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We turn a given �lter bank into a �ltering scheme that provides perfect reconstruction, synthesis is the adjoint of the analysis part
(so-called unitary �lter banks), all �lters have equal norm, and the essential features of the original �lter bank are preserved. Unitary
�lter banks providing perfect reconstruction are induced by tight generalized frames, which enable signal decomposition using a
set of linear operators. If, in addition, frame elements have equal norm, then the signal energy is spread through the various �lter
bank channels in some uniform fashion, which is o	enmore suitable for further signal processing.We start with a given generalized
framewhose elements allow for fastmatrix vectormultiplication, as, for instance, convolution operators, and compute a normalized
tight frame, for which signal analysis and synthesis still preserve those fast algorithmic schemes.

1. Introduction

Increasingly detailed data are acquired in all sorts of mea-
surements nowadays, so that fast algorithms are an important
factor for successful signal processing. �e concept of gen-
eralized frames has a long tradition in signal processing and
many unitary �lter bank schemeswith the perfect reconstruc-
tion property are induced by tight generalized frames. Frames
themselves are basis-like systems that span a vector space
but allow for linear dependency. �e inherent redundancy of
frames can yield advantageous features unavailable within the
basis concept [1–4]. If the frame is tight and its elements have
unit norm, then it resembles the concept of an orthonormal
basis, with the add-on of useful redundancy, and frame
coe�cients measure the signal energy in a uniform fashion.
Generalized frames were introduced in [5] as a tool for
signal decomposition using a set of linear operators. In [6],
collections of orthogonal projectors were considered under
the name fusion frames, fusion frame �lter banks have been
considered in [7], and the concept of tight �-fusion frames
was developed in [8]. As convolution operators are linear,
most �lter banks can be thought of as pairs of generalized
frames, one for analysis and the other for synthesis. Hence, in
view of �lter banks, it is not su�cient to deal with frames but

we must inevitably consider their generalized counterpart.
Tightness of a generalized frame means that the induced
unitary �lter bank provides perfect reconstruction. As with
frames, we seek unit norm tight generalized frames because
signal energy is then spread through the various channels
in a more uniform fashion. �e latter was used in [9] to
verify robustness of tight fusion frames against erasures,
meaning that it is bene�cial to have tight fusion frames
with equal norm when dealing with distortions and loss
of data. To keep the �lter bank perspective, we will focus
on generalized frames consisting of convolution operators
enabling fast algorithms.

In the present paper we start with a generalized frame,
whose elements allow for fast matrix vector multiplications
(e.g., convolution operators) and construct a unit norm
tight generalized frame that induces a �lter bank scheme
preserving those fast algorithms. �e latter is related to the
so-called Paulsen problem for frames, where one is given a
unit norm frame and one asks for the closest tight frame with
unit norm and for an algorithm to �nd it. �is problem for
frames has been partially solved in [10–12]. Note that if we are
given a unit norm generalized frame, whose elements allow
for fast matrix vector multiplications, then the closest tight
generalized frame with unit norm may not provide such fast
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algorithmic schemes in general. Here, we aim to �nd a related
tight unit norm generalized frame in such a way that signal
analysis and synthesis can still bene�t from the underlying
fast matrix vector multiplications.

We should point out that we used the term �lter bank
beyond sets of convolution operators similar to [7], where
weighted orthogonal projectors are considered. Nonetheless,
if the starting generalized frame consists of convolution oper-
ators, then the resulting scheme still represents convolution
operators in each channel, but we require one additional
linear operator for global pre- and postmultiplication. As
this operator has a special structure being the inverse of a
convolution frame operator, there are still fast computation
schemes available [13].

Our construction is inspired by pseudocovariance esti-
mators of elliptical distributions in [14]; see also [15, 16]. We
derive an iterative algorithm on positive de�nite matrices, for
which we prove convergence, so that we obtain a positive
de�nite matrix Γ that enables us to construct the tight unit
norm generalized frame.

For related research topics, such as the optimal rescaling
of �lter banks, we refer to [17, 18]. Preconditioning in the
context ofGabor frames is addressed in [19]. In order to assess
the bene�ts of our approach in image analysis, we suggest the
use of the structural similarity proposed in [20].

�e outline is as follows: In Section 2, we introduce the
concept of generalized frames and motivate the construction
of unit norm tight generalized frames. In Section 3, we
present our iterative algorithm, for which we verify conver-
gence, enabling us to construct tight generalized frames with
unit norm that preserve fast analysis and synthesis due to
their special structure. In Section 4 we provide few examples
of random matrices whose samples satisfy the convergence
assumptions needed. We also point out examples for convo-
lution operators and further operators enabling fast matrix
vector multiplications. In Section 5, we discuss the structure
of our construction when the underlying generalized frame
is a sample from an elliptical distribution. Some concluding
remarks are contained in Section 6.

2. Generalized Frames

LetK denote eitherR orC.We follow [5] and call a collection{��}��=1 ⊂ K
�×� a generalized frame (or a �-frame for short) if

there are two constants 0 < � ≤ 	 < ∞ such that

�‖�‖2 ≤ �∑
�=1

������∗� ������2 ≤ 	 ‖�‖2 , ∀� ∈ K
�. (1)

If the constants can be chosen 0 < � = 	, then {��}��=1 is

called a tight �-frame and it is called a Parseval �-frame if
0 < � = 	 = 1. For � = 1, we have �∗� � = ⟨��, �⟩, so
that we recover the concept of frames (cf. [1]). It turns out

that a collection {��}��=1 ⊂ K
�×� is a �-frame if and only if⋃�

�=1 range(��) spans K�.

If {��}��=1 is a �-frame, then the analysis operator F :
K
� → K

�×� is given by � �→ (�∗��)��=1. Its adjoint is the

synthesis operator F∗ : K�×� → K
�, de�ned by (��)��=1 �→∑�

�=1 ���∗� , such that the generalized frame operator is� = F
∗
F : K� �→ K

�,
� ��→ �∑

�=1
���∗� �. (2)

�e collection {�−1��}��=1 is called the canonical dual �-frame

and yields the expansion

� = �∑
�=1

�� (�−1��)∗ � = �∑
�=1

�−1���∗� �, ∀� ∈ K
�, (3)

which simply follows from ��−1 = �−1� = ��, where ��
denotes the � × � identity matrix.

