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Preconditioning of boundary value problems using
elementwise Schur complements

Owe Axelsson1, Radim Blaheta2, Maya Neytcheva3

November 2, 2006

Abstract
Based on a particular node ordering and corresponding block decomposition of

the matrix we analyse an e�cient, algebraic multilevel preconditioner for the iter-
ative solution of �nite element discretizations of elliptic boundary value problems.
Thereby an analysis of a new version of block-factorization preconditioning methods
is presented. The approximate factorization requires an approximation of the arising
Schur complement matrix. In this paper we consider such approximations derived
by the assembly of the local macro-element Schur complements. The method can
be applied also for non-selfadjoint problems but for the derivation of condition num-
ber bounds we assume that the corresponding di�erential operator is selfadjoint and
positive de�nite.

1 Introduction
Let L be a second order elliptic operator on a plane domain Ω with proper boundary con-
ditions and consider the �nite element solution of Lu = f on a triangular or quadrilateral
mesh. The initial mesh is assumed to be adjusted to the geometry of he domain and to
discontinuities of the coe�cients in the di�erential operator. Each element of the mesh
is subdivided into m2,m ≥ 2, congruent elements using a uniform re�nement. Each such
element forms then a macro-element. It is also possible to use locally regular re�nements
as will be brie�y mentioned later. Except when mentioned otherwise, we assume that
the coe�cients in the di�erential operator are constant on each macro-element. Arbitrary
jumps can, however, occur between macro-elements. By ordering the edge nodes and the
interior nodes �rst, and the vertex nodes last, and partitioning the �nite element matrix
A correspondingly, we obtain

A =

[
A11 A12

A21 A22

]
. (1)
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The block matrix factorization of A can be written as

A =

[
A11 0
A21 I2

] [
I1 A−1

11 A12

0 SA

]
.

Here I1, I2 are unit matrices, A11 is the pivot block and

SA = A22 − A21A
−1
11 A12

is the corresponding Schur complement matrix.
To obtain an approximate factorization B of A we let B11 be an approximation of A11,

S̃A be some approximation of SA and let

B =

[
B11 0
A21 I2

] [
I1 B−1

11 A12

0 S̃A

]
. (2)

Note that B is nonsingular if and only if B11 and S̃A are nonsingular and B is symmetric
and positive de�nite if and only if B11 and S̃A are symmetric positive de�nite. Various
approximations B11 of A11 can be found in earlier publications, see e.g [8]. In the framework
of block-factorized preconditioners of type (2), a common choice for the approximations of
SA has been the coarse mesh �nite element matrix AH , H = mh where H and h denote
the coarse and �ne meshsizes, respectively. It has been shown that

(1 − γ2)AH ≤ SA ≤ AH , (3)

where γ2 = ρ
(
A−1

H Â21A
−1
11 Â12

)
. Here ρ denotes the spectral radius and γ is the so-

called Cauchy-Bunyakowski-Schwarz (CBS) constant for the corresponding hierarchical

basis functions (HBF) matrix Â =

[
A11 Â12

Ã21 AH

]
, where the vertex node basis functions have

been replaced by the basis functions for the vertex nodes for the coarse mesh elements, see
[6, 4]. A special Schur complement approximation for Stieltjes matrices has been considered
in [9].

We note that the matrix Â can be written as an assembly of local �nite macro-element
matrices, which have the same partitioning as in (1).

In this paper we consider instead approximations of SA based on the assembly of the
local Schur complements on each macro-element. Such an approximation has been con-
sidered earlier in [17] for the case m = 2 and rectangular elements. Here we extend these
results to general values of m, consider triangular elements and derive more general eigen-
value bounds and in a more direct way than in [17]. Our analysis is based on the CBS
constant.

The paper is organized as follows. In Section 2, the ideas presented in this introduction
are formulated more thoroughly and in a multilevel setting. Sections 3 and 4 are devoted
to the analysis of two-level preconditioners and possible improvement of the hierarchical
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method by congruence transformation. The elementwise Schur complement approxima-
tion is introduced and investigated in Section 5. Section 6 describes a possible further
improvement which can be obtained by combining the elementwise Schur complements
with the coarse mesh �nite element matrices. Section 7 discusses an approximation of the
pivot block using again the elementwise concept. Section 8 deals with the complexity and
optimality, as well as some implementational aspects including a possible local re�nement
variant of the multilevel method. The results are illustrated by numerical tests presented
in Section 9.

2 AMLI preconditioners
Consider a sequence of nested meshes Tk, k = k0, · · · , ℓ. Partitioning the �nite element
mesh on each level in two subsets, containing edge and interior nodes, and vertex nodes,
respectively, induces a block 2×2 structure of the corresponding �nite element matrix,

Ak =

[
Ak,11 Ak,12

Ak,21 Ak,22

]
,

where k denotes the current level number. For the solution of a linear system with Ak one
can use the original Algebraic Multilevel Iteration (AMLI) method, see [11]. It is based
indirectly on the related hierarchical basis representation of the matrix,

Âk =

[
Ak,11 Âk,12

Âk,21 Ak−1

]
,

where Ak−1 stands for the �nite element matrix on the coarse (vertex set) level. The relation
between the two representations is Âk = JT

k AkJk, where Jk =

[
Ik,1 Jk,12

0 Ik−1

]
. Here Ik,1, Ik−1

denote identity matrices and Jk,12 is an interpolation matrix from coarse to �ne element
mesh points basis functions. Hence, Âk,12 = Ak,12 + Ak,11Jk,12. Since the lower-right block
of Âk equals Ak−1, it is called a two-level the HBF matrix. Another observation is that the
two Schur complements S bAk

= Ak−1− Âk,21A
−1
k,11Âk,12 and SAk

= Ak,22−Ak,21A
−1
k,11Ak,12 are

identical, which is revealed by an elementary computation.
The following constant γk, which can be derived from the strengthened CBS inequality,

plays a fundamental role in the AMLI method. It measures the strength of the o�-diagonal
blocks in Âk in relation to the main diagonal blocks and can be de�ned simply as

γ2
k = ρ(A−1

k−1Âk,21A
−1
k,11Âk,12).

