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Abstract

We consider the steady-state equations for a compressible uid. For low-speed ow, the

system is sti� because the ratio of the convective speed to the speed of sound is quite small.

To overcome this di�culty, we alter the time evolution of the equations but retain the same

steady-state analytic equations. To achieve high numerical resolution, we also alter the arti�-

cial viscosity of the numerical scheme, which is implemented conveniently by using other sets

of variables in addition to the conservative variables. We investigate the e�ect of the arti�-

cial dissipation within this preconditioned system. We consider both the nonconservative and

conservative formulations for arti�cial viscosity and examine their e�ect on the accuracy and

convergence of the numerical solutions. The numerical results for viscous three-dimensional wing

ows and two-dimensional multi-element airfoil ows indicate that e�cient multigrid computa-

tions of ows with arbitrarily low Mach numbers are now possible with only minor modi�cations

to existing compressible Navier-Stokes codes. The conservative formulation for arti�cial viscos-

ity, coupled with the preconditioning, o�ers a viable computational uid dynamics (CFD) tool

for analyzing problems that contain both incompressible and compressible ow regimes.
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1 Introduction

In the past few years, several preconditioning methods have appeared in the literature [1-4] with the
aim of solving nearly incompressible ow problems with numerical algorithms that were designed
for compressible ows. The development of these methods are motivated by two main observations.
First, ow problems exist that contain both compressible and incompressible ows simultaneously;
that is, part of the ow region can be considered to be incompressible with locally low Mach
numbers, whereas signi�cant compressibility e�ects occur in other regions of the ow. A typical
example in aerodynamics is the ow over a multielement airfoil near maximum lift. Surface heat
transfer or volumetric heat addition can also introduce compressibility e�ects in low-speed ows.
Second, it is preferable to use existing compressible ow codes over the broadest range of ow
conditions possible for ease of use and consistency reasons.

The di�culty in solving the compressible equations for low Mach numbers is attributed to the
large disparity of the acoustic wave speed, u+a, and the waves convected at the uid speed, u. The
application of preconditioning changes the eigenvalues of the system of compressible ow equations
and reduces this disparity in the wave speeds. For example, the time derivatives are premultiplied
by a matrix that slows the speed of the acoustic waves relative to the uid speed.

The preconditionings that are applied here not only accelerate the convergence to a steady
state but can also change the steady-state solution because of the choice of arti�cial viscosity, or
upwinding, terms. Similarly, the boundary conditions are based on the preconditioned equations
rather than the original governing equations. As discussed in ref. [9], the \standard" numerical
schemes for the compressible equations do not converge to the solution of the incompressible equa-
tions (using a pseudo-compressibility approach) as the Mach number approaches zero. However,
the use of a proper preconditioning leads to a numerical scheme that does behave appropriately for
low Mach numbers.

In this paper, we present a generalization of the preconditioners given by Turkel [10]- [11], and
Choi and Merkle [1], as well as those presented more recently by Radespiel and Turkel [6] and
Radespiel et al. [7]. We discuss both nonconservative and conservative arti�cial dissipation models
and the e�ects of the preconditioning matrix on the accuracy. Numerical results indicate that by
using the conservative formulation of arti�cial dissipation model, accurate solutions are obtained
without sacri�cing e�ciency.

We show that preconditioning can be combined with well-known convergence acceleration tech-
niques such as residual smoothing and multigrid. Indeed, the clustering of eigenvalues with pre-
conditioning improves the damping of transient high-frequency modes to an extent, which makes
e�cient multigrid computation of low Mach number ows practical.

Algorithm

The conservation-law form of the Euler equations can be transformed easily into non-conservation
form by matrix transformations and vice-versa. For convenience, we start with the non-conservation
form of the Euler equations. Note that although the theory is developed for the Euler equations, the
methodology is applied in a straight-forward manner to the Navier-Stokes equations by grouping
the viscous uxes with the dissipative uxes.

