
Preconditioning Techniques for Diagonal-times-Toeplitz

Matrices in Fractional Diffusion Equations

Jianyu Pan ∗ Rihuan Ke † Michael K. Ng ‡ Hai-Wei Sun §

Abstract

The fractional diffusion equation is discretized by an implicit finite difference
scheme with the shifted Grünwald formula, which is unconditionally stable. The coef-
ficient matrix of the discretized linear system is equal to the sum of a scaled identity
matrix and two diagonal-times-Toeplitz matrices. Standard circulant preconditioners
may not work for such Toeplitz-like linear systems. The main aim of this paper is to
propose and develop approximate inverse preconditioners for such Toeplitz-like matri-
ces. The construction of an approximate inverse preconditioner is to approximate the
inverses of weighted Toeplitz matrices by circulant matrices, and then combine them
together row-by-row. Because of Toeplitz structure, both the discretized coefficient
matrix and the preconditioner can be implemented very efficiently by using fast Fourier
transforms. Theoretically, we show that the spectra of the resulting preconditioned
matrices are clustered around one. Thus Krylov subspace methods with the proposed
preconditioner converge very fast. Numerical examples are given to demonstrate the
effectiveness of the proposed preconditioner and show that its performance is better
than the other testing preconditioners.
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1 Introduction

In this paper, we consider an initial boundary value problem of a fractional diffusion
equation (FDE)

∂u(x, t)

∂t
= d+(x, t)

∂αu(x, t)

∂+xα
+ d−(x, t)

∂αu(x, t)

∂−xα
+ f(x, t),

x ∈ [xL, xR], t ∈ (0, Tf ],
u(xL, t) = u(xR, t) = 0, 0 ≤ t ≤ Tf ,
u(x, 0) = u0(x), xL ≤ x ≤ xR,

(1)

where 1 < α < 2, f(x, t) is the source term, and the diffusion coefficients satisfying
d+(x, t) ≥ 0 and d−(x, t) ≥ 0. Here the left-sided and the right-sided fractional derivatives
are defined in the Grünwald-Letnikov form [27]:

∂αu(x, t)

∂+xα
= lim

h→0+

1

hα

(⌊x−xL⌋)/h∑
k=0

g
(α)
k u(x− kh, t),

∂αu(x, t)

∂−xα
= lim

h→0+

1

hα

(⌊xR−x⌋)/h∑
k=0

g
(α)
k u(x+ kh, t),

where ⌊x⌋ denotes the floor of x and the coefficients g
(α)
k are defined as follows

g
(α)
0 = 1 and g

(α)
k = (−1)k

α(α− 1) · · · (α− k + 1)

k!
, k = 1, 2, . . . . (2)

In last few decades, more and more anomalous diffusion phenomena have been found
in the real world, which lead to FDEs. The FDEs were shown to provide an adequate
and accurate description for these anomalous diffusions which include modeling chaotic
dynamics of classical conservative systems [40], groundwater contaminant transport [3, 4],
turbulent flow [7, 29], and applications in biology [19], finance [28], image processing [1],
and physics [30]. In [39], Wang and Yang studied and analyzed variable-coefficient con-
servative fractional elliptic differential equations. Usually, closed-form analytical solutions
of FDEs are not available. Several numerical methods for solutions of FDEs are proposed
and developed; see, for instances, [6, 13, 14, 16, 18, 20, 21, 22, 23, 31, 33, 35].

One of the main characteristics of the fractional differential operator is nonlocal. It
was shown that a simple discretization scheme of the FDE, even though implicit, leads
to be unconditionally unstable [21, 22]. Moreover, most numerical methods for FDEs
tend to generate full coefficient matrices, which require computational cost of O(N3) and
storage of O(N2), where N is the number of grid points [37]. It is quite different from the
second-order diffusion equations which usually yield sparse coefficient matrices with O(N)
nonzero entries and can be solved very efficiently by fast iterative methods with O(N)
complexity. In order to keep a stable numerical scheme, Meerschaet and Tadjeran [21, 22]
proposed a shifted Grünwald discretization to approximate FDEs. Their method has
been shown to be unconditionally stable. Furthermore, the full coefficient matrix by the
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Meerschaet-Tadjeran’s method holds Toeplitz-like structure [37], which can be written as
the sum of the scaled identify matrix and two diagonal-times-Toeplitz matrices. Thus the
storage requirement is significantly reduced from O(N2) to O(N). Using the fast Fourier
transform (FFT), the Toeplitz matrix-vector multiplication can be done in O(N logN)
operations [10, 24]. Therefore, the computational cost per iteration keeps O(N logN)
operations when the conjugate gradient normal residual (CGNR) method is applied to
solve the discretized system [38]. Nevertheless, the resulting system in general is ill-
conditioned and hence the iterative method converges slowly. To speed up the convergence
rate, Pang and Sun [26] proposed a multigrid method, which is developed from [8, 34],
to solve the discretized system of the FDE by the Meerschaet-Tadjeran method. With
the damped-Jacobi method as the smoother, the multigrid algorithm can preserve the
computational cost per iteration as O(N logN) operations. Numerical results have shown
that their multigrid method converges very fast. However, from the theoretical point
of view, the linear convergence of their multigrid method, even for the case where both
diffusion coefficients are equal and constant, has not been shown in the literature.

As the resulting discretized systems are Toeplitz-like, we may consider circulant pre-
conditioning techniques for such systems. Circulant preconditioners for Toeplitz matri-
ces have been theoretically and numerically studied with numerous applications for over
twenty years; see [9, 10, 24]. Recently, Lei and Sun [17] applied the preconditioned CGNR
method with a circulant preconditioner, which is extended from the Strang circulant pre-
conditioner [11], to solve the discretized system of the FDE by the Meerschaet-Tadjeran
method. The spectrum of the preconditioned matrix is theoretically proven to be clus-
tered around one providing that both diffusion coefficients are constant, and hence the
superlinear convergence rate is obtained. However, when the diffusion coefficients are not
constant, the spectrum of the preconditioned matrix is no longer clustered around one.
One possible approach is to approximate a Toeplitz matrix by a circulant matrix and
then use diagonal-times-circulant matrix as the preconditioner for the discretized system.
However, the main difficulty of this approach is that the resulting preconditioner is not
circulant, and its inverse cannot be determined efficiently. Indeed, the cost of the inversion
is about the same as that of the inversion of the original discretized matrix.