Proposition 1. If {��}∞�=1 ⊂ K
�×� is a �-frame with �-frame

operator �, then {�−1/2��}��=1 is a Parseval �-frame and, for any

other Parseval �-frame {��}∞�=1 ⊂ K
�×�, one has

�∑
�=1

������� − �−1/2�������2	
 ≤ �∑
�=1

������� −�������2	
 . (4)

Equality holds if and only if �� = �−1/2��, for  = 1, . . . , !.
Here, ‖ ⋅ ‖	
 denotes the Hilbert-Schmidt (Frobenius)

norm. Most parts of the proof of Proposition 1 can follow the
lines in [21], where � = 1 is considered, so we omit the proof.

Remark 2. We have supposed that the linear operators of
a �-frame have all the same dimensions, which simpli�es
notation but is not necessary.�e entire paper could also deal

with sets of linear operators {��}��=1, where �� ∈ K
�×�� , for = 1, . . . , !. �en ���∗� ∈ K

�×� and this is all we need.

Tight frames are desirable because synthesis is simply the
adjoint of the analysis part. For signal processing purposes,
we are interested in tight �-frames that additionally have
unit norm, because those more resemble orthonormal bases,
and {‖�∗� �‖}��=1 then has more information about the signal

energy in the direction of a particular frame element; see [22]
for � = 1.

Given some �-frame, say with unit norm elements, let
us seek a tight �-frame with equal norm elements that is
nearby. If we give up the equal norm requirement and �
is the frame operator of some �-frame {��}��=1, then the

collection {�−1/2��}��=1 is a Parseval frame closest to {��}��=1;
see Proposition 1. In general, however, {�−1/2��}��=1 may not

have equal norms. �e search for the closest Parseval frame
with equal norm elements has become known as the Paulsen
problem. It is essentially the same problem if we restrict
ourselves to the sphere; that is, given a unit norm �-frame,
we aim for the closest unit norm tight �-frame. For � = 1,
this problem was partially solved in [10–12].
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Figure 1: Analysis and synthesis scheme, in which fast matrix vector multiplication of �∗� and �� can still be used a	er and before pre- and

postmultiplication by Γ1/2, respectively.
Suppose now that we are given a �-frame {��}��=1 that

allows for fast matrix vector multiplications for each ��
and �∗� . �e closest equal norm Parseval �-frame may not

preserve such features. From a computational point of view, it
would be preferable to �nd an equal norm Parseval �-frame
that still allows for fast analysis and synthesis schemes, and
this is indeed our topic in the subsequent sections.

3. Constructing Unit Norm Tight �-Frames
That Preserve Fast Algorithms

�e �-frame operator � of some �-frame {��}��=1 and hence

also �−1 are positive de�nite and Proposition 1 yields the

tight �-frame {�−1/2��}��=1 that may not have unit norm, and{�−1/2��/‖�−1/2��‖	
}��=1 has unit norm but may not be tight.

To construct a unit norm tight �-frame that preserves fast
matrix vector multiplications, we get inspired by Proposi-
tion 1 and aim to �nd a positive de�nite matrix Γ such that{{{ Γ1/2�������Γ1/2�������	
}}}

�

�=1

(5)

is a unit norm tight �-frame. As opposed to Proposition 1, we
replace �−1 with Γ and normalize. �e unit norm �-frame (5)
is tight if and only if�� = Γ1/2 �! �∑

�=1

���∗������Γ1/2�������2	
 Γ1/2. (6)

Signal analysis and synthesis requires pre- and postmulti-

plication by Γ1/2 but in-between we can use ! times the
fast algorithms provided by �∗� and �� (cf. Figure 1). Now,�∗� Γ1/2/‖Γ1/2��‖	
 has unit norm, so that the signal energy

better relates to themagnitudes of {‖�∗� Γ1/2�‖/‖Γ1/2��‖	
}��=1.
�us, the special structure (5) can be advantageous over other
unit norm tight �-frames that can be closer to the original
one.

Remark 3. �e �ltering scheme in Figure 1 can preserve
many properties of the original �-frame {��}��=1, which can

go beyond fast matrix vector multiplications, such as being
orthogonal projectors and sparse matrices, as long as the

application of Γ1/2 is implemented separately and we do not

use Γ1/2�� directly.
Remark 4. We point out that structure (5) is di�erent from
the approach in [23], where rescalings are sought to derive
tight frames. �e authors in [24] discuss the setting when a
linear operator exists thatmaps a frame into a unit norm tight
frame.We are more general here, because we are joining both
and we apply a linear operator and allow for rescaling.

Note that (6) is equivalent to

Γ = (�! �∑
�=1

���∗�
trace (�∗� Γ��))

−1 . (7)

�us, Γ is the inverse of the generalized frame operator of{√�/!‖Γ1/2��‖2	
��}��=1. Since this equation is invariant under
scalings, we can look for a solution Γ with trace(Γ) = 1. Let
P be the collection of hermitian positive de�nite matrices in

K
�×� and denote by P1 the same space with the additional

requirement that the trace is 1. �e �xed point equation (7)
gives rise to an iterative scheme that was already considered
in [14, 15] for � = 1 to estimate the covariance of elliptical
distributions. As initialization we choose Γ0 := (1/�)�� ∈ P1

and de�neΓ�+1
:= ((�/!)∑�

�=1 (���∗� /trace (�∗� Γ���)))−1
trace (((�/!)∑�

�=1 (���∗� /trace (�∗� Γ���)))−1) . (8)

Note that Γ1 = �−1/trace(�−1), and, to verify convergence, we
will follow the ideas of the technical procedure used in [14,
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15] for � = 1. For analysis purposes, we will introduce the
mapping 3 : P �→ P,

3 (Γ) := �! �∑
�=1

Γ1/2���∗� Γ1/2
trace (�∗� Γ��) ,3� := 3 (Γ�) ,

(9)

so that Γ�+1 = Γ1/2� 3−1
� Γ1/2�

trace (Γ�3−1
� ) ,Γ0 := 1���. (10)

We will �rst check that the mapping 3 is injective up to
scalings, which generalizes [14, �eorem 2.1] from � = 1 to
the general case.