We consider the preconditioned Euler equations written as

P�1Qt + AQx +BQy + CQz = 0 (1)
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The form of the matrices A;B; and C depends on the choice of variables Q. We �rst consider
the variables Q = Q0 = (p; u; v; w; S), where the entropy satis�es the relation dS = dp� a2d�. We
then have the following form of the matrices for Q0:

A0 =

0
BBBBB@

u �a2 0 0 0
1
�

u 0 0 0

0 0 u 0 0
0 0 0 u 0
0 0 0 0 u

1
CCCCCA ;B0 =

0
BBBBB@

v 0 �a2 0 0
0 v 0 0 0
1
�

0 v 0 0

0 0 0 v 0
0 0 0 0 v

1
CCCCCA ;C0 =

0
BBBBB@

w 0 0 �a2 0
0 w 0 0 0
0 0 w 0 0
1
�

0 0 w 0

0 0 0 0 w

1
CCCCCA

In generalized coordinates, we are interested in combinations of these matrices. Hence, we
de�ne D0 = A0!1 + B0!2 + C0!3 and q = u!1 + v!2 + w!3, where !1, !2, and !3 are the metrics
associated with the coordinate transformation. This de�nition leads to

D0 =

0
BBBBBB@

q �a2!1 �a2!2 �a2!3 0
1
�
!1 q 0 0 0

1
�
!2 0 q 0 0

1
�
!3 0 0 q 0

0 0 0 0 q

1
CCCCCCA

We consider the preconditioner P0 given by

P�10 =

0
BBBBBB@

a2

�2
0 0 0 �

�u
��2

1 0 0 0
�v
��2

0 1 0 0
�w
��2

0 0 1 0

0 0 0 0 1

1
CCCCCCA
; P0 =

0
BBBBBB@

�2

a2
0 0 0 ��2

a2
�

� �u
�a2

1 0 0 �u
�a2

�

� �v
�a2

0 1 0 �v
�a2

�

� �w
�a2

0 0 1 �w
�a2

�

0 0 0 0 1

1
CCCCCCA

(2)

where �, �, and � are free parameters.
For optimal preconditioning, �2 should be proportional to the square of the local speed, u2 +

v2 + w2, ([11]). However, this strategy introduces a complication near the stagnation points; the
preconditioner becomes singular when � = 0. Furthermore, Darmofal and Schmid [3] have shown
that the eigenvectors become less orthogonal as � goes to zero. We introduce a simple cuto� to avoid
this situation. Because this preconditioner is introduced mainly for low-speed regions, we design
the preconditioner to turn o� at higher speeds. If the preconditioner is turned o� at a subsonic
Mach number we can use a nonconservative formulation for the arti�cial viscosity without a loss of
accuracy in capturing weak solutions. As shown later, this strategy simpli�es the construction of
an arti�cial viscosity. For su�ciently high Mach numbers, we want to remove the preconditioning,
i.e. �2 = a2, � = 0, and � = 0. One choice is

�2 = min

"
max

 
K1(u

2 + v2 + w2)(1 +
1�M2

0

M4
0

M2); K2
2(u

2
1 + v21 + w2

1)

!
; a2

#
(3)

For nonorthogonal grids, u2+ v2+w2 can be replaced by the sum of the squares of the normalized
contravariant velocity components.

The case of no preconditioning (P = I) corresponds to � = 0; �2 = a2; and � = 0. The
parameter �2 is returned to its nonpreconditioned value at M0, which is the cuto� value for the
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Mach number. Numerical evidence suggests that K2 depends on the number of mesh nodes near
the stagnation point and possibly should depend on the local cell Reynolds number [1]. Typically,
K1 is between 1 and 1.1, and K2 is between 0.4 and 1. The eigenvalues of the matrix P0D0 are

�0 = q; q; q (repeated eigenvalues)

and

�� =

0
@zq �

s
z2q2 + �2(j!j2�

q2

a2
)

1
A ; z = 0:5(1� �+

�2

a2
): (4)

So � = diag(�+; ��; �0; �0; �0).
The eigenvalues of P0D0 are independent of �; however, the same is not true for the eigenvectors.