Recently, Ng and Pan [25] proposed approximate inverse circulant-plus-diagonal pre-
conditioners for solving Toeplitz-plus-diagonal systems. Their idea is to use circulant
matrices to approximate the inverses of Toeplitz matrices and then combine these circu-
lant matrices together. As the resulting preconditioner is already of the inverted form,
only matrix-vector multiplications are required in the preconditioning step. Therefore,
the resulting preconditioner can be efficiently implemented. They also showed that the
spectrum of the preconditioned Toeplitz-plus-diagonal matrix is clustered around one. Nu-
merical examples including the application of image restoration have demonstrated that
their approximate inverse preconditioner is very effective, and the Krylov subspace method
converges very fast when it is applied to solve these preconditioned systems.

The main aim of this paper is to propose and develop approximate inverse precondi-
tioners for the sum of the scaled identity matrix and two diagonal-times-Toeplitz matrices
arising from the discretization of FDEs. The construction of an approximate inverse pre-
conditioner is to approximate the inverses of scaled Toeplitz matrices by circulant matrices,
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and then combine them together row-by-row. We remark that this idea of construction is
similar to that in [25], but two linear systems are different. Because of Toeplitz structure,
both the discretized coefficient matrix and the preconditioner can be implemented very
efficiently by the FFT. The computational cost per iteration is of O(N logN). Theoret-
ically, we show that the spectra of the resulting preconditioned matrices are clustered
around one, and thus Krylov subspace methods with the proposed preconditioner con-
verge very quickly. Numerical examples are given to demonstrate the effectiveness of the
proposed preconditioner and show that its performance is better than the other testing
preconditioners.

The paper is organized as follows. In Section 2, we present the discretized system. In
Section 3, we construct the proposed preconditioner. We also analyze the spectrum of
the preconditioned matrices. In Section 4, numerical examples are given to demonstrate
the performance of the proposed preconditioner. Finally, concluding remarks are given in
Section 5.

2 Discretization of FDEs

Let h = (xR − xL)/(N + 1) and ∆t = Tf/M be the sizes of spatial grid and time step,
respectively, where N and M are positive integers. We define a spatial and temporal
partition xi = xL + ih for i = 0, 1, 2, . . . , N +1 and tm = m∆t for m = 0, 1, 2, . . . ,M , and
denote

u
(m)
i = u(xi, tm), d

(m)
+,i = d+(xi, tm), d

(m)
−,i = d−(xi, tm), and f

(m)
i = f(xi, tm).

The first-order time derivative in (1) can be discretized by a standard first-order time
difference quotient. For the discretization of the fractional spatial derivative, we employ
the following shifted Grünwald approximations

∂αu(xi, tm)

∂+xα
=

1

hα

i+1∑
k=0

g
(α)
k u

(m)
i−k+1 +O(h),

∂αu(xi, tm)

∂−xα
=

1

hα

N−i+2∑
k=0

g
(α)
k u

(m)
i+k−1 +O(h),

which is proposed by Meerschaert and Tadjeran [21, 22]. They proved that the corre-
sponding implicit finite difference scheme

u
(m)
i − u

(m−1)
i

∆t
=

d
(m)
+,i

hα

i+1∑
k=0

g
(α)
k u

(m)
i−k+1 +

d
(m)
−,i

hα

N−i+2∑
k=0

g
(α)
k u

(m)
i+k−1 + f

(m)
i , (3)

i = 1, 2, . . . , N, m = 1, 2, . . . ,M,

is unconditionally stable. By the boundary condition, we have u
(m)
0 = u

(m)
N+1 = 0 for

m = 1, 2, . . . ,M . Denote

u(m) =
[
u
(m)
1 , u

(m)
2 , . . . , u

(m)
N

]ᵀ
∈ RN , f (m) =

[
f
(m)
1 , f

(m)
2 , . . . , f

(m)
N

]ᵀ
∈ RN .
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Then we can rewrite the numerical scheme (3) into the following matrix form

A(m)u(m) = ηu(m−1) + hαf (m), m = 1, 2, . . . ,M, (4)

where the coefficient matrix A(m) is of the form [37]

A(m) = ηI +D(m)T +W (m)T ᵀ, (5)

with η = hα/∆t. Here T ᵀ denotes the transpose of T , I ∈ RN×N is the identity matrix,
D(m) and W (m) are diagonal matrices defined byD(m) = diag

(
d
(m)
+,1 , d

(m)
+,2 , . . . , d

(m)
+,N

)
W (m) = diag

(
d
(m)
−,1 , d

(m)
−,2 , . . . , d

(m)
−,N

)
and T is the Toeplitz matrix

T = −



g
(α)
1 g

(α)
0 0 · · · 0

g
(α)
2

. . .
. . .

. . .
...

g
(α)
3

. . .
. . .

. . . 0
...

. . .
. . .

. . . g
(α)
0

g
(α)
N · · · g

(α)
3 g

(α)
2 g

(α)
1


. (6)

3 The Preconditioning Method

As A(m) is nonsymmetric, we can apply Krylov subspace methods, such as GMRES, to
solve the linear systems (4). In order to improve the performance and reliability of the
Krylov subspace methods, preconditioning is often employed. It is widely recognized that
preconditioning is the most critical ingredient in the development of efficient solvers for
challenging problems in scientific computations [5].

In the following, we consider the preconditioners for the matrix A ∈ RN×N of the
following form

A = ηI +DT +WT ᵀ, (7)

where η > 0, I is the identity matrix, D and W are diagonal matrices with nonnegative
diagonal entries and T is the Toeplitz matrix defined in (6). Here we assume that the
diagonals of D = diag(d1, d2, . . . , dN ) and W = diag(w1, w2, . . . , wN ) are determined by
the nonnegative functions d(x) and w(x) on [xL, xR], respectively; i.e.,

di = d(xi) and wi = w(xi), i = 1, 2, . . . , N.