Lemma 5. Let {��}��=1 ⊂ K
�×� be a �-frame and let Γ�, Γ ∈ K

�

be positive de�nite. 	en3(Γ�) = 3(Γ) if and only if there is
a positive constant � > 0 such that Γ� = �Γ.
Proof. Without loss of generality, we can assume that Γ =��. Otherwise, replace {��}��=1 with {Γ−1/2 ��}��=1. Let 61 be

the largest eigenvalue of Γ� and let 71 be the associated
eigenprojector. Moreover, let {7�}��=2 be one-dimensional
eigenprojectors of Γ� associated with eigenvalues {6�}��=2 such
that 61 > 6�, for 8 = 2, . . . , 9, and ∑�

�=1 6�7� = Γ�. Note
that 62, . . . , 6� do not need to be pairwise distinct. SinceΓ1/2� 71Γ1/2� = 6171 and ∑�

�=1 7� = ��, we obtain
trace (713(Γ�)) = �! �∑

�=1

trace (71Γ1/2� ���∗� Γ1/2� )
trace (�∗� Γ���)

= 61 �! �∑
�=1

trace (�∗� 71��)
trace (�∗� Γ���)

= 61 �! �∑
�=1

trace (�∗� 71��)∑�
�=1 6�trace (�∗� 7���)

≥ 61 �! �∑
�=1

trace (�∗� 71��)61trace (�∗� ��)= trace (713(��)) .

(11)

Now, 3(Γ�) = 3(��) implies that either trace(��7��∗� ) = 0,

for all  = 1, . . . , ! and 8 = 2, . . . , �, or 71 = �� and, hence,Γ� = 61��. Since {��}��=1 is a generalized frame, trace(�∗� 7���)
cannot vanish simultaneously for all  = 1, . . . , !, so that,
indeed, Γ� is a nonzero multiple of the identity.

�e following result says that if we �nd a proper tight �-
frame with unit norm based on (5), then this tight �-frame is
unique.

Proposition 6. Let {��}��=1 be a �-frame and suppose that

there are two positive de�nite matrices Γ� and Γ such that both{Γ1/2� ��/‖Γ1/2� ��‖	
}��=1 and {Γ1/2 ��/‖Γ1/2 ��‖	
}��=1 are tight.

	en those two tight �-frames are identical.

Proof. �e tightness assumptions imply that 3(Γ�) =3(Γ) = �. According to Lemma 5, there is a positive constant� such that Γ� = �Γ. �erefore, the two tight �-frames are
identical.

Next, we use scheme (10) to compute a unit norm tight�-frame.

�eorem 7. Let {��}��=1 ⊂ K
�×� satisfy the following points:

(i) {��}��=1 is a �-frame.

(ii) If {1, . . . , !} = ?1 ∪ ?2 and ?1 ∩ ?2 = 0, then⋃�∈�� range(��) spans K� for either 8 = 1 or 8 = 2.

(iii) If C is a proper linear subspace of K�, then #{ :
range(��) ⊂ C} < !/�.

(iv) If C is a proper linear subspace of K�, then #{ :
range(��) ⊂ C} < dim(C)/D, where D :=
max1≤�≤�trace(�∗� �−1��) and � is the �-frame operator

of {��}��=1.
	en the recursive scheme (10) with Γ0 = (1/�)�� converges
towards a positive de�nite Γ and {��}��=1 de�ned by

�� := Γ1/2�������Γ1/2�������	
 (12)

is a tight �-frame.

�is theorem generalizes results in [14, 15], where con-
vergence is veri�ed for � = 1. �e conditions in �eorem 7
are redundant. Condition (ii) clearly implies (i). For � ≥ 2,
(iii) yields (ii). In fact, conditions (i), (ii), and (iii) depend
on the range of each �� but not on their norm. Note that

condition (iii) can only be satis�ed by some {��}��=1 if !/� >⌊(� − 1)/�⌋, which yields ! > �⌊(� − 1)/�⌋. Condition (iv)
is independent of global scalings since multiplication of all�� by some constant � means that the inverse frame operator

needs to be divided by �2. It requires D < �, which is, in fact,
quite weak.

Proposition 8. Suppose that {��}��=1 ⊂ K
�×� is a �-frame. One

then has trace(�∗� �−1��) ≤ �, for all  = 1, . . . , !, and if there

is  with trace(�∗� �−1��) = �, then �� does not have any zero
columns and range(�−1/2��) ⊥ range(�−1/2��), for all H ̸=  .
Proof of Proposition 8. We �rst choose an orthonormal basis{J�}��=1 for K� and de�ne, for some 1 ≤  ≤ !, the index
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set I� := {8 : 1 ≤ 8 ≤ �, �−1/2��J� ̸= 0}. We apply
Proposition 1 �-times to derive

� ≥ ∑
�∈I�

�∑
�=1

������������∗� �−1/2 �−1/2��J�������−1/2��J������
�����������
2

= ∑
�∈I�

1������−1/2��J������2 �∑
�=1

�∑
�=1

KKKKK⟨�−1/2��J�, �−1/2��J�⟩KKKKK2
≥ ∑
�∈I�

1������−1/2��J������2 KKKKK⟨�−1/2��J�, �−1/2��J�⟩KKKKK2
= ∑
�∈I�

������−1/2��J������2 = ������−1/2�������2	

= trace (�∗� �−1��) .

(13)

�e assumption trace(�∗� �−1��) = � implies that the

two above inequalities become equalities, which yield the
required statements.

Note that Proposition 8 bounds the worst case scenario.
Since �� = �−1�, taking the trace on both sides yields that� = ∑�

�=1 trace(�∗� �−1��). If {��}��=1 has unit norm and is close

to being tight meaning � ≈ (!/�)��, then D ≈ �/!. If {��}��=1
is su�ciently generic or in su�cient general position, then
(i)–(iv) are satis�ed for su�ciently large !.

If {��}��=1 is a sample of a continuous distribution onK�×�

and ! is su�ciently large, then with probability one all of the
assumptions in�eorem 7 are satis�ed.