Though Choi and Merkle [1] employ � = 1, we consider � = 0 because this simpli�es the eigenvectors
of P0D0. The right eigenvectors are given by the columns of

R�1=

0
BBBBBBB@

��2 ��2 0 0 0
�2!1��u�+

�+�q
�2!1��u��

�
�
�q �!2 0 0

�2!2��v�+
�+�q

�2!2��v��
�
�
�q !1 !3 0

�2!3��w�+
�+�q

�2!3��w��
�
�
�q 0 �!2 0

0 0 0 0 1

1
CCCCCCCA

Note that (�+ � q)(�� � q) = �q2 � �2j!j2. We de�ne some temporary quantities. Let

r31 =
�(uj!j2 � q!1)

�!2(�+ � q)(�� � q)

r32 =
�1

!2
�

!1(�
2!1 � �uq)

!2(�+ � q)(�� � q)

r33 =
�(�2!1 � �uq)

(�+ � q)(�� � q)

r34 =
�!3(�2!1 � �uq)

!2(�+ � q)(�� � q)

r41 =
�(wj!j2 � q!3)

�!2(�+ � q)(�� � q)

r42 =
�!1(�

2!3 � �wq)

!2(�+ � q)(�� � q)

r43 =
�(�2!3 � �wq)

(�+ � q)(�� � q)

r44 =
�1

!2
�

!3(�
2!3 � �wq)

!2(�+ � q)(�� � q)

Then

R =

0
BBBBBB@

�+�(1��)q
��2(�+���)

!1
�+���

!2
�+���

!3
�+��� 0

�
�
�
�(1��)q

��2(�+���)
�!1

�+���
�!2

�+���
�!3

�+��� 0

r31 r32 r33 r34 0
r41 r42 r43 r44 0
0 0 0 0 1

1
CCCCCCA

(5)
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Note that R is singular for !2 = 0, which is merely an artifact because multiple eigenvalues exist
in a multidimensional eigenspace. If !2 = 0, then we can change the eigenvectors in the invariant
subspace of the multiple eigenvalues so that either !1 or !3 appears in the denominator. Because
all three of these eigenvalues cannot be zero simultaneously, some set of nonsingular eigenvectors
always exists. Also note that !2 does not appear in the denominator in the �nal analysis and does
not create any numerical di�culties; therefore we can ignore this anomaly.

The largest eigenvalue of P0D0 is used to determine the (inviscid) time step. For M � 0,

���0:5q
�
(1� �)�

p
(1� �)2 + 4

�
. For � = 0, the condition number of P0D0 is

1+
p
5

1�
p
5
� 2:6, and

for � = 1 the condition number is 1.
The above matrices were given for Q0 = (p; u; v; w; S) variables. In the code we base everything

on Q4 = (p; u; v; w; T ) variables. Then,

P4 =
@Q4

@Q0

P0

@Q0

@Q4

The transformations between the Q0 and Q4 variables are given in the appendix.

Arti�cial Viscosity

For a central-di�erence scheme, it is necessary to add arti�cial dissipative terms to the �nite-
di�erence approximation of the spatial derivatives to damp the numerical oscillations. A nonlinear
second-di�erence term is normally added to control oscillations near shocks, and a linear fourth-
di�erence term is added to damp high-frequency oscillations [5]. We are interested primarily in
the functional form of these di�erences. Hence, our examples include a second-di�erence arti�cial
dissipation; extensions to fourth di�erences and nonlinearities are straight-forward. Similarly, for
one-sided schemes the central di�erence plus the arti�cial dissipation is replaced by a Roe matrix
formulation.

A typical preconditioned �nite-di�erence scheme can be expressed as

�Qc = �tPc

�
@F

@x
+
@G

@y
+
@H

@z

�
= �tPc

�
Ac

@Qc

@x
+Bc

@Qc

@y
+ Cc

@Qc

@z

�
(6)

where Qc represents the conservative variables and the spatial partial derivatives are replaced by
central-di�erence approximations. We consider both conservative and non-conservative ways of
adding arti�cial dissipative terms. The dissipation need not be expressed in terms of the conserva-
tive variables Qc. For another set of variables QV , we get �Qc =

@Qc

@QV
�QV . We choose our \basic"

form as the one given in Q0 = (p; u; v; w; S) variables (i.e., P0). Then, for another set of variables
QV , we have the preconditioner �V = @QV

@Qc
Pc = PV

@QV

@Qc
= @QV

@Q0
P0

@Q0

@Qc
.