Define
Ki , ηI + diT + wiT

ᵀ = ηI + d(xi)T + w(xi)T
ᵀ, i = 1, 2, . . . , N. (8)

Clearly, all Ki’s are Toeplitz matrices. According to the fact that

eᵀiA = eᵀiKi,
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our preconditioner is based on the following approximation

eᵀiA
−1 ≈ eᵀiK

−1
i ,

where ei denotes the i-th column of the identity matrix. This means that the i-th row
of the inverse of A is approximated by the i-th row of the inverse of Ki. Therefore, we
propose the following preconditioner B1 whose inverse is defined by

B−1
1 =

N∑
i=1

eie
ᵀ
iK

−1
i . (9)

To construct B−1
1 , we need to compute the inverse of Ki (i = 1, 2, . . . , N), which is

impractical. However, as Ki is a Toeplitz matrix, we can approximate Ki by a circulant
matrix. Let C be the Strang circulant approximation [11] of the Toeplitz matrix T , that
is, the first column of the circulant matrix C is given by

− [g
(α)
1 , g

(α)
2 , · · · , g(α)⌊(N+1)/2⌋, 0, · · · , 0, g

(α)
0 ]ᵀ (10)

We remark that other successful preconditioners can be considered and used; see, for
instance, [24]. Let

Ci = ηI + diC + wiC
ᵀ = ηI + d(xi)C + w(xi)C

ᵀ, i = 1, 2, . . . , N. (11)

Then we obtain the preconditioner B2 with

B−1
2 =

N∑
i=1

eie
ᵀ
iC

−1
i , (12)

which is based on the circulant matrices. It is well known that circulant matrices can be
diagonalized in O(N logN) operations by making use of FFT. Hence the product C−1

i y
for any vector y can be computed by FFT in O(N logN) operations.

By the definition of B2, we know that implementing a preconditioner based on B2

would require O(N) FFT’s per iteration. This is still expensive. In order to reduce the
computational workload, we propose to use the interpolation method to construct the
practical preconditioner; see [25]. We first choose a small number ℓ (ℓ ≪ N) of values
{x̃j}ℓj=1 ⊂ {xi}Ni=1, which covers (most of) the range of values of {xi}Ni=1. The idea is
given as follows. First, let λ be a certain complex number with positive real part, i.e.,
Re(λ) > 0, and define the function

qλ(x) ,
1

η + λd(x) + λ̄w(x)
, x ∈ [xL, xR], (13)

where λ̄ denotes the complex conjugate of λ. Let

pλ(x) = ϕ1(x)qλ(x̃1) + ϕ2(x)qλ(x̃2) + · · ·+ ϕℓ(x)qλ(x̃ℓ) (14)

6



be the piecewise linear interpolation for qλ(x) based on the ℓ points{(
x̃j , qλ(x̃j)

)}ℓ
j=1

⊂
{(

xi, qλ(xi)
)}N

i=1
.

Next, we precompute the eigenvalues of the circulant matrix C by FFT, that is

C = FΛF ∗,

where F is the Fourier matrix and Λj = diag(λ1, λ2, . . . , λN ) is a diagonal matrix whose
diagonals are the eigenvalues of C. Let C̃j , ηI + d(x̃j)C + w(x̃j)C

ᵀ. Then we have

C̃j = F Λ̃jF
∗, j = 1, 2, . . . , ℓ,

where F ∗ is the conjugate transpose of F , and Λ̃j = ηI + d(x̃j)Λ + w(x̃j)Λ
∗.

Finally, we apply interpolation formula (14) to approximate C−1
i :

C−1
i ≈ F

 ℓ∑
j=1

ϕj(xi)Λ̃
−1
j

F ∗ =
ℓ∑

j=1

ϕj(xi)C̃
−1
j , i = 1, 2, . . . , N,

where ϕj(xi) are the interpolation coefficients. Then we can get the practical precondi-
tioner B3 with

B−1
3 =

N∑
i=1

eie
ᵀ
i

 ℓ∑
j=1

ϕj(xi)C̃
−1
j

 (15)

=
N∑
i=1

eie
ᵀ
iF

 ℓ∑
j=1

ϕj(xi)Λ̃
−1
j

F ∗

=

N∑
i=1

ℓ∑
j=1

eie
ᵀ
iF
(
ϕj(xi)Λ̃

−1
j

)
F ∗

=
ℓ∑

j=1

(
N∑
i=1

eie
ᵀ
i ϕj(xi)

)
F Λ̃−1

j F ∗

=

ℓ∑
j=1

ΦjF Λ̃−1
j F ∗,

where Φj = diag (ϕj(x1), ϕj(x2), . . . , ϕj(xN )) are diagonal matrices. Now applying B−1
3

to any vector requires about O(ℓN logN) operations which is acceptable for a moderate
number ℓ.

It is expected that as the number of interpolation points increases, the number of
iterations required for convergence decreases. However, the cost of forming and applying
the preconditioner grows proportionally to the number of interpolation points. Hence,
there is a trade-off to determine the number of interpolation points. In the next section,
we will analyze the spectra of the preconditioned matrices.
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4 Analysis of Preconditioners

One of the important aspect that affect the convergence property of the Krylov subspace
methods is the eigenvalue distribution of the (preconditioned) coefficient matrix. In gen-
eral, a clustered spectrum away from zero often results in faster convergence, especially
for those matrices close to normal [5]. In this section, we consider the spectral properties
of the preconditioned matrix B−1

2 A.
We first introduce the off-diagonal decay property.

Definition 4.1. [32] Let A = [ai,j ]i,j∈I be a matrix, where the index set is I = Z,N, or
{1, 2, . . . , N}. We say A belongs to the class Ls if

|ai,j | ≤
c

(1 + |i− j|)s
for s > 1, (16)

and some constant c > 0.

The following result is due to [15, 32].

Lemma 4.1. Let A = [ai,j ]i,j∈I be a nonsingular matrix, where the index set is I = Z,N,
or {1, 2, . . . , N}. If A ∈ Ls for some s > 1, then A−1 ∈ Ls.

Now we investigate the off-diagonal decay properties of the Toeplitz matrix T defined
by (6). For the entries of T , we have the following result [21, 22, 27, 37].

Lemma 4.2. Let g
(α)
k be defined in (2) with 1 < α < 2. Then the following recursive

relationship holds

g
(α)
k =

(
1− α+ 1

k

)
g
(α)
k−1, k = 1, 2, . . . .