Next we introduce the exact factorization of Ak, namely,

Ak =

[
Ak,11 0
Ak,21 Ik−1

] [
Ik,1 A−1

k,11Ak,12

0 SAk

]
. (4)
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To construct an e�cient preconditioner to Ak we must �rst construct accurate approxima-
tions Bk,11 to Ak,11 and S̃Ak

to SAk
, the latter being a full matrix in general. Furthermore,

the approximation of SAk
must be done recursively. We recall that in the classical AMLI

method, [11], this is done as follows.
Let Pν(t) be a given polynomial of degree ν, such that 0 ≤ Pν(t) < 1, 0 < t ≤ 1 and is

normalized, Pν(0) = 1. Further, let Bk,11 be an approximation of Ak,11, which is spectrally
related to it in a form to be shown later.

The AMLI method

Let M0 = A0

For k = 1, 2, · · · , let

Mk =

[
Bk,11 0

Ãk,21 Ik,1

] [
Ik,1 B−1

k,11Ãk,12

0 M̃k−1

]

and M̃k−1 =
(
Ik−1 − Pν(M

−1
k−1Ak−1)

)
A−1

k−1.
It is seen that the preconditioner Mk to Ak is only implicitly (recursively) de�ned.

There are several possibilities how to de�ne the o� diagonal blocks. Besides Ãk,12 =

Ak,12 and Ãk,21 = Ak,21, which is used in the numerical experiments in Section 9, we can
choose Ãk,12 = Âk,12 and Ãk,21 = Âk,21 or, alternatively,

Ãk,12 = Ak,12 + (Ak,11 − Bk,11)Jk,12

Ãk,21 = Ak,21 + JT
k,12(Ak,11 − Bk,11)

(5)

(see also Remark 2.1 below).
The reason for the last choice of perturbing the o�-diagonal block-matrices, as is done

in (5) is that in this way the HBF counterpart of Mk, M̂k = JT
k MkJk takes the form

M̂k =

[
Bk,11 Âk,12

Âk,21 M̃k−1 + Âk,21B
−1
k,11Âk,12

]

which follows from an elementary computation. Hence, M̂k can be considered as a precon-
ditioner to Âk and since

sup
v

vT Akv

vT Mkv
= sup

bv

v̂T Âkv̂

v̂T M̂kv̂
and inf

v

vT Akv

vT Mkv
= inf

bv

v̂T Âkv̂

v̂T M̂kv̂
(6)

the extreme eigenvalues of M−1
k Ak equal those of M̂−1

k Âk. Since the o�-diagonal blocks
in M̂k equal those in Âk, the estimate of the extreme eigenvalues of M̂−1

k Âk can be more
readily done (see e.g. [12]).

The polynomial Pν is constructed as a shifted and scaled Chebyshev polynomial,

Pν(t) =

(
Tν

(
1 + α − 2t

1 − α

)
+ 1

)
/

(
Tν

(
1 + α

1 − α

)
+ 1

)
,
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where Tν(x) = 1
2
[(x +

√
x2 − 1)ν + (x −

√
x2 − 1)ν ] is the Chebyshev polynomial of �rst

kind and α > 0 is a lower bound of the eigenvalues of M−1
k−1Ak−1. As is seen, the upper

bound of these eigenvalues is bounded by the unit number.

Remark 2.1 The AMLI method can alternatively be de�ned from the HBF matrix. The
matrices Âk,12 and Âk,21 are less sparse than Ak,12 and Ak,21. Therefore, when an action
of the HBF matrix on a vector is required, in practice one uses the transformation Âk =
JT

k AkJk. The formulation in (5) is simpler, however. When Bk,11 is a su�ciently accurate
approximation to Ak,11 one may neglect the perturbation terms in (5). In Section 4 we
extend the above results to more general congruence transformations of the form ZT AZ.

One can construct an AMLI method for general positive de�nite matrices, i.e., without
assuming any underlying hierarchy of meshes and thus avoiding any (implicit or direct)
transformation to a corresponding HBF block structure of the matrices. However, in
order to construct an optimal order preconditioner for a sequence of approximations to
elliptic boundary value problems, the approximation Bk,11 to Ak,11 must then be related to
the Schur complement matrix SAk

or its approximation SBk
= Ak,22 − Ak,21B

−1
k,11Ak,12 in a

certain way. As the multilevel extension can be done as shown above, it su�ces to consider
the two-level form of the method. Therefore, in the sequel, we omit the subscript k.

3 Condition number bounds for the two-level method
We consider now approximate factorizations of the same form as in (4). To derive the
condition number of the corresponding two-level method, we make use of the following
Lemma (see [12], [13]).

Lemma 3.1 Let A =

[
A11 A12

A21 A22

]
and E =

[
E11 0
0 E22

]
be symmetric matrices, where A11

is positive de�nite and E11 is positive semide�nite. Consider a transformation matrix K =[
I1 −A−1

11 A12

0 I2

]
. Then the transformed matrices KT AK and KT EK take the following

form:

(i) KT AK =

[
A11 0
0 SA

]

(ii) KT EK =

[
E11 −E11A

−1
11 A12

−A21A
−1
11 E11 E22 + A21A

−1
11 E11A

−1
11 A12

]

The corresponding quadratic forms satisfy

(iii) [v1,v2]
T KT AK

[
v1

v2

]
= vT

1 A11v1 + vT
2 SAv2

(iv) [v1,v2]
T KT EK

[
v1

v2

]
≤ (1+ ξ)vT

1 E11v1 +(1+ ξ−1)vT
2 A21A

−1
11 E11A

−1
11 A12v2 +vT

2 E22v2

5



for any ξ > 0 and for all v1,v2 of dimensions consistent with the block matrix partitioning
of A.
Proof Parts (i)-(iii) follow by straightforward computations. Part (iv) follows from

|vT
1 E11A

−1
11 A12v2 + vT

2 A21A
−1
11 E11v1| = 2|vT

1 E11A
−1
11 A12v2|

= 2|(E1/2
11 v1)

T E
1/2
11 A−1

11 A12v2| ≤ 2
{
vT

1 E11v1 vT
2 A21A

−1
11 E11A

−1
11 A12v2

}1/2

≤ ξvT
1 E11v1 + ξ−1vT

2 A21A
−1
11 E11A

−1
11 A12v2.

Consider now a preconditioner to A in block-matrix factored form

B =

[
B11 0
A21 I2

] [
I1 B−1

11 A12

0 SB

]
(7)

where B11 and SB are approximations to A11 and SA, respectively. Note that B =[
B11 A12

A21 B22

]
, where B22 = SB + A21B

−1
11 A12, and that SB is the Schur complement of B.

