22

11

12
13

15

11

12
12

12

12

12

12

12

10

11
11

11

i

11

14

3

10

12

3

10

12

3

10

12

18

19

21

24

17

18

18

18

17

18

18

18

17

18

18

9

13

14

M.

In the diagonal block method we also tried B = wdiag(5), w ¥= 1, but it turned
out that w = 1 is optimal (or close to optimal).

We note that when systems with the matrix B were solved by iteration in 91t3 (the
method proposed by Bank and Dupont [3]), then 3 and 6 iterations were needed for
/? = 2 and 3, respectively, to yield the same number of outer iterations as in our
method.

We see that if we use a sufficiently accurate incomplete factorization of A, the
number of iterations stays the same as for the exact factorization of A for h > h0.
For instance, if p = 2, hQ = 1/32, then MIC(4) is sufficient and if p = 3, h0 = 1/12,
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then MIC(2) is sufficient. By considering the total work i.e. the number of opera-
tions (multiply-adds) we find that (see also Table 6.5) among the diagonal block and
full-block factorizations, respectively, those indicated by double lines in the tables
are preferable. In the following these methods will be denoted diagonal block (DB)
and full block (FB) factorization, respectively.

Table 6.4
The number of iterations for the full block factorization methods for various (incomplete)
factorizations of A and B and for p = l,2,3,e= 10"4 and different sizes of the mesh

Exact  fact,   of B

Factorizations of A

MIC(O) MIC(2) MIC(4) exact

IC(0) factorization of B IC(-l)
of B

Factorizations of A

MIC(O) MIC(2) MIC(4) exact

MIC(4)

of A

B appr. by AD

Fact, of A

I MIC(4) exact

4     3     3     3

4 3     3     3

5 4     3     3

10

3 3

4 4

4     4

10

10

h

ii

h

10

10

10

10

2 2

5 5

5     5

6 6

7 7

7     7

11 ;  15

12 | 18

12    20

15

18

19

"'3 "'5

In the following table we give the computational complexity and storage require-
ment for these methods for p = 1,2,3, h > h0 and e = 10"4. Note that in the case
/? = 3 the work estimate for the DB method is valid for h0 = 1/24 as well. These
values of h0 are in most cases small enough to get a small enough discretization error
because, as is well known, for smooth enough problem data the L2-error of the
solution is of order Oihp+x), h -» 0. The work estimates include factorization work,
and no consideration has been given to the fact that we have u° = 0 and that some
elements in the matrices are zero because of the actual triangulation and problem
data. Hence, these estimates are in principle also valid for more general (variable
coefficient) problems (if the number of iterations stays the same). Within parenthe-
ses we also give the figures obtained if we do consider the number of zeros in the
matrix.

Table 6.5
The work (W) and storage (S) per unknown required for the DB and FB methods for p = 1,2,3,
h»hnande= 10"4

Method DB

1 2 3

1/32 1/32 1/24

240(220) 260(240) 420(390)

7 7 6

FB

1 2 3

1/32 1/32 1/12

140(130) 180(170) 340(310)

9 9 10
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When comparing these numbers one should bear in mind that the higher order
methods ( p > 2) give in general the same discretization errors as a lower order
method (/? = 1) for a much coarser grid. We comment further on this later in this
section.

We note that the FB method needs less computational effort than the DB method,
the difference, however, being relatively smaller for larger values of /?. The DB
method might sometimes be preferable because of its less need of storage and since
it is simpler to implement. In this method we only need to assemble A (in order to
make the incomplete factorization) and the diagonal of B. As is well known, one may
calculate the product 6E-x, needed in the CG method, from the element matrices
without having to assemble and store the global matrices.

For the storage requirements in Table 6.5 we have assumed that fî-x is calculated
in this way. In our model problem we have only one element matrix and in more
general problems one may have only a small number of different element matrices in
which case the storage requirement will be only slightly greater than that given in
Table 6.5.

In Figure 6.4 we have drawn the number of iterations as a function of h~x for the
full block method, /? = 2 with IC(0) factorization of B and different (approximate)
factorizations of A. The discrete behavior of the number of iterations has been
smoothed out by calculating (the real number) k = kin e2/ln{irk,rk)/ir°,r0)}
when the iterations have been terminated for (r*,r*) < e2(r°,r°). The figure il-
lustrates how the point, where the 0(/r1/2) behavior of the number of iterations
comes into effect, depends on the degree of accuracy of the incomplete factorization.
The scale is logarithmic and the slope of the line k = h'x/1 is indicated.