Moreover, we have

g
(α)
0 = 1, g

(α)
1 = −α < 0, 1 > g

(α)
2 > g

(α)
3 > · · · > 0,

and
∞∑
k=0

g
(α)
k = 0,

m∑
k=0

g
(α)
k < 0, 1 ≤ m < ∞.

By Lemma 4.2 and the definition of the matrix T , we conclude that T is a strictly
diagonally dominant M -matrix. In fact, as d+(x, t) ≥ 0 and d−(x, t) ≥ 0, it is easily
to show that the matrix A(m), which is defined by (5), is a strictly diagonally dominant
M -matrix [37] and, hence, all its eigenvalues have positive real parts.

It was shown in [37] that g
(α)
k decreases monotonically to zero as k tends to infinity

with the rate of α+ 1.

Lemma 4.3. [37] Let g
(α)
k be defined by (2) with 1 < α < 2. Then

g
(α)
k =

1

Γ(−α) kα+1

(
1 +O

(
1

k

))
,

where Γ(x) is the Gamma function.
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Therefore, the matrix T has the off-diagonal decay property (16), that is, T ∈ Lα+1.
Thus, the matrices A and Ki also have the off-diagonal decay property, that is, A ∈ Lα+1

and Ki ∈ Lα+1

As 1 < α < 2, by Lemma 4.1, we have the following result.

Lemma 4.4. Let T be defined by (6) with 1 < α < 2. Assume d(x), w(x) ∈ C[xL, xR].
Then T−1, A−1,K−1

i ∈ Lα+1, where A and Ki are defined by (7) and (8), respectively.

That is to say, there exists a constant c0 > 0 such that

|L(i, j)| ≤ c0
(1 + |i− j|)α+1

, (17)

where L can be T,A,Ki, T
−1, A−1 and K−1

i .
Let q > 0 and α > 0. Then we have

∞∑
x=q+1

1

xα+1
=

1

(q + 1)α+1
+

1

(q + 2)α+1
+ · · · ≤ 1

αqα
. (18)

This inequality will be used to estimate the norm of a matrix having the off-diagonal decay
property (16).

In the following, we discuss the spectral properties of the preconditioned matrix B−1
2 A,

or the approximation property of B−1
2 to A−1. As

B−1
2 −A−1 = (B−1

2 −B−1
1 ) + (B−1

1 −A−1),

we will investigate the properties of B−1
2 −B−1

1 and B−1
1 −A−1, respectively.

First, we consider the approximation property of B−1
1 to A−1.

Lemma 4.5. Let A and Kj be defined by (7) and (8), respectively. Assume d(x), w(x) ∈
C1[xL, xR]. Then for a given ε > 0, there exists a constant c1 and an integer N1 such that
for l ≥ N1 we have

∥eᵀi (K
−1
i −A−1)∥1 ≤ c1∆(xi, l) + ε, (19)

where ∆(xi, l) , maxi−l<k<i+l |xk − xi|.

Proof. It follows from the definitions of A and Ki that

∥eᵀi (K
−1
i −A−1)∥1

= ∥eᵀiA
−1(A−Ki)K

−1
i ∥1

= ∥eᵀiA
−1 ((D − diI)T + (W − wiI)T

ᵀ)K−1
i ∥1

≤
∥∥eᵀiA−1(D − diI)

∥∥
1
∥T∥∞∥K−1

i ∥∞ +
∥∥eᵀiA−1(W − wiI)

∥∥
1
∥T ᵀ∥∞∥K−1

i ∥∞. (20)
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As T has the off-diagonal decay property (17), by (18), we have

∥T∥∞ = max
1≤i≤N

N∑
j=1

|T (i, j)| = max
1≤i≤N

|T (i, i)|+
∑
j ̸=i

|T (i, j)|


≤ max

1≤i≤N

(
c0 + 2

∞∑
k=2

c0
kα+1

)

≤ c0 +
2c0
α

=
(2 + α)c0

α
.

Analogously, we can show that

∥K−1
i ∥∞ ≤ (2 + α)c0

α
and ∥A−1∥∞ ≤ (2 + α)c0

α
.

It follows from (18) and Lemma 4.4 that∥∥eᵀiA−1(D − diI)
∥∥
1

=

N∑
j=1

|(dj − di)A
−1(i, j)|

=

i−l∑
j=1

|dj − di| · |A−1(i, j)|+
i+l−1∑

j=i−l+1

|dj − di| · |A−1(i, j)|+
N∑

j=i+l

|dj − di| · |A−1(i, j)|

≤ max
1≤j≤N

|dj − di|
i−l∑
j=1

c0
(1 + i− j)α+1

+ max
i−l<j<i+l

|dj − di|
i+l−1∑

j=i−l+1

|A−1(i, j)|

+ max
1≤j≤N

|dj − di|
N∑

j=i+l

c0
(1 + j − i)α+1

≤ max
1≤j≤N

|dj − di|
i∑

k=l+1

c0
kα+1

+ ∥A−1∥∞ · max
i−l<j<i+l

|dj − di|+ max
1≤j≤N

|dj − di|
i∑

k=l+1

c0
kα+1

≤ 2c0
αlα

max
1≤j≤N

|dj − di|+
(2 + α)c0

α
max

i−l<j<i+l
|dj − di|.

As d(x) ∈ C1[xL, xR], we have

max
1≤j≤N

|dj − di| ≤ 2 max
1≤j≤N

|dj | = 2 max
1≤j≤N

|d(xj)| ≤ 2 max
x∈[xL,xR]

|d(x)|,

and

max
i−l<j<i+l

|dj − di| = max
i−l<j<i+l

|d(xj)− d(xi)|

≤ max
i−l<j<i+l

max
x∈[xL,xR]

|d′(x)| · |xj − xi|

≤ max
x∈[xL,xR]

|d′(x)| ·∆(xi, l).

10



Hence,

∥∥eᵀiA−1(D − diI)
∥∥
1
≤ 4c0

αlα
max

x∈[xL,xR]
|d(x)|+ (2 + α)c0

α
max

x∈[xL,xR]
|d′(x)| ·∆(xi, l).

For any given ε > 0, let Ñ1 be the integer satisfying

Ñα
1 >

1

ε
· 8c0
α

max
x∈[xL,xR]

|d(x)| ·
(
(2 + α)c0

α

)2

.