Proof of 	eorem 7. Since {��}��=1 is a �-frame, the sequence{Γ�}∞�=1 is well de�ned. It is also clear that Γ� is hermitian
positive de�nite and trace(Γ�) = 1, for all H = 0, 1, 2, . . .. If
we suppose that {Γ�}∞�=1 converges towards Γ, then3(Γ) = ��
must hold, and a direct computation yields that {��}��=1 is a
tight �-frame with ‖��‖	
 = 1, for  = 1, . . . , !.

It remains to verify convergence, which we check in two
steps.

Step 1 (refers to Lemma 2.1 in [14]). Let O1,� and O�,� be
the largest and smallest eigenvalues of 3�, respectively. We
observe

�� = �! �∑
�=1

3−1/2
� Γ1/2� ���∗� Γ1/2� 3−1/2

�

trace (�∗� Γ���) . (14)

�e positive de�nite square root of Γ1/2� 3−1
� Γ1/2� has the

form P�3−1/2
� Γ1/2� , where P� is an orthogonal matrix. SinceP�P∗

� = ��, we obtain
�� = �! �∑

�=1

P�3−1/2
� Γ1/2� ���∗� Γ1/2� 3−1/2

� P∗
�

trace (�∗� Γ���) . (15)

According to (10), we have

Γ1/2�+1 = (Γ1/2� 3−1
� Γ1/2� )1/2√trace (Γ�3−1

� ) = P�3−1/2
� Γ1/2�√trace (Γ�3−1

� ) , (16)

which yields

�� = �! �∑
�=1

( Γ1/2�+1���∗� Γ1/2�+1

trace (�∗� Γ���)) trace (Γ�3−1
� ) = �!

⋅ �∑
�=1

( Γ1/2�+1���∗� Γ1/2�+1

trace (�∗� Γ�+1��))
⋅ trace (�∗� Γ�+1��) trace (Γ�3−1

� )
trace (�∗� Γ���) .

(17)

According to (10), we have the identity trace(�∗� Γ�+1��) =
trace(�∗� Γ1/2� 3−1

� Γ1/2� ��)/trace(Γ�3−1
� ), so that

�� = �! �∑
�=1

( Γ1/2�+1���∗� Γ1/2�+1

trace (�∗� Γ�+1��))
⋅ trace (�∗� Γ1/2� 3−1

� Γ1/2� ��)
trace (�∗� Γ���) = �!

⋅ �∑
�=1

( Γ1/2�+1���∗� Γ1/2�+1

trace (�∗� Γ�+1��))
�����3−1/2

� Γ1/2� �������2	
�����Γ1/2� �������2	

(18)

holds. Since each of the matrices Γ1/2�+1���∗� Γ1/2�+1/
trace(�∗� Γ�+1��) is positive semide�nite, the de�nition

of 3�+1 in (9) with its largest and smallest eigenvalues
implies O−1�,�3�+1 ≥ �� ≥ O−1

1,�3�+1. (19)

�e le	 inequality yields O�,�+1/O�,� ≥ 1 and the right
inequality implies O1,�+1/O1,� ≤ 1. �us, as required, the
sequence (O�,�)∞�=1 is increasing, (O1,�)∞�=1 is decreasing, and
both converge towards O� ≤ 1 and O1 ≥ 1, respectively.

Step 2 (refers to�eorem 2.2 and Corollary 2.2 in [14]). SinceΓ� is positive de�nite with trace 1, there is a subsequence(Γ��)∞�=1 that converges towards some positive semide�nite
matrix Γ. We must now verify that Γ is positive de�nite and
that the entire sequence converges.

If Γ�� = 0, then let Q� ∈ K
�×� be such thatΓ1/2�� ��

trace (�∗� Γ����) �→ Q�. (20)

For J := { : Γ�� ̸= 0}, we observe that the subsequence(3��)∞�=1 converges to3 = �! (∑
�∈J

Γ1/2���∗� Γ1/2
trace (�∗� Γ��) + ∑

�∉J
Q�Q∗�) . (21)
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Step 1 ensures that3 is invertible since its smallest eigenvalue
is positive. Let P�� be the orthogonal matrices in Step 1,

so that P�� → P and (Γ1/23−1Γ1/2)1/2 = P3−1/2Γ1/2 is

satis�ed. According to de�nition (10), (Γ��+1)∞�=1 converges
towards Γ0 = Γ1/23−1Γ1/2

trace (3−1Γ) (22)

and a short calculation yields that the sequence (3��+1)∞�=1
converges to

30 = �! (∑
�∈J

Γ1/2
0

���∗� Γ1/20

trace (�∗� Γ0��) + ∑
�∉J

S�S∗�) , (23)

where S� = P31/2Q�/√trace(Q∗�3−1Q�).
Manipulations as in Step 1 applied to the formulas for 3

and30 imply that

�� = �! ∑
�∈J

3−1/2Γ1/2���∗� Γ1/23−1/2

trace (�∗� Γ��)+ ∑
�∉J

3−1/2Q�Q∗�3−1/2
(24)

as well as�� = 1O1

30 + �!
⋅ ∑
�∈J

Γ1/2
0

���∗� Γ1/20

trace (�∗� Γ0��) ( trace (�∗� Γ1/23−1Γ1/2��)
trace (�∗� Γ��)

− 1O1

)+ �! ∑
�∉J

S�S∗� (trace(Q∗�3−1Q� − 1O1

)) .
(25)

According to Step 1, the largest and smallest eigenvalue
of both 3 and 30 are O1 and O�, respectively. Let 7 and 70
be the eigenprojectors of 3 and 30, respectively, associated
with O1 and 9 = rank(7) and 90 = rank(70). As in [14],
without loss of generality, we can suppose 90 ≥ 9.

By multiplying both sides from the le	 and the right by70, the relations 72

0
= 70 and (1/O1)70370 = 70 yield

0 = ∑
�∈J

70Γ1/20
���∗� Γ1/20

70
trace (�∗� Γ0��) ( trace (�∗� Γ1/23−1Γ1/2��)

trace (�∗� Γ��)
− 1O1

)+ ∑
�∉J

70S�S∗� 70 (trace(Q∗�3−1Q� − 1O1

)) . (26)

�us, for  ∈ J, we either have70Γ1/20
���∗� Γ1/20

70 = 0

or
trace (�∗� Γ1/23−1Γ1/2��)

trace (�∗� Γ��) = 1O1

. (27)

�e �rst option yields 70P3−1/2Γ1/2�� = 0. �e second

option implies ⟨7, Γ1/2���∗� Γ1/2⟩ = ⟨�, Γ1/2���∗� Γ1/2⟩, which
yields a	er some computations 7Γ1/2�� = Γ1/2��.