Consider further the auxiliary matrix Ã =

[
B11 A12

A21 A22

]
. We assume that B11 and SB are

spectrally equivalent to A11 and SA, that Ã is positive semi-de�nite, and that the following
inequalities hold:

β−1vT
1 A11v1 ≤ vT

1 B11v1 ≤ vT
1 A11v1 for all v1, (8)

η−1vT
2 SAv2 ≤ vT

2 SBv2 ≤ vT
2 SAv2 for all v2, (9)

where β ≥ 1 and η ≥ 1.

Theorem 3.1 Let A be symmetric and positive de�nite. Assume that the approximations
B11 and SB are such that (8) and (9) hold. Then

κ−1vT Av ≤ vT Bv ≤ 2vT Av (10)

holds true for all v with κ = η + β + α − 1 where

α = sup
v2

vT
2 A21B

−1
11 (A11 − B11)B

−1
11 A12v2

vT
2 SBv2

. (11)

Proof Since B11 ≤ A11, it follows that A−1
11 ≤ B−1

11 , so S eA = A22 − A21B
−1
11 A12 ≤ A22 −

A21A
−1
11 A12 = SA. Further, it follows that

B =

[
A11 A12

A21 A22

]
−

[
A11 − B11 0

0 S eA − SB

]
≤ A +

[
0 0
0 SB − S eA

]
.

Since the lower diagonal block in A−1 equals SA, it holds that

A−1/2BA−1/2 ≤ I +

[
0 0

0 S
−1/2
A (SB − S eA)S

−1/2
A

]
,

6



that is,
vT A−1/2BA−1/2v ≤ vTv + vT

2 S
−1/2
A (SB − S eA)S

−1/2
A v,

where v =

[
v1

v2

]
. It holds that SB −S eA = SB −A22 +A21B

−1
11 A12 = SB −SA +A21B

−1
11 A12−

A21A
−1
11 A12. Since, by assumptions made, SB ≤ SA and A21B

−1
11 A12 ≤ A22, it follows that

SA − S eA ≤ A22 −A21A
−1
11 A12 = SA. Hence, A−1/2BA−1/2 ≤

[
I1 0
0 2I2

]
, so vT Bv ≤ 2vT Av,

which is the right-hand-side inequality in (10).
To prove the left-hand-side inequality, let K =

[
I1 −B−1

11 A12

0 I2

]
. It follows from Lemma

3.1 with E11 = A11 − B11, E22 = S eA − SB that

vT KT BKv = vT
1 B11v1 + vT

2 SBv2

and
vT KT (A − B)Kv = vT

1 (A11 − B11)v1 + 2vT
1 (I1 − A11B

−1
11 )A12v2+

vT
2 [(S eA − SB) + A21B

−1
11 (A11 − B11)B

−1
11 A12]v2.

Here, for any ξ > 0,

2|vT
1 (I1 − A11B

−1
11 )A12v2| ≤ ξvT

1 (A11 − B11)v1 + ξ−1vT
2 A21B

−1
11 (A11 − B11)B

−1
11 A12v2.

Further, we use S eA − SB ≤ SA − SB. Hence,

v
T KT (A−B)Kv

vT KT BKv
≤ max

{
(1 + ξ) sup

v1

v
T
1

(A11−B11)v1

v
T
1

B11v1
,

sup
v2

v
T
2

(SA−SB)v2

v
T
2

SBv2
+ (1 + ξ−1) sup

v2

v
T
2

A21B−1

11
(A11−B11)B

−1

11
A12

v
T
2

SBv2

}

= max{(1 + ξ)(β − 1), η − 1 + (1 + ξ−1)α}.

To minimize the upper bound, let ξ satisfy (1 + ξ)(β − 1) = η − 1 + (1 + ξ−1)α, i.e.,

ξ =
α + η − β

2(β − 1)

[
1 +

√
1 +

4α(β − 1)

(α + η − β)2

]

Hence,

v
T K(A−B)Kv

vT KT BKv
≤ (1 + ξ)(β − 1) = α+η+β−2

2

[
1 +

√
1 −

(
4(β−1)(η−1)
(α+β+η−2)2

) ]

≤ α + η + β − 2.

This implies
vT Av

vT Bv
≤ η + α + β − 1, for all v,

where equality is taken when both η = 1 and β = 1.
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In our framework we can control the values of η and β. However, we see from the
de�nition of α (expression (11)) that it can take large values, in particular for vectors near
the eigenvectors for eigenvalues of the order of λmin(SB) when the quantity vT

2 SBv2/v
T
2 v2 is

small. This occurs typically for "smooth" vectors, i.e., corresponding to the �rst harmonics
of the matrix A.

An upper bound for α can be derived using the CBS constant γ̃ for B. Then one �nds
that α ≤ (β−1)eγ2

1−eγ2 , see [13]. Since the matrices A12, A21 in B are derived from standard basis
functions, γ̃ can take values arbitrary close to unity, which also shows why α can take big
values.

To avoid the latter we must therefore somehow relate the approximation B11 of A11 to
these vectors. This can be done by constructing B11 in such a way that the denominator
in the expression (11) takes the value zero or very small values for such vectors. Such
or similar analysis can be found in [18, 19] and [13]. In practice, this seems to work
satisfactory. For the case where the opposite inequalities to (8), (9) hold, see [12].

A similar approach has actually appeared earlier in [9], but based on Stieltjes matrices.
There, one lets B̃11A11v1 = v1 for a positive vector v1 such that Av > 0, v =

[
v1

v2

]
,

where B̃11 is a nonnegative approximation of A−1
11 . The corresponding approximate Schur

complement is here taken as S eA = A22−A21B̃11A12, where Ã =

[
B̃−1

11 A12

A21 A22

]
. The approach

in [18] is similar to this. Assuming that A11 is an M-matrix, in [13] two constructions of
B11 are considered, namely as a modi�ed incomplete factorization, where B11 preserves
the action of A11 on a particular vector v (B11v = A11v) and as a compensated explicit
inverse, where B−1

11 (A11v) = A−1
11 (A11v).