Then for each integer l ≥ Ñ1 we have

∥∥eᵀiA−1(D − diI)
∥∥
1
∥T∥∞∥K−1

i ∥∞ ≤ 1

2
ε+

(2 + α)c0
α

max
x∈[xL,xR]

|d′(x)| ·∆(xi, l). (21)

Analogously, we can prove that there exists an integer N̂1 such that for l ≥ N̂1 we have

∥∥eᵀiA−1(W − wiI)
∥∥
1
∥T ᵀ∥∞∥K−1

i ∥∞ ≤ 1

2
ε+

(2 + α)c0
α

max
x∈[xL,xR]

|w′(x)| ·∆(xi, l). (22)

Let N1 = max{Ñ1, N̂1} and c1 = (2+α)c0
α

(
maxx∈[xL,xR] |d′(x)|+maxx∈[xL,xR] |w′(x)|

)
.

Combining (20), (21) and (22), we obtain the conclusion.

It follows from the definition of B1 that

∥B−1
1 −A−1∥∞ = max

1≤i≤N
∥eᵀi (B

−1
1 −A−1)∥1 = max

1≤i≤N
∥eᵀi (K

−1
i −A−1)∥1.

Note that the constant c1 and the integer N1 in Lemma 4.5 are independent on i. Hence,
we have the following result.

Lemma 4.6. Let A and B1 be defined by (7) and (9) respectively. Assume d(x), w(x) ∈
C1[xL, xR]. Then for a given ε > 0, there exists a constant c1 and an integer N1 such that
for l ≥ N1 we have

∥B−1
1 −A−1∥∞ ≤ c1 max

1≤i≤N
∆(xi, l) + ε. (23)

We remark that, as xi = xL + ih for i = 0, 1, 2, . . . , N + 1, it holds that

∆(xi, l) = max
i−l<k<i+l

|xk − xi| = (l − 1)h, (24)

which will tend to zero as N tends to infinity.
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4.1 The Preconditioner B−1
2

Next, we consider the approximation of B−1
2 to B−1

1 . By the definitions of B1 and B2, we
have

B−1
2 −B−1

1 =

N∑
i=1

eie
ᵀ
i (C

−1
i −K−1

i )

=
N∑
i=1

eie
ᵀ
iK

−1
i (Ki − Ci)C

−1
i

= di

N∑
i=1

eie
ᵀ
iK

−1
i (T − C)C−1

i + wi

N∑
i=1

eie
ᵀ
iK

−1
i (T − C)ᵀC−1

i .

Now we want to show is that B−1
2 −B−1

1 can be written into a sum of two matrices where
one matrix is of small norm and another is of low rank.

We first prove that ∥C−1
i ∥∞ is bounded by η−1.

Lemma 4.7. Let Ci be defined by (11). Then we have

∥C−1
i ∥∞ < η−1.

Proof. For any given vector y = [y1, y2, . . . , yN ]ᵀ ∈ RN , we define

x = [x1, x2, . . . , xN ]ᵀ , C−1
i y.

Then we have
y = Cix = ηx+ diCx+ wiC

ᵀx.

Let xk be the entry of x such that

|xk| = ∥x∥∞.

Thus, |xi| ≤ |xk|, i = 1, 2, . . . , N . It follows from Lemma 4.2 and (10) that the k-th entry
of y satisfies

|yk| =
∣∣∣ηxk − (di + wi)g

(α)
1 xk + [Cx]k − dig

(α)
1 xk + [Cᵀx]k − wig

(α)
1 xk

∣∣∣
≥
∣∣∣ηxk − (di + wi)g

(α)
1 xk

∣∣∣− ∣∣∣[Cx]k − dig
(α)
1 xk

∣∣∣− ∣∣∣[Cᵀx]k − wig
(α)
1 xk

∣∣∣
≥ η|xk| − (di + wi)g

(α)
1 |xk| − di

N∑
j=1, j ̸=k

g
(α)
j |xk| − wi

N∑
j=1, j ̸=k

g
(α)
j |xk|

= η|xk| − di|xk|
N∑
j=1

g
(α)
j − wi|xk|

N∑
j=1

g
(α)
j

≥ η|xk|.

12



Here [Cx]k denotes the k-th entry of Cx. Therefore,

∥x∥∞ = |xk| ≤
1

η
|yk| ≤

1

η
∥y∥∞,

which holds for any vector y ∈ RN . Hence,

∥C−1
i ∥∞ = max

y∈RN , y ̸=0

∥C−1
i y∥∞
∥y∥∞

=
∥x∥∞
∥y∥∞

≤ 1

η
.

As C is the Strang circulant approximation of T , we have [11]

T − C = ET + ST ,

where ET is of small norm and ST is of low rank. More precisely, for a given ε > 0 we
have ∥ET ∥∞ < ε and ST is of the following form

ST =


0 0 · · · 0 S1

0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
S2 0 · · · 0 0

 ,

where the dimension of S1 and S2 is dependent on ε and the decay property of T , but is
independent on N (the dimension of A). Since K−1

i has the off-diagonal decay property
(17), we can write K−1

i as a banded matrix plus another one with small norm, that is,

K−1
i = K̃i + K̂i where

K̃i =



∗ · · · ∗ 0 · · · 0
...

. . .
. . .

. . .
...

∗ . . .
. . . 0

0
. . .

. . . ∗
...

. . .
. . .

. . .
...

0 · · · 0 ∗ · · · ∗


and K̂i =



0 · · · 0 ∗ · · · ∗
...

. . .
. . .

. . .
...

0
. . .

. . . ∗

∗ . . .
. . . 0

...
. . .

. . .
. . .

...
∗ · · · ∗ 0 · · · 0


.

Here we use “ ∗ ” to denote the nonzero entries and ∥K̂i∥∞ < ε. It follows from (17) and
(18) that the bandwidth of K̃i is the smallest integer larger than ( c0αε)

1/α + 1. We remark

that all matrices K̃i’s have the same bandwidth for i = 1, 2, . . . , N . It is clear that K̃i can
be written into a block triangular form

K̃i =


+ +

+
.. .

. . .
. . .