For  ∉ J, we obtain 70S�S∗� 70 = 0

or trace(Q∗�3−1Q� − 1O1

) = 0. (28)

Similar to the above considerations, the �rst option yields70P3−1/2Q� = 0. �e second option implies 7Q� = Q�.
We now premultiply both sides of (24) by 70P and

postmultiply by �−7.�e above four options and using that7
and3−1/2 commute imply70P(�−7) = 0,which is equivalent
to P∗70P = P∗70P7. Since 90 ≥ 9, we obtain 7 = P∗70P, so
that P7 = 70P. �e latter implies with the above that, for ∈ J, either 7Γ1/2�� = 0

or 7Γ1/2�� = Γ1/2��. (29)

Hence, we can split {1, . . . , !} into two disjoint index sets ?1

and?2 such that

7Γ1/2�� = {{{0,  ∈ ?1Γ1/2��,  ∈ ?2. (30)

Condition (ii) yields that span(range(��) :  ∈ ?�) equals
K
� for either 8 = 1 or 8 = 2. If this holds for 8 = 1, then we

must have 7Γ1/2 = 0. If it holds for 8 = 2, then we derive7Γ1/2 = Γ1/2.
Suppose now that7Γ1/2 = 0 holds.�e same arguments as

in the previous paragraph yield, for  ∈ J, that either 7Q� = 0
or 7Q� = Q�; see also [14]. Pre- and postmultiplying both sides
in (21) by 7 yields O17 = �! ∑

�∈J0

Q�Q∗� , (31)

where J0 := { :  ∉ J, 7Q� = Q�}. Next, we take the trace
on both sides and use that trace(Q∗� Q�) = 1 to derive

O19 ≤ �!!1, (32)

where !1 is the number of �� whose range is contained in the
null space of Γ. Condition (iii) yields O1 ≤ �!1/9! < 1, which
is a contradiction to the results of Step 1. �us, we must have7Γ1/2 = Γ1/2, so that

7 = �!O1

∑
�∈J

Γ1/2���∗� Γ1/2
trace (�∗� Γ��) + �!O1

∑
�∈J0

Q�Q∗� . (33)

Since the ranks of the two summations in (21) are additive
(see also [14]) the ranks of the two summations in (33)
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are additive. Hence, the two terms themselves must be
orthogonal projections. According to condition (i), the rank
of the �rst term equals rank(Γ). If rank(Γ) < 9, then taking
the trace of the second term implies with condition (iii) thatO1 < 1/(9 − rank(Γ)) ≤ 1, which is a contradiction to Step 1.
�erefore, J0 is empty and 9 = rank(Γ). Taking the trace of
the �rst term in (33) yields

O1 = � (! − !1)!9 . (34)

We obtain � = trace(3) ≥ 9O1 + (� − 9)O�, so that (34)
implies

O� ≤ �!1! (� − 9) . (35)

At this point, we claim that assumption (iv) implies for at
least one H that

O�,� > �! # { : range (��) ⊂ C}
dim (C) (36)

holds, for all proper linear subspaces C ⊂ K
�, but postpone

the veri�cation to the end of this proof.
Since O�,� is an increasing sequence, (36) implies�(!1/!(� − 9)) < O� if � > 9. �is violates (35), so that 3

and hence Γ must have full rank and, therefore, Γ is positive
de�nite. Also, 7 must have full rank implying O1 = O� = 1
and 3 = ��. Since the eigenvalues are monotone, the entire
sequence (3�)∞�=1 converges towards ��. �e latter can be
used with Banach’s �xed point theorem to verify that also(Γ�)∞�=1 must converge, hence, towards Γ. By continuity, we
obtain3(Γ) = ��.

We still need to verify (36). We observe Γ1 = �−1/
trace(�−1) and de�ne Y� := Γ1/2

1
��, which yields ∑�

�=1 Y�Y∗
�= ��/trace(�−1). By using D = max1≤�≤�trace(�∗� �−1��) as in

(iv), this implies31 ⪰ (�/!D)��, so that
O�,1 ≥ �!D > �! # { : range (��) ⊂ C}

dim (C) , (37)

where the last inequality is due to (iv). �is concludes the
proof.

Remark 9. �e inversion of 3� in iterative scheme (10) is
numerically stable because there is a lower positive bound on
the smallest eigenvalues of3�. �erefore, we can expect that
our scheme is quite stable overall.

Let us have a look at few pathological examples �rst.

Example 10. (1) If {��}��=1 is already a unit norm tight �-
frame, then Γ1 = Γ = (1/�)�� and {��}��=1 = {��}��=1.(2) If the �-frame consists of a single matrix � ∈ K

�×�,
hence, � = � and � is regular, then Γ1 = Γ = ��∗ and (12)

yields � = (1/√�)(��∗)−1/2�, which is a unit norm tight �-
frame.

Next, we illustrate �eorem 7 with few numerical exam-
ples.

Example 11. Let � = 2, � = 1, and ! = 3. We pick D1, D2, D3
from a uniform distribution on [0, 2_] and de�ne �� =( cos(��)

sin(��) ),  = 1, 2, 3. By multiplication by −1 and rotation

of all 3 vectors, we can restrict the angles to lie between 0

and (2/3)_. For each random choice {��}3�=1, we compute a

unit norm tight frame {��}3�=1 using our proposed algorithm.

Up to rotations a� = ( cos(�) −sin(�)
sin(�) cos(�) ) and multiplication by−1, there is only one single unit norm tight frame with three

elements.We choose {b�}3�=1, whereb� = ( cos(��)
sin(��) ) andc1 = 0,c2 = 1/3_, and c3 = 2/3_. �erefore, to �nd the tight frame

with unit norm that is closest to {��}3�=1, we minimize the

distance to {��}3�=1 over all rotations, that is,
Q̂ := arg min

�∈[−2/3�,2/3�]

3∑
�=1

�����a�b� −�������2 , (38)

and de�ne the closest tight frame by {e�}3�=1 := {a�̂b�}3�=1.
Note that we can suppress the multiplication by −1 because

the angles of {��}3�=1 only run in [0, (2/3)_].�e average error

of ∑�
�=1 ‖e� − ��‖2 over 1000 realizations is ≈ 0.0016 =

1/625; see also Figure 2 for a visualization of few examples. In
our numerical experiments, we observed that our proposed
algorithm �nds a tight frame that is almost identical to the
closest tight frame if all pairs �� and ��, for 8 ̸=  , are far
enough from each other.