We add second-di�erence terms for the arti�cial viscosity to Eq. (6) and omit the fourth
di�erences for brevity. We now get

�QV = �t

�
�V

�
@F

@x
+
@G

@y
+
@H

@z

�

+

�
j�(PVAV )j

@QV

@x

�
x

+

�
j�(PVBV )j

@QV

@y

�
y

+

�
j�(PVCV )j

@QV

@z

�
z

�
(7)

where �V = PV
@QV

@Qc
. Thus, �V contains both the preconditioner and the change of variables. The

above formulation is non-conservative because �V is outside the derivative terms. In the above
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equation, � is a matrix function. For example, if � is proportional to the spectral radius, then we
have a scalar arti�cial viscosity in QV variables; whereas if �(A) � A, then we have a matrix-valued
arti�cial viscosity.

After we have computed �QV , we perform the residual smoothing on it. In the multigrid
algorithm, �QV is passed to the next coarser grid. At the end of each stage, QV is recomputed.
The conservative variables are then calculated as nonlinear functions of the QV variables. We
should mention that AV = @QV

@Qc
Ac

@Qc

@QV

; similar expressions can be written for the other coordinate

directions. Let ÂV = @F
@QV

be the Jacobian matrix; then, ÂV = @Qc

@QV

AV . Hence,

PVAV =
@QV

@Qc

PcAc

@Qc

@QV

= �VAc

@Qc

@QV

Because the spectral radius is invariant under a similarity transformation for a scalar viscosity,
we can use either PVAV or PcAc. Let � = diag(�1; �2; �3; �3; �3), where �1; �2; and �3 represent
�+; ��; and �0 (i.e., the eigenvalues of PD), modi�ed by cuto�s near the stagnation points. De�ne
j�j = diag(j�1j; j�2j; j�3j; j�3j; j�3j). Then, jPDj = R�1j�jR. For any vector x = (x1; x2; x3; x4; x5)

t,
jPDjx = (R�1j�j)z, where z = Rx. De�ne Y = !1x2 + !2x3 + !3x4. Then,

z =

0
BBBBBB@

1
�+���

h
�+�(1��)q

��2
x1 + Y

i
�z1 +

x1
��2

z3
z4

(1� )x1 +
p
T
x5

1
CCCCCCA

where z1 is the �rst element of the vector z. We note that z3 and z4 do not appear by themselves
in subsequent formulas but rather in conjunction with other variables in the form

!2z3 = �x2 +
1

(�+ � q)(�� � q)

"
�(uj!j2 � q!1)

�
x1 � (�2!1 � �uq)Y

#

!2z4 = �x4 +
1

(�+ � q)(�� � q)

"
�(wj!j2 � q!3)

�
x1 � (�2!3 � �wq)Y

#

!1z3 + !3z4 = x3 �
1

(�+ � q)(�� � q)

"
�(vj!j2 � q!2)

�
x1 � (�2!2 � �vq)Y

#

So

jPDjx = R�1j�jz =

0
BBBBBBB@

��2(j�1jz1 + j�2jz2)
�2!1��u�+

�+�q j�1jz1 +
�2!1��u��

�
�
�q j�2jz2 � (!2z3)j�3j

�2!2��v�+
�+�q j�1jz1 +

�2!2��v��
�
�
�q j�2jz2 + (!1z3 + !3z4)j�3j

�2!3��w�+
�+�q j�1jz1 +

�2!3��w��
�
�
�q j�2jz2 � (!2z4)j�3j

T
p
[( � 1)j�1jz1 + j�3jz5]

1
CCCCCCCA
:

For a scalar viscosity (i.e., when � is the spectral radius), the viscosity remains scalar after
preconditioning. In this approach, di�erences of theQV variables, rather than those of the conserved
variables, are added to each of the conservation equations.
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However, the formulation used until now is nonconservative. Since we are also interested in
solving transonic ows with shocks using this scheme, we present a conservative formulation of the
arti�cial dissipation. By dropping the subscript V , we obtain

�Q=�t�

(
@F

@x
+
@G

@y
+
@H

@z
+

�
��1j�(PA)j

@Q

@x

�
x

+

�
��1j�(PB)j

@Q

@y

�
y

+

�
��1j�(PC)j

@Q

@z

�
z

)

Even if � is a scalar function, we must evaluate a matrix-vector product; as a result, the numerical
e�ort is equivalent in complexity to a matrix-valued viscosity.