. . . +
+ +

 ,

13



where “ + ” denotes the nonzero block submatrix whose size is equal to the bandwidth of
K̃i. Therefore,

K−1
i (C − T )C−1

i = K−1
i ETC

−1
i + (K̃i + K̂i)STC

−1
i

= (K−1
i ET + K̂iST )C

−1
i + K̃iSTC

−1
i .

It holds that

∥(K−1
i ET + K̂iST )C

−1
i ∥∞ ≤

(
∥K−1

i ∥∞∥ET ∥∞ + ∥K̂i∥∞∥ST ∥∞
)
∥C−1

i ∥∞

≤ ε
(
∥K−1

i ∥∞ + ∥ST ∥∞
)
∥C−1

i ∥∞,

and hence∥∥∥∥∥
N∑
i=1

eie
ᵀ
i

(
(K−1

i ET + K̂iST )C
−1
i

)∥∥∥∥∥
∞

= max
1≤i≤N

∥∥∥eᵀi (K−1
i ET + K̂iST )C

−1
i

∥∥∥
1

≤ max
1≤i≤N

∥∥∥(K−1
i ET + K̂iST )C

−1
i

∥∥∥
∞

≤ ε · max
1≤i≤N

(
∥K−1

i ∥∞ + ∥ST ∥∞
)
∥C−1

i ∥∞.

Note that both ∥K−1
i ∥∞ and ∥ST ∥∞ are bounded because of the off-diagonal decay prop-

erty of K−1
i and T . It follows from Lemma 4.7 that ∥C−1

i ∥∞ is bounded. Hence, there
exists a constant c2 > 0 such that∥∥∥∥∥

N∑
i=1

eie
ᵀ
i

(
(K−1

i ET + K̂iST )C
−1
i

)∥∥∥∥∥
∞

< c2ε.

Now we look at the matrix product K̃iSTC
−1
i . Without loss of generality, we can

assume that the dimension of the blocks of K̃i and ST have the same size. Otherwise,
we can enlarge the smaller. By direct computations, we can show that K̃iSTC

−1
i has the

following block structure

K̃iSTC
−1
i =



0 0 · · · 0 +
0 0 · · · 0 +
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
+ 0 · · · 0 0
+ 0 · · · 0 0


C−1
i =



+ + · · · + +
+ + · · · + +
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
+ + · · · + +
+ + · · · + +


.

Hence,

rank

(
N∑
i=1

eie
ᵀ
i K̃iSTC

−1
i

)
≤ 4ξ, (25)
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which is bounded. Here ξ denotes the dimension of the blocks in K̃iSTC
−1
i , which is

independent on N (the dimension of A). Therefore,

N∑
i=1

eie
ᵀ
iK

−1
i (T − C)C−1

i =

N∑
i=1

eie
ᵀ
i

(
(K−1

i ET + K̂iST )C
−1
i

)
+

N∑
i=1

eie
ᵀ
i K̂iSTC

−1
i

is a sum of a small norm matrix with a low rank matrix.
Analogously, the similar result holds for

∑N
i=1 eie

ᵀ
iK

−1
i (T − C)ᵀC−1

i . As

B−1
2 −B−1

1 = di

N∑
i=1

eie
ᵀ
iK

−1
i (T − C)C−1

i + wi

N∑
i=1

eie
ᵀ
iK

−1
i (T − C)ᵀC−1

i ,

we have

Lemma 4.8. Let B1 and B2 be defined by (9) and (12) respectively. Then we have

B−1
2 −B−1

1 = EB + SB,

where EB is of small norm and SB is of low rank, that is, ∥EB∥∞ < 2c2ε and rank(SB) ≤
4ξ.

Therefore, we have the following result.

Theorem 4.1. Let A and B2 be defined by (7) and (12), respectively. Then, there exists
an integer N2 such that for N > N2, we have

B−1
2 −A−1 = E + S,

where E is of a small norm and S is of a low rank.

Proof. we have

B−1
2 −A−1 = (B−1

2 −B−1
1 ) + (B−1

1 −A−1)

= EB + (B−1
1 −A−1) + SB

, E + S,

where E = EB + (B−1
1 −A−1) and S = SB. It follows from Lemma 4.6 and (24) that

∥B−1
1 −A−1∥∞ ≤ c1 max

1≤i≤N
∆(xi, N1) + ε = c1(N1 − 1)h+ ε.

Let N2 be an integer large enough such that

(N1 − 1)h = (N1 − 1)
xR − xL
N2 + 1

< ε.

Then
∥E∥∞ ≤ ∥EB∥∞ + ∥B−1

1 −A−1∥∞ < (c1 + 2c2 + 1)ε.

The conclusion follows.
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4.2 The Preconditioner B−1
3

We first establish the difference between B−1
3 −B−1

2 in terms of interpolation polynomial
and interpolation points. We note that

|(B−1
3 −B−1

2 )i,j | =
∥∥eieiᵀ(B−1

3 −B−1
2 )ejej

ᵀ∥∥
2

=

∥∥∥∥∥eieiᵀ
[

N∑
k=1

eke
ᵀ
k

(
ℓ∑

u=1

ϕu(xk)C̃
−1
u

)
−

N∑
k=1

eke
ᵀ
kC

−1
k

]
ejej

ᵀ
∥∥∥∥∥
2

=

∥∥∥∥∥eieiᵀ
[(

ℓ∑
u=1

ϕu(xi)C̃
−1
u

)
− C−1

i

]
ejej

ᵀ
∥∥∥∥∥
2

=

∥∥∥∥∥eieiᵀ
[(

ℓ∑
u=1

F (ϕu(xi)Λ̃
−1
u )F ∗

)
− C−1

i

]
ejej

ᵀ
∥∥∥∥∥
2

= ∥eieiᵀ [FPλ(xi)F
∗ − FQλ(xi)F

∗] ejej
ᵀ∥2

≤ ∥FPλ(xi)F
∗ − FQλ(xi)F

∗∥2
≤ max

k
∥Pλ(xk)−Qλ(xk)∥2,

where (B−1
3 −B−1

2 )i,j donates the (i, j)-th entry of the matrix B−1
3 −B−1

2 , Pλ(xk) =
diag(pλ1(xk), pλ2(xk), · · · , pλN

(xk)) and Qλ(xk) = diag(qλ1(xk), qλ2(xk), · · · , qλN
(xk)) are

the diagonal matrices, and λ1, λ2, · · · , λN are the eigenvalues of C. It follows that

|(B−1
3 −B−1

2 )i,j | ≤ max
1≤k≤N

∥pλ(xk)− qλ(xk)∥2 = max
1≤k≤N

max
1≤u≤N

{|pλu(xk)− gλu(xk)|}.