Example 12. For 0 ≤ f ≤ 1/2, de�ne
�1 (f) = (√1 − f 0

0 √f) ,
�2 (f) = (√f √f

0 √1 − 2f) ,
�3 (f) = (√ 1 − f

2
0

0 √ 1 + f
2

),
(39)

and let �(f) denote the associated �-frame operator. Note

that {��(f)}3�=1 satis�es the assumptions of �eorem 7, for all

0 ≤ f ≤ 1/2. If f = 0, then we have a tight generalized
frame with unit norms. Our algorithm provides a Parseval�-frame {√2/3��(f)}3�=1 with equal m�-norm; see Figure 3

for the errors ∑3

�=1 ‖��(f) − √2/3��(f)‖2	
 and ∑3

�=1 ‖��(f) −�(f)−1/2��(f)‖2	
.
Example 13. We choose each entry of each element in{��}3�=1 ⊂ R

2×2 independently according to a uniform

distribution on [0, 1] and normalize so that ‖��‖	
 = 1.
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Figure 2: Original frame {��}3�=1 in blue, optimal frame {e�}3�=1 = {a�̂b�}3�=1 in green, and our proposed algorithm �nds {Γ1/2��/‖Γ1/2��‖}3�=1
in red. (Green and red lines are sometimes right on top of each other.)

All numbers in the following are averaged over 10,000
realizations, and let � denote the generalized frame operator

of {��}3�=1. According to Proposition 1, {�−1/2��}3�=1 is the

Parseval generalized frame that is closest to {��}3�=1, and
we compute ∑3

�=1 ‖�� − �−1/2��‖2	
 ≈ 0.61. However, the
elements of {�−1/2��}3�=1 may not have equal norm. Based

on �eorem 7, the collection {�̃�}3�=1 = {√2/3��}3�=1 is a

Parseval generalized frame, its elements have equal norm, and

we compute ∑3

�=1 ‖�� − �̃�‖2	
 ≈ 0.71. �us, the additional

property of having equal norm costs ≈ 0.10 = 0.71 − 0.61. It
remains open though if there are other Parseval generalized
frames whose elements have equal norm and that are closer
to {��}3�=1.

Let us also illustrate when the algorithm fails to converge.

Example 14. For f = 0, the collection {��(f)}3�=1, where�1 (f) = (1 0

0 0
) ,

�2 (f) = (1 f
0 0

) ,
�3 (f) = (0 0

0 1
) ,

(40)
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Figure 3: f versus the distance (blue) ∑3

�=1 ‖��(f) − √2/3��(f)‖2	

and (red) ∑3

�=1 ‖��(f) − �(f)−1/2��(f)‖2	
 in Example 12. Note that{��(0)}3�=1 is tight but needs rescaling to become the Parseval

generalized frame {√2/3��(0)}3�=1. It is clear that ��(0) = ��(0)
and √2/3��(0) = ��(0)�(0)−1/2 holds, and we have ∑3

�=1 ‖��(0) −√2/3��(0)‖2	
 = 0.1010. �e latter explains why the distance plots
do not start at 0.
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violates the conditions in �eorem 7, and, indeed, the
iterative scheme does not converge towards a positive de�nite
matrix Γ. For f > 0, on the other hand, we observe
convergence numerically.

�e subsequent sections are dedicated to provide some
examples of random samples satisfying the assumptions of
�eorem 7. We will also provide examples that allow for fast
matrix vector multiplications such as convolution operators
and we support the intuition that Γ is close to the identity if
the sample is close to being tight.

4. Examples of Random Matrices Satisfying the
Assumptions for Convergence

We �rst fuse the concepts of generalized frames and proba-
bilistic frames as developed in [5] and [4], respectively, see
also [25].

De�nition 15. Let� ≥ 1 be an integer. One says that a random

matrix � ∈ K
�×� is a random �-frame of order � if there are

positive constants �� and 	� > 0 such that

�� ‖�‖2� ≤ E
�����∗�����2� ≤ 	� ‖�‖2� , ∀� ∈ K

�. (41)

A random�-frame� of order� is called tight if we can choose�� = 	�.
Following the lines of the proof for rank one projectors

considered in [2] yields that any random �-frame� of order 1
satis�es �1 ≤ (1/�)E‖�(q)‖2	
 ≤ 	1. Similar to �nite frames,
if� is a random �-frame of order �, then the random �-frame
operator

� : K� �→ K
�,� ��→ E��∗� (42)

is positive, self-adjoint, and invertible. �us, we obtain the
reconstruction formula

� = E� (�−1�)∗ �. (43)

Moreover, � is a tight random �-frame of order 1 if and only
if � = ���, where � = (1/�)E‖�‖2	
.

Note that the case � = 1 of the following result is already
explicitly contained in [26] and see [27] for related results on
orthogonal projectors.

�eorem 16. Let {��}��=1 be independent copies of a tight

random �-frame � ∈ K
�×� of order 1 with ‖�‖2	
 = � for

some positive constant �. For �xed r ∈ (0, 1], there are positive
constants 6� and �� > 0 such that, for all ! ≥ ��� ln(�),
the �-frame operator �� of the scaled collection {√�/!���}��=1
satis�es ‖�� − ��‖∞ < r with probability at least 1 − J−��(�/�).

Proof. Let Omin(��) and Omax(��) denote the smallest and
largest eigenvalue of ��, respectively. �e matrix Cherno�
bounds as stated in [28] yield, for all 0 ≤ r ≤ 1,

P (Omin (��) ≤ 1− r) ≤ �( J−�(1 − r)1−�)�/� ,
P (Omin (��) ≥ 1+ r) ≤ �( J�(1 + r)1+�)�/� . (44)

Some calculus yields(1+ r)1+� (1− r)�−1 ≤ J2�, ∀r ∈ [0, 1] , (45)

so that we derive

P(������������� − �∑
�=1

�!��∗� �������������∞ ≥ r) ≤ 2�( J�(1 + r)1+�)�/� . (46)

We can further compute

2�( J�(1 + r)1+�)�/�= 2�J−(�/�)((1+�) ln(1+�)−�)= J−(�/�)((1+�)ln(1+�)−�−(�/�) ln(2) ln(�)).
(47)

Since (1 + r)ln(1 + r) − r > 0, for all r ∈ (0, 1], we can �nd a
suitable constant 6� > 0 if ! is su�ciently large.