Iterations   (k)

10

9

k=0(h

' MIC(O)

,   MIC(2)

MIC(4)

Exact

16 32T
Figure 6.4

The number of iterations for the FB method, p = 2, e
(approximate) factorizations of A

10"4 as a function of h ' for different
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More General Test Problems. We have also tested problem (6.1) with discontinu-
ous material coefficient; a = 1 for x < { and a = d, x > {-. The number of iterations
depends only slightly on d, see Table 6.6. We note that the estimated values of the
condition numbers in Table 6.2 are valid also in this case.

Table 6.6
The number of iterations for the FB and DB methods for p = 2, e = 10"\ h e [1/32,1/4] for
different values of the discontinuity parameter d

method

FB

DB

5

12

10

6

13

100

6

14

1000

6

14

For smoothly varying coefficient a we expect the same or almost the same rate of
convergence as for a = 1. For e.g. a = 1 + x2 + y2, p = 2, h = 1/8 we namely find
(by actually computing these values) that the change in k0 and y from the case a = 1
is only 1.2 and 0.07 percent, respectively. Obviously, for smaller values of h the
change is even smaller.

Furthermore, we have obtained the same or almost the same rate of convergence
for unisotropic problems. Even in this case the derived estimates of the condition
numbers (in particular also of y) hold.

Work Estimates. Let us now compare the work needed in a model problem to
obtain a desired accuracy for/? = 1 and/? = 2. If the solution u is smooth (i.e. if the
problem data /, g, ß is smooth) then the errors in the L2-norm of the solution is of
order Oihp+'), h -» 0. Hence the number of unknowns N(p), p = 1,2 (needed to get
a discretization error less than e) are related by
(6.2) 7V<2> = C(/V(1))2/3.

We consider the problem (6.1) with / chosen such that u = (1 — x)2x2(l — y2)y2.
Then for e = .3 • 10~4, Nw = 225 (/i = 1/16) and Na) = 49 (/i = 1/4) nodes were
required, respectively.

To solve this problem with /? = 2 by the FB method we also consider the task of
choosing a good starting approximation. To this end we solve the problem with
/? = 1 on a coarser grid (A = j) by the preconditioned CG method (or by recursive
use of the method described in this paper similarly to the multigrid method). The
obtained solution is linearly interpolated to the finer mesh to yield a starting
approximation for the iterations on this finer mesh.

This latter idea is used in [2] and [6]. We note that we obtain the solution on the
coarser mesh by solving iteratively a system with matrix A for which we already have
made an incomplete factorization. This system does not have to be solved to
excessively high accuracy, often only a couple of iterations suffice. In our test
problem one iteration (in fact the incomplete factorization is exact for this small
system) was needed on the coarser mesh to obtain the starting approximation and
then only two iterations were needed on the finer mesh to get a total error of the
same size as the discretization error (say two times the discretization error). This
corresponds to an operation count of about 78jV(2) «> 17jV(I) operations. This work
estimate should be used in comparisons with methods using finite differences or
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linear finite elements. Because of the relation (6.2) we expect even better work
estimates (related to Nm) for smaller discretization errors i.e. for larger values of
N(X). In our test example e = 2 • 10"5 required N(X) = 3969 (A = 1/64) and JV(2) =
361 ih = 1/10), respectively. In this case three iterations were needed on the coarser
and finer meshes and we got a computational cost of about 126A/<2) « 11.5iV(1)
operations.

The Factor log N. In connection with working on two level grids we remark that
the factor log N in the work estimate in Section 1 can be dispensed of in the
following well-known way.

Assume that we first solve the problem on the coarser mesh &h to an accuracy of
Oihp+x), i.e. to an accuracy of the same order as the discretization error on this
level. We then use interpolation of order p to get an initial approximation on the
finer grid ti(h/k), k > 2 an integer. (This is achieved by simply evaluating the finite
element solution onto the new mesh points.) Now we only have to achieve a relative
accuracy of order il/k)p+x (i.e. independent on h) to get a final error of the size of
the discretization error on the finer mesh. Hence in the estimate for this number of
iterations, no factor log N appears.

Initially, on the coarser mesh we may get such an accurate solution by recursively
working on coarser and coarser grids, but as we already have pointed out (this being
one of the main points of this paper), because of the small size of the problem on the
coarser meshes we eventually may solve the system exactly or by iteration to almost
full accuracy. In fact in the work estimates for the multigrid methods one often
assumes that the solution on the coarser grid is already given.

7. Extensions, Conclusions and Comparisons With Other Methods. The methods
presented in this paper are readily generalized to other types of meshes e.g.
quadrilateral meshes. For bilinear f.e. based on a rectangular mesh division of the
model problem we expect an even faster rate of convergence since calculated values
of y, k,, /' = 0,...,6, are smaller than if we have a triangular mesh. Actually, the
derived estimates are even better than in the linear (/? = 1) triangular case, so the
number of iterations would be smaller than what we get in that case; see Section 6.