Theorem 4.2. Suppose ℓ is sufficiently smaller than N . Then B−1
3 , B−1

2 and B−1
3 −B−1

2

can be expressed as X + Y + Z, where X has off-diagonal decay property, Y is of a small
norm matrix and Z is of a low rank matrix.

Proof. Let Cx = ηI + d(x)C +w(x)Cᵀ. In Section 4.1, we have shown that C−1
x −K−1

x is
equal to a sum of a small norm matrix and a low rank matrix, and the low rank matrix
is given in the form of (25). As K−1

x has the off-diagonal decay property (see Lemma
4.4), C−1

x can be written as the sum of three matrices Xx + Yx + Zx, where Xx has the
off-diagonal decay property, Yx is of a small norm matrix and Zx is of a low rank matrix.
The above results can be applied to the points x = xi and x = x̃j used in Section 3. We
note from (15) that

B−1
3 =

ℓ∑
j=1

ΦjC̃
−1
j =

ℓ∑
j=1

ΦjX̃j +

ℓ∑
j=1

Φj Ỹj +

ℓ∑
j=1

ΦjZ̃j .

We know that for linear interpolation scheme, |Φi(x)| is bounded above by 1 for all
i = 1, 2, · · · , ℓ and x ∈ [xL, xR]. Therefore, when ℓ is sufficiently smaller than N ,∑ℓ

j=1ΦjX̃j have off-diagonal decay property, ∥
∑ℓ

j=1Φj Ỹj∥∞ ≤
∑ℓ

j=1 ∥Φj∥∞∥Ỹj∥∞ is

small and
∑ℓ

j=1ΦjZ̃j is a low rank matrix given in the form of (25).
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On the other hand, in Lemma 4.8, we have shown that B−1
2 −B−1

1 is equal to the sum
of a small norm matrix and a matrix of low rank. In Lemma 4.4, we know that B−1

1 has
the off-diagonal property. Also it is clear that B−1

3 −B−1
2 can be expressed as the sum of a

matrix with off-diagonal decay property, a small norm matrix and a low rank matrix.

Theorem 4.3. Let θ = maxx∈[xL,xR]max1≤u≤N{pλu(x)− gλu(x)}. Suppose ℓ is suffi-
ciently smaller than N . Then for each ϵ > 0, there exists an integer N3 > 0 (which is
independent of N) such that B−1

3 −B−1
2 = E + S, where E is a matrix with ∥E∥∞ ≤

θ(2N3 + 1) + ϵ. and S is a low rank matrix.

Proof. According to Theorem 4.2, we know that B−1
3 −B−1

2 = X + Y + Z, where X has
off-diagonal decay property, ∥Y ∥∞ ≤ ϵ

2 and Z is a low rank matrix given in the form of

(25). Now we can be written as B−1
3 −B−1

2 = X̂ + Ŷ + Ẑ with the property that

|(B−1
3 −B−1

2 )i,j | = |X̂i,j |+ |Ŷi,j |+ |Ẑi,j |, (26)

where X̃ has off-diagonal decay property, ∥Ŷ ∥∞ ≤ ϵ
2 and Ẑ is a low rank matrix given in

the form of (25). According to the structure of Z (see the matrix structure in (25)), when
Zi,j ̸= 0, we set X̂i,j = Ŷi,j = 0 and Ẑi,j = (B−1

3 −B−1
2 )i,j ; when Zi,j ̸= 0, we set Ŷi,j = 0

and X̂i,j = Xi,j + Yi,j for Xi,jYi,j < 0 or we set X̂i,j = Xi,j and Ŷi,j = Yi,j for Xi,jYi,j ≥ 0.
It is clear that (26) satisfies.

Next we would like to show that X̂+ Ŷ can be a small norm matrix. W first note that
for X̂, there exists N3 > 0 such that∑

|j−i|>N3

|X̂i,j | ≤
ϵ

2
, i = 1, 2, · · · , N.

It follows that

∥X̂∥∞ = max
i

∥eTi X̂∥1

≤ max
i

∑
j−i≤N3

|X̂i,j |+
ϵ

2

= max
i

∑
j−i≤N3

|(B−1
3 −B−1

2 )i,j | − |Ŷi,j | − |Ẑi,j |+
ϵ

2

≤ max
i

∑
j−i≤N3

|(B−1
3 −B−1

2 )i,j |+
ϵ

2

≤ (2N3 + 1)max
i,j

|(B−1
3 −B−1

2 )i,j |+
ϵ

2

≤ (2N3 + 1)max
k

max
u

{pλu(xk)− qλu(xk)}+
ϵ

2

≤ (2N3 + 1)θ +
ϵ

2
.

Let E = X̂+ Ŷ , we have ∥E∥∞ ≤ ∥X̂∥∞+∥Ŷ ∥∞ ≤ (2N3+1)θ+ ϵ. The result follows.

By combining the results in Theorems 4.1 and 4.3, we conclude that B−1
3 −A−1 can be

written as the sum of a small norm matrix and a low rank matrix. In the next section, we
present numerical examples to demonstrate the usefulness of the proposed preconditioner.
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5 Numerical Examples

In this section, we carry out numerical experiments to study the performance of our new
preconditioner B3. We employ the preconditioned GMRES method to solve the linear
system (4). In all numerical experiments, the stopping criterion is

∥rk∥2
∥r0∥2

< 10−7,

where rk is the residual vector after k iterations and r0 is the initial residual vector.

Example 1. We first consider the FDE (1) tested in [26, 37] where α = 1.8, [xL, xR] =
[0, 2] and Tf = 1. The diffusion coefficients are given by

d+(x) = Γ(1.2)xα, d−(x) = Γ(1.2) (2− x)α,

and the source term is

f(x, t) = −32 e−t

(
x2 +

1

8
(2− x)2(8 + x2)− 5

2
[x3 + (2− x)3] +

25

22
[x4 + (2− x)4]

)
.