Remark 17. �e constants 6� and �� in �eorem 16 can be
explicitly computed. By using s� := (1 + r)ln(1 + r) − r > 0,
we can choose �� > ln(2)/s� and 6� = s� − ln(2)/��.

Next, we discuss a few examples.

Example 18 (Gaussian matrices). Let 1 ≤ H < � and consider
the � × � random matrix � whose entries are i.i.d. Gaussian.
Its joint element density is3 ��→ 1(2_)��/2 exp(−1

2
‖3‖2	
) . (48)

�e resulting self-adjoint matrix ��∗ ∈ R
�×� is a singular

Wishart-matrix (cf. [29]). According to (48) the distribution
of � is invariant under orthogonal transformations, so that� is a tight random �-frame of order �, for all integers �.
By using the moments of the chi-squared distribution, we see
that the bounds satisfy �� = 	� = H(H + 2) ⋅ ⋅ ⋅ (H + 2� − 2).
Example 19 (fusion frames). If the columns of a matrix � ∈
K
�×�, � < �, have orthonormal columns, then we can identify� with a subspaces v ∈ G�,�(K), where G�,�(K) denotes

the Grassmann space, that is, the collection of �-dimensional

subspaces of K�. �e Haar measure onG�,�(K) then induces
a random �-frame of order � for all integers �.
Example 20 (Gabor). Time-frequency structured matrices
were considered in [30] in relation to compressed sensing, in
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which some window vector is modulated and shi	ed. We use
cyclic shi	s, which can be performed by applying a matrixw having ones in the lower secondary diagonal, another
one in the upper right corner, and zeros anywhere else. �e

modulation operator on C
� is given by3 = diag (1, J2��/�, . . . , J2��(�−1)/�) . (49)

For any nonzero � ∈ C
�, the full Gabor system {3ℓw�� :ℓ, H = 0, . . . , � − 1} has cardinality �2 and forms a tight

frame for C
� (cf. [31]). We will use the �2 × � matrix �,

whose rows are formed by the tight frame vectors. A short
computation yields that if � is chosen at random as the
Rademacher sequence, then � is a tight random �-frame of
order 1. Moreover, each ��∗ is an orthogonal projector, so
that ��∗ corresponds to a tight random fusion frame. �e
same holds when � is the Steinhaus sequence; that is, each
entry is uniformly distributed on the complex unit circle.

Next, we have an example that indeed allows for fast
matrix vector multiplication.

Example 21 (circulant matrices). Given a vector � =(�1, . . . , ��)⊤ ∈ R
�, the corresponding circulant matrix is

�̃ = ((
(

�1 �� ⋅ ⋅ ⋅ �2�2 d d
...... d d ���� ⋅ ⋅ ⋅ �2 �1

))
)

. (50)

Each column of �̃ is a cyclic shi	 of the previous one. �e

le	 � × H block � of the matrix �̃ was used as a compressed
sensing measurement matrix in [32]. If the entries of � are
i.i.d. with zero mean and nonvanishing second moments,
then � is a tight random �-frame of order 1 with �1 =HE(�2

� ). For instance, if � is the Rademacher sequence, that
is, entries are independent and equal to ±1 with probability
1/2, then � is tight of order 1 but not of order 2 in general. It
is well known that the discrete Fourier matrices diagonalize
circulant matrices, so that fast matrix vector multiplications
are available. In fact, the terms “�lter bank” and “�lterning”
are usually associated with the application of convolution
operators, so that each channel corresponds to a circulant
matrix with potentially some subsampling involved.

Remark 22. Samples of all of the above examples satisfy
the conditions (i)–(iv) with high probability for su�ciently
large sample size. �e circulant matrices represent convo-
lution operators and hence correspond to a proper �lter
bank scheme. �ey enable fast matrix vector multiplications;
hence, the circulant samples in Example 21 are indeed suitable
for our construction in Section 3 that preserves this fast
algorithmic scheme using the �lter bank shown in Figure 1.
Each channel corresponds to �ltering, but we require one
additional linear operator for pre- and postmultiplication.

It must be mentioned that �lter banks usually involve

some subsampling. Let the matrix � ∈ K
�̃×�, �̃ ≥ �, be

a random matrix with a single one in each column, whose
position is chosen independently at random in a uniform
fashion. �en each matrix of the sample {��}��=1 corresponds
to a sampling operator, so that we derive ! samplings of length�. Indeed, � is a tight random �-frame, but it may not satisfy
all other conditions in�eorem 7. Nonetheless, subsampling
operators in a �lter bank are used in combination with more

sophisticated �lters, say {��}��=1 ⊂ K
�×�̃, so that it is possible

that the conditions are satis�ed by {����}��=1 ⊂ K
�×�.

5. Closeness to the Original �-Frame

To relate the algorithm of the previous section to the Paulsen
problem, we would need estimates on the distance between
the original and the resulting �-frame. In particular, if the
original unit norm �-frame is close to being tight, then we
aim to verify that the computed unit norm tight �-frame is
nearby. We do not derive any estimates for �xed ! but will
provide some framework for random samples that supports
such intuition.

�eorem 23. Let � be a random matrix continuously dis-

tributed on the set ofmatrices inK�×� and {��}��=1 an associated
i.i.d. sample with Γ(�) being the corresponding limit of the

iterative algorithm (10). 	en Γ(�) converges almost surely
towards some positive de�nite Γ, so that Σ := Γ−1 satis�es

Σ = �E ��∗
trace (�∗Σ−1�) . (51)

Before we shall provide the proof, we have some discus-
sion. As in [14], we observe that results of the previous section
applied to a continuously distributed random matrix � yield
that (51) has a solution Σ among the symmetric positive
de�nite matrices and is unique up to multiplication by a
positive constant.