4 Improvements of the condition number by congruence
transformations

Consider the following form of a congruence transformation of A, Ã = ZT AZ, where

Z =

[
I1 Z12

0 I2

]
. Let Z21 = ZT

12 and Ã =

[
Ã11 Ã12

Ã21 Ã22

]
. An elementary computation shows

that Ã11 = A11, Ã12 = A12 + A11Z12, Ã21 = ÃT
12 and S eA = Ã22 − Ã21Ã

−1
11 Ã12 = SA.

Our aim is to choose Z12 such that the o�-diagonal blocks of Ã have a weaker in�uence
on the condition number in (10) than the corresponding blocks in A have, i.e., to ensure
a smaller value of κ by decreasing the value of the coe�cient α in (11). To achieve this
the matrix Z12 must be chosen properly, while still preserving the sparsity of the matrices
involved.

Matrix Ã can then be preconditioned as in (7), i.e., with

B̃ =

[
I1 0

Ã21B
−1
11 I2

] [
B11 0
0 SB

] [
I1 B−1

11 Ã12

0 I2

]
,

8



where B11 is an approximation of Ã11 and SB an approximation of S eA which latter, as we
have seen, equal A11 and SA, respectively.

However, instead of performing an iterative method, such as the conjugate gradient
method, with B̃ as a preconditioner to Ã, we show now that it can be more e�cient to use
the preconditioner Z−T B̃Z−1 to A.

We note �rst that the extreme values of

inf
y

/ sup
y

yT Ãy

yT B̃y
and inf

x

/ sup
x

xT Ax

xT Z−T B̃Z−1x

are equal, which follows from a transformation x = Zy. Therefore, the extreme eigenval-
ues of B̃−1Ã and (Z−T B̃Z−1)−1A are equal and, hence, the upper bound for the rate of
convergence of the conjugate gradient method is unchanged. Next we simplify the matrix
Z−T B̃Z−1. It holds

Z−T B̃Z−1 = Z−T

[
I1 0

Ã21B
−1
11 I2

] [
B11 0
0 SB

] [
I1 B−1

11 Ã12

0 I2

]
Z−1

where
[
I1 B−1

11 Ã12

0 I2

]
Z−1 =

[
I1 B−1

11 Ã12

0 I2

] [
I1 −Z12

0 I2

]
=

[
I1 B−1

11 (A12 + A11Z12) − Z12

0 I2

]
=

[
I1 B−1

11 [A12 + (A11 − B11)Z12)]
0 I2

]
.

Therefore, it holds that

Z−T B̃Z−1 =

[
I1 0

Â21B
−1
11 I2

] [
B11 0
0 SB

] [
I1 B−1

11 Â12

0 I2

]
,

where Â12 = A12 + (A11 − B11)Z12 and Â21 = ÂT
12.

We consider now two choices of Z12 to improve the value of α in (11).

• (i) Z12 = J12, the interpolation matrix between hierarchical and standard basis func-
tions in a �nite element method. This is the choice considered in [11]. It can improve
the value of α dramatically, for instance from O(h−1) to 1/(1− γ2) < 4, which latter
holds for piece-wise linear basis functions and a uniform subdivision of triangular
elements in four congruent triangles.

• (ii) Z12 = −H1A12, where H1 is an approximation of A−1
11 . This makes Ã12 = A12 +

A11Z12 small.
If H1 = A−1

11 , then Ã12 = 0. This choice is infeasible, however, as A−1
11 is a full

matrix. Even very accurate approximations may involve too much loss of sparsity
and increase of computational complexity. Instead we aim at choosing H1 such that
α is signi�cantly reduced while matrix-vector multiplications with H1 can still be

9



performed cheaply. One possible choice is to let H1 be an extension of the inverse
of the matrix A11,H corresponding to a coarser mesh. The smallest eigenvalues of
the latter matrix are good approximations of those of A11 = A11,h, and the value of
α in (11) is therefore much reduced. Furthermore, by using the matrix graph of A,
this method can often be extended also to other applications than those arising from
�nite elements.

Remark 4.1 If H1 is such that the action of A21 on "smooth" vectors is small, it may
su�ce to use a block-diagonal preconditioner to Ã, where the diagonal blocks approximate
A11 and SA, respectively. It is then assumed that an action of H1 is relatively cheap but
the approximation B11 of A11 can be allowed to require more computational e�ort, as it is
now applied only once at each iteration step.

5 Element-by-element Schur complement approximation
While in the previous sections we introduced a general AMLI framework, we proceed
now with a particular approximation to SA. This approximation uses (macro)elementwise
approach and the resulting AMLI variant will be denoted as AMLI-ES in the sequel. Such
an approach has been previously considered in [17], but in a more limited context and with
less general proofs of the resulting condition numbers.

Let us reconsider a sequence of nested meshes Tk and an approximation to the Schur
complement SA = SAk

. Let E ∈ Tk−1 be a macroelement unifying several elements e ∈
EE ⊂ Tk. Then a macroelement matrix AE = Ak,E arises from assembling the element
matrices Ae, e ∈ EE. This matrix can be partitioned and transformed to the hierarchical
basis (as in Section 2),

AE =

[
AE,11 AE,12

AE,21 AE,22

]
, ÂE =

[
AE,11 ÂE,12

ÂE,21 ÂE,22

]

where ÂE,22 equals the element matrix Ak−1,E.
Then let

SE = AE,22 − AE,21A
−1
E,11AE,12

be the local Schur complement for E and S̃A be the element-Schur approximation to SA,
namely,

S̃A =
∑

E∈Tk−1

RT
ESERE,

where RE denotes a Boolean matrix representing the restriction to the macroelement de-
grees of freedom.

Let AE = Ak,E denote the macroelement matrix. Then the following inequality holds
for the local Schur complements SE on each element E ∈ Tk−1,

(1 − γ2
E)AE ≤ SE, (12)

10



where γE = ρ(A−1
E ÂE,21A

−1
E,11ÂE,12)

1/2 is the local value of the CBS constant, see e.g.
[11]. This inequality follows directly from the representation in the local hierarchical basis
functions and the fact that the Schur complements SE and ŜE = Ak−1,E − ÂE,21A

−1
E,11ÂE,12

for the standard and hierarchical basis function matrices are identical, S(ℓ) = Ŝ(ℓ), see [11].
The following spectral bounds hold.

Theorem 5.1 Let S̃A be the assembly of the local Schur complements SE and let
SA = A22 − A21A

−1
11 A12 be the global Schur complement matrix. Then

(1 − γ2)SA ≤ S̃A ≤ SA, (13)

where γ = max
E

γE.