Following previous work on multigrid schemes for the Navier-Stokes equations, these arti�cial
viscosity functions account for the ratio of the spectral radii in the di�erent coordinate directions;
that is,

�(PA)=k(4)~�(PA)

"
1 +

�
�(PB)

�(PA)

��
+

�
�(PC)

�(PA)

��#

where ~� denotes the original viscosity function, � denotes the spectral radius, and k(4) is the
arti�cial viscosity coe�cient that corresponds to the fourth-di�erence terms. Similar relations are
used to modify the arti�cial viscosity by cell aspect-ratio in the other coordinate directions. These
scaling functions provide su�cient arti�cial dissipation for general curvilinear grids that contain
high aspect-ratio cells.

In the previous section, a preconditioner was introduced that is dependent on the parameters
� and �. Because � does not a�ect the eigenvalues of PA, it has no a�ect on the scalar arti�cial
viscosity. Choosing � = 1 reduces the largest eigenvalue, which also improves the condition number
and decreases the arti�cial viscosity compared with � = 0 case. We thus expect � = 1 to slow the
convergence compared with the case in which � = 0, in spite of the fact that we have reduced the
condition number. However, we expect that with � = 1, the numerical accuracy will improve. For
a matrix viscosity (or a Roe matrix), we expect similar but less pronounced dependence on �.

Boundary Conditions

In many CFD codes, the boundary conditions in the far �eld are based on characteristic variables,
even for viscous ow. Thus, at inow the incoming variables that correspond to positive eigenvalues
are speci�ed, and the outgoing variables that correspond to negative eigenvalues are extrapolated.
A change in the time-dependent equations also changes the characteristics of the system (although
the signs of the eigenvalues remain unchanged). Hence, the boundary conditions must be modi�ed
for the preconditioned system.

In the present study, we have used the simpli�ed far-�eld boundary conditions suggested in ref.
[6]. Basically, all variables at far-�eld boundaries are speci�ed in terms of two sets for p; u; v; w,
and T . Depending on whether the subsonic ow is an inow or an outow, one set is speci�ed
at the free-stream levels, and the other set is extrapolated from the interior. For example, at the
inow

ub = u1; vb = v1;wb = w1;Tb = T1; pb = pint

and at the outow

ub = uint; vb = vint ;wb = wint;Tb = Tint ; pb = p1
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where the subscripts \b" and \int" refer to the values at the boundary and adjacent interior points,
respectively.

For supersonic ows, standard boundary conditions are used; that is, extrapolation at the
outow boundary and free-stream values for all variables at the inow boundary are prescribed.

Changes to Original Coding

Here, we present the steps necessary to introduce preconditioning into an existing compressible ow
code. We assume an explicit time-stepping scheme (e.g., a Runge-Kutta scheme) that is augmented
by an implicit residual smoothing and multigrid scheme to obtain steady-state solutions.

1. Precondition the residual.

� Select a reasonable set of dependent variables for the problem (e.g., p; u; v; w; T). Note
that other sets of variables are possible.

� For nonconservative scalar arti�cial viscosity

{ Multiply the physical residual (inviscid and Navier-Stokes portions and physical
forcing functions (if applicable)) by � = PT

@Q4

@Q1
.

{ Add scalar arti�cial viscosity in these new variables to the residual.

� For conservative scalar viscosity

{ Add inviscid, viscous, and arti�cial viscosity uxes to obtain the total residual.
Scalar viscosity already includes the transformation ��1.

{ Multiply this total residual by �.