Figure 7.1
Element in a three-level method, p = 2
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As already pointed out our method can be regarded as a two-level method. The
idea can be generalized to a multi-level method; see also [3]. For simplicity, we
consider a three-level approach to the case /? = 2 and a right-angled triangulation,
where each element consists of four small elements, see Figure 7.1.

With the vertex nodes (1,2,3) we associate linear functions (with support on the
whole element) and with the midpoints of the edges (4,5,6) we associate piecewise
linear functions being linear over each subtriangle. (This corresponds to the case
p = 1 in Section 6.) With the remaining nodes we associate piecewise quadratic basis
functions, the standard Lagrangian basis functions of degree /? = 2 corresponding to
h/2. We get a stiffness matrix with the structure

& =
_ _i_
Cí i A,     C,

e2 = o
0

C2 i

0
¿2

0

c¡
0
0

A,

and let ex = o
o

0
A2

ci

0

be diagonal block preconditionings to â.

In a similar way as in the two-level case we get that kíAx) = Oih 2), h -» 0,
kíA2) = Oil), h^O, KiA3) = Oil), h -» 0 and order iAx) = 0(TV/16) (in general
0{N/ip2'~2)d) in an /-level method in d dimensions). Apparently, this will lead to
a smaller h0 (compared to the same degree of accuracy of the incomplete factoriza-
tion of A, ) than in the two-level method. However, y (corresponding to the indicated
block-partitioning of â) and «(ß^'eE) are larger than in the two-level method, about
.850 compared to 0.816 and 13.7 compared to 5.9, respectively. If we consider the
three-block diagonal preconditioning Q2, we get even larger values. Furthermore, the
matrix is more dense due to the fact that basis functions associated to vertex nodes
have larger support. We conclude that in the approach we use here it is not
preferable to use more than two levels. At this point we remark that the work
involving A, i.e. the work on the coarser mesh, is minor compared to the entire work.
For instance, for the DB method, /? = 2, this work amounts to only about 1 /6 of the
total work to solve the model problem.

The computational complexity for the DB method is comparable with that for the
method based on spectral equivalence presented in [2] for/? = 2 and TV = 1000. For
N = 4000 the DB method is about 25% faster. For/? = 1, the methods presented in
this paper are slower than MICCG methods based on standard f.e., unless h is
excessively small. This is so because the matrix is more dense, due to the fact that the
basis functions have larger support.

If in the diagonal block method the systems of equations with matrices A and B
are solved by a direct method (Gaussian-elimination) and by iteration, respectively,
the work estimate is more than 600 operations per unknown for /? = 2, N = 4000
and more than 1000 operations per unknown for /? = 3, N = 1200. Hence we have
reduced the work by a factor of about 0.4 by using incomplete factorizations; see
Table 6.5. The storage requirements are more than halved. An alternative to our
method might be to solve the system with matrix A approximately by some other
method e.g. a multigrid method.
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For three-dimensional problems we expect the new method to be even more
competitive than other methods because in a ¿-dimensional problem the order of the
matrix A is only OiN/pd), where TV is the number of unknowns.

We conclude that we have derived a class of methods having complexity in
arithmetic operations and storage effectively independent of h for h> h0, where h0
is sufficiently small to cover most applications. Compared with other iterative and
direct methods, the methods are highly competitive with respect to computational
cost as well as to storage requirement.

The efficiency of the method is comparable to the best implementations of
multigrid methods for solving model problems [7]. Our method is however applicable
to more general problems with no or a small increase only in work estimates and
avoids the problem of working with several levels. The derived upper bounds for the
computational cost are valid also for discontinuous, unisotropic and smoothly
varying material coefficients.

The rate of convergence of the usual multigrid methods seems to be much more
sensitive to variable and/or unisotropic coefficients and to general domains. In [10]
it is reported that 25 to 80 operations per mesh point are needed in various
implementations of the multigrid method but the actual computing time for general
domains was increased by a factor of 4 to 5 compared to the model problem on the
unit square. In general, overhead operations seem to contribute to a large portion of
the computing time for the multigrid method on general domains, whereas this
matters little in our method.

We also remark that, if one examines multigrid methods applied to a fixed
number of grid levels, one finds that the method can be formulated in terms of a
preconditioned iterative method.

To summarize our arguments of this slightly lengthy paper we claim that, in
practice, in the multigrid method one works with few levels of grids. Then one might
as well consider simpler iterative methods which are also more suitable for general
(high order) finite element methods and which on actually mostly used meshes and
domains gives about the same computer times or, at least if /? > 1, much smaller
computer times in order to calculate a solution to a given order of accuracy. Such a
method, a two-level preconditioned conjugate gradient method, has been presented
in this paper. The method is also highly competitive to earlier similar methods of
preconditioned conjugate gradient type. Finally, it is easy to program and is well
studied for implementations in existing software for the finite element method.
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