Proof Let AH be the matrix corresponding to the �nite element sti�ness matrix on the
discrete mesh TH . Since AH and S̃A are the assembly of AE and SE, respectively, it follows
from (12) that (1 − γ2)AH ≤ S̃A which, combined with the bound AH ≥ SA, is the left-
hand-side inequality in (13).

The right-hand-side inequality in (13) follows directly from a general property which
holds for Schur complements (see e.g. [1] (Theorem 3.8) and [17]). Let vE =

[
vE,1

vE,2

]
,

v =

[
v1

v2

]
be the corresponding partitioning of local and global �nite element vectors.

Then
vT

E,2SEvE,2 = min
vE,1

vEAEvE.

Further, because SE are local matrices,

vT S̃Av = vT
∑

E

RT
ESERE v =

∑

E

vT
E,2 SE vE,2

Finally, ∑

E

min
vE,1

vT
EAEvE ≤ min

v1

vT Av = vT
2 SAv2,

where the inequality follows from the fact that the minimum on the left-hand-side is at-
tained over a larger set of degrees of freedom than on the right-hand-side. Collecting these
results we obtain that S̃A ≤ SA.

We note that S̃A replaces SB when applying Theorem 3.1. It is seen from Theorem 3.1
and (15) that the two-level spectral condition number of the preconditioning of SA by S̃A

satis�es
cond(S̃−1

A SA) ≤ 1/(1 − γ2
H) ≤ m2 (14)

Remark 5.1 The proof of the lower bound in Theorem 5.1 is more straightforward and
more general than the corresponding bound in [17]. Furthermore, it shows that universal
bounds hold for arbitrary coe�cients in the di�erential operators (if they are piecewise
constant) and even for degenerate elements.
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h

H=mh

Figure 1: Two distributions of vertex and edge points (normal and composed macroele-
ment)

Remark 5.2 Clearly the method above is applicable both for triangular and for quadri-
lateral meshes. In the former case, γ2 < 3/4 for all triangles, even for degenerate ones
(when one or two angles equal zero). The constant for an anisotropic operator for bilinear
elements on a rectangular mesh is also γ2 < 3/4, see [20] for a derivation.

Remark 5.3 The preconditioner B11 to the block matrix A11 in (2) can be constructed
in various ways. For the Laplacian operator and a nondegenerate mesh the matrix can
be approximated by a diagonal matrix, see [1, 6, 2]. For more general operators such
as anisotropic Laplacian and/or nearly degenerate meshes special, more robust techniques
must be applied, see e.g. [1, 8]. For systems of partial di�erential operators one can
frequently apply preconditioners based on a separate displacement ordering, see e.g. [16, 3].

The universal bound of γ2 for the m−partitioning of a general triangle and a general
selfadjoint operator L are

γ2 < (m2 − 1)/m2, m = 2, 3, . . . (15)

see [5]. As is seen from (15), the value of γ2 approaches 1 when m increases, which is less
favorable for the spectral bound in (3).

There are two possible choices how to handle the edge points in an m-times uniformly
re�ned mesh, illustrated in Figure 1. In the �rst case (left), each node point on an edge is
treated as an edge-point and in the second case (right), each second node-point is treated
as an edge-point and the remaining ones � as vertex points. The advantage with the latter
choice is that the value of γ2 will attain the universal bound for m = 2, namely, γ2 < 3/4.

The two-level method considered above can be applied recursively as in the AMLI meth-
ods, see Section 4 and [11]. Thereby we �rst assemble the current local Schur complements
and partition the assembled matrix in 2× 2 block form. The corresponding Schur comple-
ment matrix is again approximated by the assembly of the new local Schur complement
matrices, now corresponding to a new (coarse mesh) partitioning of the mesh, which are
constructed by �rst partitioning them in corresponding 2 × 2 block forms.

12



The same types of approximations of the new B11 and SA matrices are used. However,
the new value of the CBS constant is not available because the coarse mesh matrix AH

corresponding to the new, coarser mesh is not available. One can say that the local Schur
complement matrices correspond to a �nite element methods for new, but unknown, basis
functions. Hence, the progress of the method in a multilevel framework can only be shown
experimentally.

Remark 5.4 In [15] the element-by-element Schur complement approximation technique
was successfully applied to a nonsymmetric problem of saddle point form. It was �rst used
to approximate the Schur complement of the saddle point matrix and second, to construct
an AMLI preconditioner to the main pivot block and to the Schur complement itself.

6 A further improvement of the Schur complement pre-
conditioner

The spectral bounds in Theorem 5.1 show that the eigenvalues of S̃−1
A S are located in

the interval [1, 1/(1 − γ2
H)]. It is known that the conjugate gradient method converges

in general faster for eigenvalues clustered on both sides of the origin, see e.g. [1]. Such
a preconditioner can readily be constructed by taking a linear combination of the coarse
mesh matrix AH and S̃A. Hence, let

C = ξAH + (1 − ξ)S̃A , 0 ≤ ξ ≤ 1

be a preconditioner to SA. We derive below bounds for the eigenvalues of C−1S.
Note �rst that on each element,

C(ℓ) = ξA
(ℓ)
H + (1 − ξ)(A

(ℓ)
H − Â

(ℓ)
21 A

(ℓ)−1

11 Â12)

≥ (ξ + (1 − ξ)(1 − γ2
H))A

(ℓ)
H

Here the notation "̂" indicates that the corresponding matrix blocks are in a HBF form.
Hence

C ≥ (ξ + (1 − ξ)(1 − γ2
H))AH

≥ (ξ + (1 − ξ)(1 − γ2
H))SA , 0 ≤ ξ ≤ 1.

Furthermore,

C = ξAH + (1 − ξ)S̃A ≤
(

ξ

1 − γ2
H

+ 1 − ξ

)
SA

=
ξ + (1 − ξ)(1 − γ2

H)

1 − γ2
H

SA.
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The eigenvalues of C−1SA are therefore contained in the interval
[

1

1 − ξ + ξ
1−γ2

H

,
1

ξ + (1 − ξ)(1 − γ2
H)

]
.

The upper bound for the condition number is still 1/(1 − γ2
H), but for 0 < ξ < 1 the

eigenvalues are now located on both sides of the unity.
Numerical illustrations show that the number of conjugate gradient iterations now can

decrease somewhat for such values of ξ compared to the value ξ = 0 when C = S̃A.