� Multiply the total preconditioned residual in the (p; u; v; w; T) by �t. Apply the residual
smoothing for the changes in terms of the (p; u; v;w; T ) variables. Add the residuals in
the (p; u; v; w; T ) variables to the dependent variables at the previous time iteration
to obtain the values of (p; u; v; w; T ) at the next time step. The new values of the
conservative variables are then evaluated as nonlinear functions of (p; u; v; w; T).

2. For the FAS multigrid algorithm, we need to restrict the residuals and the variables from a
�ner grid to a coarser grid. In the computer code, the residuals are stored in the (p; u; v;w; T )
frame, whereas the dependent variables are stored as conservative variables. Hence, restric-
tions and prolongations are done on the conservative variables. The residual smoothing is
performed on the (p; u; v; w; T ) residuals and the forcing functions on the coarse grids are
evaluated in (p; u; v; w; T) variables.

3. Choose a new time step for the inviscid portion based on the preconditioned system. The
viscous contribution to the time step is then incorporated as usual.

4. Modify the far-�eld boundary conditions.

Computational Results

An existing three-dimensional compressible Navier-Stokes ow solver was modi�ed to include the
preconditioning methodology described in the preceding paragraphs. The modi�ed code was used
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Mach no. panel method no preconditioning preconditioning

CL 0.1 .241 .2448 .2434

0.01 .2172 .2421

0.001 .1097 .2421

CD 0.1 0.0 .0008 .00027

0.01 .0086 .00027

0.001 .0731 .00027

Table 1: Comparison of lift and drag with/without preconditioning

to compute low-speed and transonic ow over several con�gurations of practical interest. Three of
these test cases are discussed here. The computational results reported in this paper were obtained
with scalar form of arti�cial dissipation.

Two Dimensional Results

We �rst consider a two dimensional inviscid subsonic problem. For this case we can compare the
compressible code with and without preconditioning to a panel method in order to assess their
accuracy. We consider inviscid ow over NACA 0012 airfoil. The C-type grid has 224 � 40 cells
clustered near the leading and trailing edges in order to allow accurate drag computations. As seen
in table 1 the code using the preconditioning gives lift and drag quite close to the panel method
results with only a small dependence on the Mach number. The non-preconditioned code has large
variations as the Mach number goes to zero and is not converging to the panel code results. In
particular the drag, which should be zero for inviscid ow, is very large without preconditioning
but close to zero when using preconditioning.

Low-Speed Flow over Three-Dimensional Wing

Essentially incompressible viscous ow over the ONERA M6 wing is considered as the �rst test
case. For this case, the Reynolds number (based on mean aerodynamic chord) is 11.7 million,
and the angle of attack is 3:06�. A grid that consists of 193 � 49 � 33 points is used for these
computations.

The �rst set of results in Fig. 1 shows the e�ect of preconditioning on the convergence history
of the numerical algorithm at a Mach number of 0.1. For these computations, 50 iterations on the
coarse grid are followed by 300 iterations on the �ne grid. This �gure clearly shows a signi�cant
improvement in the convergence rate when preconditioning is used.

The e�ect of the free-stream Mach number is considered in the next series. Figures 2 - 3
show the e�ect of free-stream Mach number on convergence rates and surface pressure distribution,
respectively. The residuals in Fig. 2 have been normalized with their respective initial values to
remove the scaling e�ects caused by di�erences in the free-stream Mach number. Note that over
a Mach number range of 0.01 to 0.2, the convergence rates for the preconditioned scheme are very
similar; the asymptotic convergence rates for the two lowest Mach numbers are almost identical.
Although not shown here, similar results have been obtained at an even lower Mach number of
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0.001. On the other hand, the original non-preconditioned scheme failed to converge at Mach
numbers of 0.01 and lower; similar to the observations reported by Volpe [12].

The pressure distributions (at a span location of 80%) shown in Fig. 3 indicate that results for
Mach numbers of 0.01 and 0.1 are identical within plotting accuracy. Even at a Mach number of
0.2 (except for a slightly higher value of the pressure peak in the leading-edge region), the e�ect of
Mach number is negligible. These results demonstrate that the preconditioned system approaches
the incompressible limit in a smooth and systematic manner without any penalty in convergence
rate.