For elliptical distributions, (51) has a very special mean-

ing.Here, we call a probability distribution onK�×� elliptical if
it has a density�with respect to the standard volume element�� on K

�×� and� (�)= |det (Σ)|−1/2 � (trace ((�−�)∗ Σ−1 (�−�))) , (52)

where Σ ∈ K
�×� is hermitian positive de�nite, � ∈ K

�×�, and� is some nonnegative function not dependent on � and Σ
with ∫

K
�×� �(trace(�∗�))�� = 1. For instance, the Gaussian

random matrix in Example 18 is elliptically distributed. A
direct computation yields that the matrix Σ of an elliptically

distributed random matrix � with � = 0 satis�es (51). For
simplicity, we will restrict ourselves to the case � = 0 and

point out that general � can be handled in a similar fashion;
see [14] for � = 1.

�eorem 23 directly implies the following.
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Corollary 24. If � is elliptically distributed with � = 0 andΣ is a multiple of the identity, then, for any sample {��}��=1, the
associatedmatrices Γ(�), for ! → ∞, converge towards (1/�)�.

To verify �eorem 23, we follow the ideas in [14], where� = 1 was considered, so we need some notation and two
lemmas. Let us de�ne

3� (Γ) = �! �∑
�=1

Γ1/2���∗� Γ1/2
trace (�∗� Γ��) ,3 (Γ) = �E Γ1/2��∗Γ1/2

trace (�∗Γ�) ,
(53)

and we denote ℎ�(Γ) := trace(3�(Γ)2) and ℎ(Γ) :=
trace(3(Γ)2).
Lemma 25. LetC ⊂ K

�×� be a compact set of positive de�nite
matrices with � ∈ C implying trace(�−1) = 1 and trace(�) ≤� with some �xed � > 1. 	en

sup
 ∈C

KKKKℎ� (�) − ℎ (�)KKKK �→ 0 (54)

holds almost surely.

Lemma 26. 	e hermitian positive de�nite matrix � ∈ K
�×�

is a critical value of ℎ� if and only if3�(�) = ��.
Proof of 	eorem 23. Simple arithmetics yield that
trace(3�(�)) = trace(3(�)) = � implies � ≤ ℎ�(�),ℎ(�) ≤ �2, for all positive de�nite matrices � ∈ K

�×�.
Furthermore, ℎ�(�) = � or ℎ(�) = � if and only if3�(�) = �
or3(�) = ��, respectively.

As mentioned above, (51) has a solution Σ among the
symmetric positive de�nite matrices and is unique up to
multiplication by a positive constant; see also [14]. Without
loss of generality, we can assume that Σ = ��, which implies3(Σ−1) = 3((1/�)�) = ��. Choose C as in Lemma 25 with(1/�)�� being contained in its interior. For all � ∈ C with� ̸= (1/�)��, we must have � = ℎ((1/�)��) < ℎ(�). Since ℎ is
continuous, Lemma 25 yields that, for any� on the boundary
ofC, we have ℎ�((1/�)��) < ℎ�(�) with probability one if ! is
su�ciently large.

Note that 3�(Γ(�)) = ��, so that Lemmas 5 and 26 imply

that Γ(�) is eventually contained in C for su�ciently large !.
SinceC can be chosen arbitrarily small, it follows that Γ(�) →(1/�)�� = Σ−1 almost surely, which concludes the proof.

It remains to prove the two Lemmas 25 and 26.

Proof of Lemma 25. We follow [14, Proof of Statement (3.2)].
For 0 ̸= � ∈ K

�×�, we de�ne

� (�, �) := �1/2��∗�1/2

trace (�∗��) . (55)

As already mentioned in [14] for � = 1, � is equicon-
tinuous on C meaning that, for r > 0, there is �� > 0

not dependent on � ̸= 0 nor on �1, �2 ∈ C, such that‖�1 − �2‖ < �� implies ‖�(�, �1) − �(�, �2)‖	
 < r. Next,
the same covering argument for C as in [14] used with the
equicontinuity and the strong law of large numbers implies
(54). We omit the details.

Proof of Lemma 26. We can simply follow the lines of [14,
Proof of Statement (3.3)], where � = 1 is discussed. A
�rst order expansion of ℎ� with the frame property and
Kantorovich’s inequality yields Lemma 26. No new ideas are
involved when dealing with � > 1, so we refer to [14] for the
details.

6. Some Concluding Remarks

For some signal processing aspects, the most attractive �lter

bank schemes are those that provide perfect reconstruction,
synthesis is the adjoint of the analysis scheme (so-called

unitary �lter banks), and �lters have equal norm. Tight fusion

frames, for instance, correspond to perfect reconstruction

�lter banks, in which each channel corresponds to an orthog-

onal projection, and it was veri�ed in [9] that robustness

of tight fusion frames against distortions and erasures is
maximized when the tight fusion frame has equal norm

elements. Our aim was to turn a given �lter bank into such

more attractive schemes and preserve the essential features of

the original �ltering process. In terms of frames, we turned

a given generalized frame into a tight �-frame with unit
norm by rescaling and then applying the inverse square root

of the new �-frame operator. Due to our special focus on

�lter banks, we started with a generalized frame consisting

of convolution operators, hence, allowing for fast matrix
vector multiplications. �rough some iterative scheme, we

constructed a generalized tight frame with unit norm, which

induced a �lter bank that preserved the convolution struc-

ture, hence, the fast algorithmic scheme, in each channel.

Only one additional global pre- and postmultiplication byΓ1/2 is necessary. Naturally, the application of Γ1/2 needs

special care because it may be structured but not exactly a
convolution operator.

We observed that the assumptions of our algorithm are
satis�ed by any su�ciently large sample drawn from any

continuous distribution or drawn from random convolution

operators. Fields of application are �lter banks, in which

the additional computation costs of the application of Γ1/2
or Γ, respectively, can be tolerated, as, for instance, when

the number of channels is large or when computations are

completely o�ine.

Our �ndings provide a tool to design new �lter banks
with improved properties on a theoretical level. Substantial

numerical veri�cation goes beyond the scope of the present

paper and will be provided in future work. We hope that our

theoretical �ndings can provide the basis for its use in more
elaborate signal processing methods.
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