7 Element-by-element pivot block approximation
One possible choice for the pivot block preconditioner is the following

B−1
k,11 =

∑

E∈Tk−1

RT
EA−1

E,11RE,

where RE denote a Boolean matrix representing the restriction to the macroelement degrees
of freedom. Clearly, this type of preconditioners �ts well in the concept of elementwise
approximation of the Schur complement matrix.

Some basic spectral information about both Ak,11 and Bk,11 can be easily obtained from
the spectral analysis of the macroelement matrices AE,11. Let

0 < λ0 ≤ λmin(AE,11) and λmax(AE,11) ≤ λ1 for all E ∈ Tk−1.

Then, for all appropriate vectors x,

〈Ak,11x, x〉 =
∑

E

〈AE,11REx, REx〉 ≤ λ1

∑

E

〈REx, REx〉 ≤ 2λ1 〈x, x〉 ,

〈Ak,11x, x〉 =
∑

E

〈AE,11REx, REx〉 ≥ λ0

∑

E

〈REx, REx〉 ≤ λ0 〈x, x〉 .

The factor two in the upper estimate comes from the fact that the ��ne� degrees of freedom
can be shared by (at most) two macroelements.

Similarly, we get bounds for the preconditioner,
〈
B−1

k,11x, x
〉
≤ 2

λ0

〈x, x〉 and
〈
B−1

k,11x, x
〉
≥ 1

λ1

〈x, x〉 ,

λ0

2
〈x, x〉 ≤ 〈Bk,11x, x〉 ≤ λ1 〈x, x〉 .

Combined, it gives

κ
−1 〈Bk,11x, x〉 ≤ 〈Ak,11x, x〉 ≤ 4κ 〈Bk,11x, x〉

14
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Figure 2: A macroelement

for κ = λ1/λ0. However, this estimate is very pessimistic (it is worse than what we already
got for the pivot block approximation by the identity matrix). Thus some other analysis,
as e.g. the domain decomposition point of view, is necessary for better understanding and
possible improvement of the preconditioner.

We comment now brie�y on the values of λ0 and λ1. They are easily computable in
the case of Laplace di�erential operator and isosceles rectangular triangles, see Figure 2.
In this case,

AE,11 =




2 −1 −1
−1 2 0
−1 0 2




and a computation of the eigenvalues shows that λ0 = 2−
√

2 = 0.5858 and λ1 = 2+
√

2 =
3.4142.

The dependence of λ0 and λ1 on the parameter m is also illustrated in Figure 2. The
improvement of the condition number with increasing m is in accordance with the domain
decomposition point of view, as the condition number decreases with decreasing number
of macroelements (subdomains).

A numerical computation reveals that κ = λ1/λ0 deteriorates with anisotropy in the
case of a generalized anisotropic Laplacian or e.g. increasing Poisson ratio in the case of
elasticity.

8 Implementation and computational complexity
We consider below triangular meshes. Dividing each element in m2 subelements can result
in substantial savings of computer time when m is big, both on sequential and parallel
computers, since much computational work can be done locally. Larger values of m also
reduce the required number of levels, which is advantageous as the matrices Ak must be
assembled in advance and stored.

For the outer iteration method we note however, that the value of γ increases with the
number of vertex points m. The numerical results indicate, however, that the condition
number bound for the method using local Schur complement approximations may be more
accurate than the upper bound in (14) would imply.
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We now show how to optimize the value of m in order to minimize the computational
complexity for the iterative method. Within the AMLI methods, described in Section 2, a
solution of a system with the preconditioner on level k, i.e., Mkg = r can be implemented
in the following steps:

Step 1: g1 ← B−1
k,11r1

Step 2: g2 ← M̃−1
k−1(r2 − Ãk,21g1)

Step 3: g1 ← B−1
k,11(r1 − Ãk,12g2)

More generally, Step 2 solves the system Ak−1 g2 = r2 − Ãk,21 g1 by ν inner iterations
with a proper preconditioner. If ν is su�ciently big, typically ν ≥ (1 − γ2)−1/2, then the
corresponding preconditioner is spectrally equivalent to the given matrix, see [13]. Since
γ2 < (m2 − 1)/m2 (see [5]), it must then hold that m ≤ ν, m = 2, 3, . . .. In practice we
choose ν as small as possible, i.e., ν = m.

Now, we are interested in the complexity W k = w(Mk), which after a simpli�cation
ful�lls the following recurrence relation,

Wk = 2w(B−1
k,11) + ν Wk−1, (16)

where w(B−1
k,11) is the complexity of the pivot block preconditioner. Note that in (16), we

neglect the multiplications with the o�-diagonal blocks Ãk,21 and Ãk,12 and neglect the work
in the inner iterations, which is additional to the Mk−1 preconditioner. The complexity
can be further discussed from several points of view:

(A) The �rst point of view is usually used in the multigrid theory. One assumes then
that the coarsest grid T0 is very coarse and �xed. Then one considers an arbitrary
grid Tk, which is a re�nement of the coarsest grid. If nk is the order of Ak (or,
equivalently, number of the degrees of freedom of that level) than we can claim that
the complexity of Mk is of optimal order if there is a k-independent constant C such
that Wk ≤ Cnk. Let for k = 1, 2, . . . , it holds that nk ≤ ρnk−1, νρ < 1 and there is
a constant C such that w(B−1

k,11) ≤ Cnk and W0 = w(M0) = w(A−1
0 ) ≤ Cn0. Then

(16) induces directly the optimal complexity of the multilevel preconditioners.
For 2D problems and macroelement-wise approximation to both the Schur comple-
ment and the pivot block (see Sections 5 and 7) all the above requirements for optimal
complexity are ful�lled, ν ∼ m and ρ = m−2 for m ≥ 2. In this respect, we can even
a�ord bigger values of mk = hk/hk−1 which are advantageous as was already men-
tioned at the beginning of this section.

(B) The second point of view, which is taken in this paper, respects the fact that a �ner
coarsest level is advantageous as well. It permits a triangulation which can better
model more complex domains and a construction of the coarsest mesh such that no
discontinuities occur within a macroelement, which latter is also favourable for the
condition number of the preconditioned matrix.
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Remark 8.1 As has been shown in [7], an alternative technique to avoid carrying out the
recursion in a multilevel method to a coarse mesh with a �xed number of degrees of freedom
can be based on permutations of the local �nite element matrices by addition of zero-order
terms.