The e�ects of the conservative and non-conservative form of the arti�cial viscosity formulations
are shown in Figs. 4 and 5. The non-conservative formulation converges better on the coarser grid,
but is nearly identical in performance to the conservative formulation on the �ne grid. The e�ect
of these two forms of arti�cial viscosity on pressure distribution is negligible, which is expected to
be the case at low speeds.

Flow over Two-Dimensional Multi-element Airfoil

The next test case considered here is that of a 3-element airfoil con�guration that has been inves-
tigated both experimentally and theoretically [13]. Present computations are performed at a chord
Reynolds number of 9 million and an angle of attack of 16:2�. The Mach number for this test case
is 0.2. A 20-block structured grid, shown in Fig. 6, is used for the computations. This test case
has also been investigated with the original non-preconditioned version of the ow solver used in
this work, as reported by Vatsa et al. [14].

The convergence histories for this case are presented in Fig. 7, where the results from the
original non-preconditioned and current preconditioned (conservative) schemes are compared. The
residuals in the original scheme indicate considerable slowdown in convergence at approximately 4-
orders; whereas the residuals in the preconditioned scheme exhibit much better convergence. Note
that the free-stream Mach number of 0.2 for this case is not considered too low for compressible
codes. However, in this case several pockets of slow-moving ow exist in the cove regions of the
slat and the main airfoil sections [14]; these pockets slow the convergence of standard compressible
codes. The preconditioned system has a much better condition number for the eigenvalues and
does not experience slowdown as a result of such disparities in the ow speed.

The computed pressure distributions for this case are compared in Fig. 8. As expected, little
di�erence is observed in the two sets of computed results; furthermore, these results compare quite
favorably with the experimental data.

Transonic Flow over Three-Dimensional Wing

The �nal test case presented here involves transonic ow over the ONERA M6 wing. The test
conditions for this case are identical to the �rst test case except for the free-stream Mach number,
which is chosen as 0.84. The Navier-Stokes solutions for this case were obtained for conservative and
non-conservative preconditioners. A baseline solution with no preconditioning was also obtained
for comparison.

The computed pressure distributions for this case are compared in Fig. 9 at 80% span station.
This �gure clearly shows that the pressure distributions from conservative preconditioning are vir-
tually indistinguishable from the baseline (unpreconditioned) case. However, the non-conservative
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form of preconditioning produces noticeable di�erences in the pressure distribution in the vicinity
of the shocks.

The convergence histories for this case are shown in Fig. 10, where it is observed that the base-
line scheme stalls once the residual drops approximately 4-orders in magnitude. The convergence
properties of the two preconditioned schemes are similar to one another and better than those of
the baseline scheme. Note that the slow convergence of the basic scheme cannot be attributed to
low free-stream velocities. However, the computational domain consists of low-speed ows in the
stagnation and boundary-layer regions, where the convective speed of propagation is much slower.
Preconditioning appears to reduce the imbalance of convective and acoustic speeds in these regions,
which improves the overall convergence rate for such problems.

Concluding Remarks

An attractive scheme for computing low-speed ows has been presented here in the framework of
a preconditioning applied to the compressible ow equations. The current formulation produces
accurate incompressible results in a smooth and systematic manner as the Mach number approaches
zero. Moreover, the proposed scheme is relatively easy to implement in an existing compressible
ow code.

The test cases presented here demonstrate the e�ciency and accuracy of the preconditioned
scheme. Excellent convergence has been obtained at Mach numbers that range from 0.01 to 0.84.
The resulting pressure distributions agree well with known solutions for these cases. Based on our
experience thus far, this scheme o�ers a viable alternative to purely incompressible ow codes for
computing low-speed ows. In addition, this scheme o�ers the advantage of being able to compute
ows with mixed speed regimes, in which the local Mach numbers can vary from very low subsonic
to supersonic values, e.g., in the case of ow over high-lift con�guration near maximum lift. Finally,
this scheme can improve the convergence rate even for viscous transonic ows by preconditioning the
embedded low-speed ows in the boundary layers. Future work should focus on matrix-dissipation
or Roe type schemes, to improve the numerical accuracy.