Let the coarsest level correspond to a �nite element mesh with a characteristic size h0

and n0 = O(h−2
0 ). If the system corresponding to the coarsest level matrix is solved by a

solution method, such as the unpreconditioned CG or a nested dissection method, then it
su�ces with O(h−3

0 ) operations. Thus, there is no asymptotic complexity increase if this
O(h−3

0 ) complexity is comparable with O(h−2), where h is the �nest grid size.
To analyse the computational complexity of the method, let us start with such a �ner

and more �exible coarsest grid. Then it is a question how to develop the re�nement
process to get both good e�ciency and complexity for the AMLI preconditioners. The
answer to this question needs a more precise formulation and therefore, we assume that
a macroelement-wise approximation is used for both A−1

k,11 and S̃Ak
. Then there is an

initial cost in forming the Schur complements and in the computation of A−1
E,11 for each

macroelement. On the kth level, this initial cost is O(h−2
k−1m

6
k), where mk is the mesh size

re�nement factor, hk = hk−1/mk and the number of elements for the k-th level is O(h−2
k ).

At each iteration step we perform matrix-times-vector multiplications with the exact
local inverses and the major cost there is w(A−1

E,11) = O(m4
k), arising from the matrices of

order m2
k × m2

k.
From (14) it follows that O(mk) inner iterations should take place at level k. Ignoring

the constants involved, the computational complexity of the k-th level preconditioner is
then as follows,

Wk+1 = h−2
k m4

k+1 + mk+1Wk, k = 0, 1, · · · ,

where W0 = h−3
0 and h−2

k is the number of macroelements on level k.
Let Wk = h−2−αk

k , 0 < αk ≤ 1, α0 = 1, where αk measures the discrepancy in the order
of computational complexity between the method and a method of optimal order at that
level. Then

Wk+1 = h−2
k

(
m4

k+1 + mk+1h
−αk

k

)
. (17)

To balance the two terms above, we let

mk+1 = h
−αk/3
k . (18)

Then
Wk+1 = h

−2− 4

3
αk

k = h
−2−αk+1

k+1 = (hk/mk+1)
−2−αk+1 = h

(1+ 1

3
αk)(−2−αk+1)

k .

A comparison of the exponents of hk gives immediately that

αk+1 =
2

3

αk

1 + αk/3
. (19)

Thus, it is seen that αk decreases monotonically to zero, and geometrically with a rate 2/3.
Accordingly, the complexity of multilevel preconditioner approaches the optimal order.
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h0 = 10−1 10−2 10−3 10−4

m1 2 4 9 21
m2 2 2 4 7
m3 2 2 2 3
m4 2 2 2 2

h0 = 10−1 10−2 10−3 10−4

m1 4 21 99 464
m2 2 7 21 59
m3 2 3 7 15
m4 2 2 3 6

Table 1: The re�nement for α0 = 1 (left) and α0 = 2 (right).

Simultaneously, the re�nement factor mk ful�lls the relation

mk+1 = h
−αk/3
k = (hk−1/mk)

−αk/3 = h
−(1+

αk−1

3
)

αk
3

k−1

= m
(1+

αk−1

3
)

αk
αk−1

k = m
2/3
k . (20)

If α0 = 1, then all αk ≤ 1 and
mk+1 ≤ m

2

3

k ≤ mk.

Thus mk does not grow and therefore the condition number in (14) does not deteriorate.
For α0 > 1 the same happens after some steps. Thus with an increasing number of levels
k → ∞, we again approach an optimal order method.

Starting with α0 = 1, it follows from (19), that α1 = 0.5, α2 = 0.2857, α3 = 0.1739
etc. The corresponding re�ning factors depend on the mesh size of the coarsest mesh. The
denser the coarsest mesh is, the larger is the value of m that we can a�ord, see e.g. the
values in Table 1.

The construction allows to compute an approximate solution at each such level and use
it as an initial solution for the next re�nement step. In this way one avoids the log(h−1)
factor in the iteration count which otherwise appears as the required relative accuracy for
stopping the iterations would be O(h2) (see e.g. [1]). A further advantage of the method is
that if m is �xed one can extrapolate the approximate solutions to get a higher order of the
approximation error than the standard O(h2). This requires however su�cient regularity
of the exact solution of the boundary value problem.

For some of the levels, it is also possible to do the re�nement locally and re�ne only
some selected macroelements. To preserve conformity of the arising �nite element mesh,
the values in the arising hanging nodes can be e.g. interpolated. The arising composite grid
�nite element problem can then be solved iteratively. The convergence of whole iterative
process depends again on the strengthened CBS constant. The subproblems corresponding
to a coarser global grid and re�ned local grid can be solved iteratively with the use of the
presented AMLI preconditioners.

Furthermore, the method o�ers a large amount of e�cient parallel computation at each
level. If the number of processors (p) is p ≤ h−2

0 , then each processor will be active at
any computational step, except possibly when solving the �nal, coarsest level matrix by
a direct solution method or by a preconditioned or unpreconditioned conjugate gradient
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method. The e�ciency of the latter step depends on the parallel computer platform, which
is utilized.

Note that the presented complexity considerations are fully justi�ed for standard AMLI
preconditioners. They are also successfully applicable to AMLI-ES (as we can see in Section
9), however then we don't have sharp theoretical estimates for the constant γ on the coarser
levels (see also Section 5).

9 Numerical illustrations
The iterative solvers used for the numerical tests are the Generalized Conjugate Gradi-
ent - Minimal Residual (GCG) method, described, for instance in [1] and the standard
preconditioned Conjugate Gradient (PCG) method.

The performance of the preconditioning technique is illustrated on the following three
test problems.

Problem 9.1 We consider a Poisson problem with discontinuous coe�cients k

∇(k∇u) = f in Ω ⊂ R
2,

where u = u(x, y), k = ε in Ωε and k = 1 elsewhere. The geometry of Ω and the initial
(coarsest) triangulation are shown in Figure 9, where Ωε occupies the shaded region. The
parameter m which relates H and h is varying as m = 2s, s = 1, 2, 3.
The results are shown in Table 2. For these experiments the coarsest level for the multilevel
preconditioner is always the coarsest possible. The positions in the table, marked by "-",
correspond to problem sizes, which cannot be obtained with that particular choice of the
parameter m. We can see that the convergence of the method is not a�ected by the
coe�cient jumps, which in this case are aligned with the coarse mesh. It is also seen that
the iteration count improves signi�cantly for larger values of m.
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Problem ε1 = 1 ε1 = 10−3 ε1 = 103

size m = 2 m = 4 m = 8 m = 2 m = 4 m = 8 m = 2 m = 4 m = 8
161 8 6 - 8 6 - 8 6 -
609 11 - 6 11 - 6 11 - 6
2369 14 11 - 14 11 - 14 11 -
9345 18 - - 18 - - 18 - -
37121 23 16 13 23 17 13 23 16 13

Table 2: Problem 9.1: Iteration counts for varying m

Problem 9.2 To illustrate the results in Section 6 we consider a two-dimensional anisotropic
problem

−ε1 uxx − ε2 uyy = f in Ω ⊂ R
2,

where u = u(x, y) and Ω = [0, 1]2.
The results are shown in Table 3. There we show runs for a sequence of problem sizes.

The total possible number of levels is indicated in the row below the problem size. For
α = 0, 0.1, 0.5, 0.9, 1 and ε = 10−3, 1, 103 we show the iteration counts of the standard
conjugate gradient (CG) method, preconditioned by the V -cycle AMLI preconditioner,
constructed as in (7). On each level the blocks A11 are solved exactly. The approximation
SA is obtained by assembling local Schur complement matrices on each level. We show the
number of iterations for the full-length V -cycle preconditioner ('Coarsest=1'), as well as
for the corresponding two-level method ('Coarsest=3,4,5,6,7').

From the numerical experiments we see that for strong anisotropy α = 0 is the best
choice, while α = 0.1 leads to a slight improvement when ε = 1. In the two-level case the
di�erences are minor and introducing α is hardly justi�ed. The results indicate that the
Schur complement approximation S̃2 is more robust than AH .

Problem 9.3 We consider a simple linear elasticity problem in two dimensions, where
a homogeneous body occupies a domain Ω = [0, 1]2. The material parameters (Young
modulus E and Poisson ratio ν) are chosen as E = 1 and ν = 0.2. The discretization
is done either by right-angled triangles and linear basis functions or by square mesh and
bilinear basis functions. The block A11 is solved exactly. The stopping criterion is set to
decrease the relative residual norm below 10−6.

The results are presented in Tables 4 and 5. In all cases m = 2 and full-length recurrence
is used. We show results for the pure V -cycle and for a stabilized preconditioner. In
the latter case, a stabilization is done on some of the intermediate levels by solving the
corresponding system with the same preconditioned method to a lower accuracy 10−3,
which requires 3-4 inner iterations. An analogous way of stabilizing an AMLI-type solver
of additive form is used in [10].

The parameter µ in Tables 4 and 5 indicates how often the stabilization has been
performed. The values µ = 2 and µ = 3 mean that we have done it on each second
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Problem size 81 289 1089 4225 16049
Total no.levels 4 5 6 7 8

Full Two Full Two Full Two Full Two Full Two
α ε2 length level length level length level length level length level

10−3 3 3 3 3 5 4 7 5 11 7
0 1 6 6 8 6 11 7 14 7 18 7

103 3 3 5 4 7 6 10 7 15 8
10−3 4 3 6 4 9 5 13 6 19 7

0.1 1 6 6 7 7 9 6 10 7 11 6
103 5 4 8 5 12 6 18 7 23 8
10−3 5 3 7 4 12 5 16 6 22 7

0.5 1 7 6 8 7 9 7 10 7 11 7
103 6 4 10 5 16 6 19 7 29 8
10−3 4 3 7 4 12 5 17 6 24 7

0.9 1 7 6 9 7 10 7 10 7 11 7
103 6 4 11 5 16 6 23 7 29 8
10−3 5 3 7 4 12 5 17 6 23 7

1 1 7 6 9 7 10 7 10 7 12 7
103 6 4 11 5 16 6 22 7 29 8

Table 3: Problem 9.2: Iteration counts for the full-length V-cycle and for the two-level
preconditioners

Total no V-cycle Stabilized GCG Unprec.
Size levels PCG GCG µ = 2 µ = 3 CG
2x81 4 8 11 10 10 71
2x289 5 12 16 11 11 150
2x1089 6 16 22 11 11 291
2x4225 7 21 30 12 12 461
2x16641 8 30 41 12 12 -

Table 4: Problem 9.3 (triangles)
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Total no V-cycle Stabilized GCG Unprec.
Size levels PCG GCG µ = 2 µ = 3 CG
2x81 4 7 8 6 6 32
2x289 5 10 11 8 8 60
2x1089 6 14 16 11 11 117
2x4225 7 19 22 12 12 -
2x16641 8 25 30 12 12 -

Table 5: Problem 9.3 (quadrilaterals)

level, respectively, on each third level. Stabilization on the second highest level is always
required. Numerical tests, not included here, indicate that if we release the latter for µ > 2,
the method behaves as in the unstabilized V-cycle preconditioned case. An observation to
mention here is that the method behaves better on quadrilateral meshes than on triangular
meshes. This is even more pronounced in the case of a scalar equation.

In both Tables 4 and 5, under the V-cycle, there are two columns containing iteration
counts for the PCG and for the GCG methods, correspondingly. Since in these tests the
V-cycle preconditioner is �xed (due to the exact solve with the top-left blocks), we can
use the standard PCG method. The experiments indicate that it is slightly better than
the GCG method, which is expected for symmetric problems. In the stabilized case the
preconditioner is varying, and therefore only the GCG method is used.

10 Concluding remarks
It has been shown how one can construct and estimate condition numbers for a general
approach to approximate the arising global Schur complement matrices by use of local,
macroelementwise computed Schur complement matrices.

Thereby the in�uence of the number of subdivisions of each macroelement to achieve
an optimal order method has been shown.

The elementwise approach is applicable also for problems in three space dimensions. It
is tested in the context of nonsymmetric saddle point problems and numerical experiments
in 2D and 3D can be found in [14].

It has further been shown how one can use the strong properties of the HBF element
matrices without actually having to implement them, thus avoiding their disadvantage of
being less sparse.

Finally, the in�uence of approximations of the pivot block matrix A11 have been dis-
cussed in some detail.
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