Appendix

We de�ne the sets of variables

Q0 = (p; u; v;w; S)

Qc = Q1 = (�; �u; �v; �w;E)

and

Q4 = (p; u; v; w; T ):

Let a be the speed of sound, and q2 = u2 + v2 + w2. Given the preconditioning P0 in Q0

variables, we can compute the preconditioner Pi in Qi coordinates by

Pi =
@Qi

@Q0

P0

@Q0

@Qi

; where P0 is given by Eq. (2):
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The following transformation matrices connect these variables: Let q̂2 =
(�1)q2

2

@Q0

@Q1

=

2
6666664

q̂2 (1�)u (1�)v (1�)w �1
�u
�

1
�

0 0 0
�v
�

0 1
�

0 0
�w
�

0 0 0 1
�

q̂2�a2 (1�)u (1�)v (1�)w �1

3
7777775

@Q1

@Q0

=

2
666664

1
a2

0 0 0 �1
a2

u
a2

� 0 0 �u
a2

v
a2

0 � 0 �v
a2

w
a2

0 0 � �w
a2

1
�1 +

M2

2
�u �v �w �M2

2

3
777775

@Q0

@Q4

=

2
666664

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

1� 0 0 0 p
T

3
777775

@Q4

@Q0

=

2
6666664

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

(�1)T
p

0 0 0 T
p

3
7777775

To transform the preconditioned residual in (p; u; v; w; T ) to and from the conservative variables,
we use the following Jacobians, which result directly from those given above:

@Q1

@Q4

=

2
66666664

�
p

0 0 0 ��
T

�u
p

� 0 0 ��u
T

�v
p

0 � 0 ��v
T

�w
p

0 0 � ��w
T

E
p

�u �v �w
��q2
2T

3
77777775

@Q4

@Q1

=

2
6666664

q̂2 (1�)u (1�)v (1�)w �1
�u

�
1
�

0 0 0

�v
�

0 1
�

0 0

�w
�

0 0 1
�

0
(q̂2�T )

�

(1�)u
�

(1�)v
�

(1�)w
�

(�1)
�

3
7777775

Also, �i =
@Qi

@Q0
P0

@Q0

@Qc
, so that Pi = �i

@Qc

@Qi
. In particular, Pc =

@Q1

@Q4
�4 and P4 = �4

@Q1

@Q4
. For the
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(p; u; v; w; T) variables, we consider only the case in which � = 1. We de�ne T̂ =
(�1)T
p

. Then,

�4 =

2
6666664

�2 0 0 0 0
�u
�
(1 + �) 1

�
0 0 0

�v
�
(1 + �) 0 1

�
0 0

�w
�
(1 + �) 0 0 1

�
0

T̂
h
�2+ q2

2
� a2

�1

i
�T̂ u �T̂ v �T̂w T̂

3
7777775

and letting Ê = E+p
�

+ �q2:

��14 =

2
66666664

1
�2

0 0 0 0
(1+�)u

�2
� 0 0 0

(1+�)v

�2
0 � 0 0

(1+�)w

�2
0 0 � 0

1
�2
Ê �u �v �w p

(�1)T

3
77777775

.
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Figure 1: E�ect of preconditioning on convergence history for ONERA M6 wing at M1 = 0:10
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Figure 2: E�ect of Mach number on convergence history of the preconditioned scheme for ONERA
M6 wing
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Figure 3: E�ect of Mach number on ONERA M6 wing pressure distributions at 80% span location
for preconditioned scheme
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Figure 4: E�ect of conservative/non-conservative formulations of arti�cial dissipation on conver-
gence history for ONERA M6 wing
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Figure 5: E�ect of conservative/non-conservative formulations of arti�cial dissipation on ONERA
M6 wing pressure distributions

Figure 6: Partial view of block-structured grid for 3-element high lift airfoil con�guration
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Figure 7: E�ect of preconditioning on convergence history for the the 3-element high-lift airfoil
con�guration
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Figure 8: E�ect of preconditioning on pressure distributions for the 3-element high-lift airfoil
con�guration
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Figure 9: Comparison of pressure distribution for ONERA M6 wing at transonic speeds
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Figure 10: Comparison of convergence histories for ONERA M6 wing at transonic speeds
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