The initial condition is chosen as

u(x, 0) = 4x2(2− x)2.

Then the true solution to the corresponding FDE is given by [22, 37, 26]

u(x, t) = 4 e−tx2(2− x)2.

The numerical results are listed in Table 1, where “GMRES” denotes the GMRES
method without preconditioner, “B3(ℓ)-GMRES” denotes the GMRES method with the
preconditioner B3 with ℓ being the number of interpolation points, and “C-GMRES”
denote the GMRES method with the following circulant preconditioner

ηI + d̃C + w̃Cᵀ,

where d̃ and w̃ are the mean values of the diagonals of the diagonal matrices D and W ,
respectively. As for comparisons, we also carry out the Gaussian elimination method,
which is denoted by “GE”.

In Table 1, “N” denotes the number of spatial grid points, “M” denotes the number
of time steps, “Iter” denotes the average number of iterations required to solve (4) at
each time step, and “CPU” denotes the total CPU time in seconds for solving the whole
discretized system.

Since the true solution is available, we also report the error between the true solution
and the approximation under the infinity norm at the last time step. It is denoted by
“Error” in Table 1. As this value is almost same for all GMRES methods, we just list the
error for GE and B3(4)-GMRES.
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Table 1: Numerical results for Example 1.

N M GE GMRES C-GMRES B3(2)-GMRES B3(4)-GMRES

CPU Error Iter CPU Iter CPU Iter CPU Iter CPU Error

27 26 0.13 8.3059e-3 65.98 1.41 8.02 0.12 6.00 0.10 5.00 0.09 8.3059e-3

28 27 0.99 4.0727e-3 115.02 7.54 7.05 0.23 5.00 0.19 4.00 0.17 4.0727e-3

29 28 9.25 2.0159e-3 159.02 31.22 7.00 0.59 4.00 0.39 4.00 0.45 2.0159e-3

210 29 90.26 1.0028e-3 196.55 117.47 6.00 1.44 3.00 0.88 3.00 1.02 1.0027e-3

211 210 1057.99 5.0009e-4 225.01 449.25 5.00 3.93 3.00 2.77 3.00 3.28 5.0008e-4

We see that the preconditioned GMRES methods exhibit excellent performance both
in terms of iteration steps and CPU time, and the iteration number does not increase as
the number of the spatial grid points increases. For this example, ℓ = 2 is good enough,
which means that we only need to choose two interpolation points. The performance of
the proposed preconditioner is better than that of the circulant preconditioner by taking
the average of the coefficient values in the fractional diffusion equations.

Example 2. This example is a modification of Example 1. We replace the right-sided
diffusion coefficient d−(x) with

d−(x) = Γ(1.2) (2− x)(1+α).

Other data are the same as that in Example 1.

The numerical results are listed in Table 2. We can see that the performance is
improved significantly as the number of interpolation points increasing. Again, the perfor-
mance of the proposed preconditioner is better than that of the circulant preconditioner.

Table 2: Numerical results for Example 2.

N M GE GMRES C-GMRES B3(2)-GMRES B3(4)-GMRES B3(6)-GMRES

CPU Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

27 26 0.15 81.59 1.98 115.31 3.80 51.42 1.14 12.58 0.22 8.86 0.17

28 27 0.91 114.16 7.63 176.84 17.49 65.23 3.64 12.54 0.50 8.48 0.37

29 28 9.23 146.46 27.65 239.08 70.08 80.52 12.00 15.30 1.59 9.18 1.05

210 29 88.45 172.40 96.10 295.32 267.78 97.40 42.60 18.77 5.62 10.83 3.59

211 210 1062.40 186.62 335.89 347.31 1195.35 119.48 178.55 21.29 21.05 12.12 13.26

Example 3. This example comes from [26], which is a modification of an example in [37].
In this example, we consider the FDE with an anomalously diffused Gaussian pulse. The
initial condition is given by

u(x, 0) = x2(2− x2) exp

(
−(x− xc)

2

2σ2

)
,
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with the mean xc = 1.2 and the standard deviation σ = 0.08. The diffusion coefficients
are

d+(x) = δ(1 + x2 + t2), d−(x) = δ(1 + (2− x)2 + t2),

which are dependent on x and t. Here, δ is a parameter. We will test the problem for
different values of δ. Other data are as follows:

α = 1.5, [xL, xR] = [0, 2], Tf = 1, f(x, t) = 0.

The numerical results are reported in Table 3. In the table, we also list the iteration
number of the first time step. Here we use the initial condition as the initial guess in the
first time step, and find that it takes more iteration numbers to converge. The performance
of the proposed preconditioner is still better than the circulant preconditioner.

Table 3: Numerical results for Example 3. The number inside the bracket refers to the
number of iterations required at the first time step.

δ N M GE GMRES C-GMRES B3(2)-GMRES B3(4)-GMRES

CPU Iter CPU Iter CPU Iter CPU Iter CPU

1 27 26 0.17 59.66 (78) 1.24 11.42 (14) 0.19 8.45 (12) 0.15 6.08 (7) 0.12

28 27 1.00 79.52 (111) 4.11 10.70 (13) 0.36 7.27 (11) 0.28 5.90 (7) 0.27

29 28 9.65 93.46 (145) 12.84 10.09 (13) 0.87 6.14 (11) 0.61 5.17 (7) 0.62

210 29 90.82 99.79 (183) 37.70 9.24 (12) 2.22 5.59 (10) 1.57 4.95 (6) 1.70

211 210 1072.44 98.26 (219) 112.42 8.21 (11) 6.31 4.85 (8) 4.39 4.68 (6) 5.21

10 27 26 0.13 67.58 (99) 1.45 15.41 (18) 0.23 11.22 (14) 0.19 7.52 (9) 0.14

28 27 1.00 121.16 (173) 8.27 15.48 (18) 0.53 10.31 (14) 0.39 6.61 (9) 0.29

29 28 9.41 210.39 (306) 51.43 15.04 (18) 1.30 9.29 (14) 0.89 6.25 (9) 0.72

210 29 96.25 331.91 (512) 306.73 14.02 (17) 3.36 8.17 (14) 2.18 5.32 (9) 1.80

211 210 1072.33 442.54 (792) 1827.28 12.77 (16) 10.01 6.91 (13) 5.90 5.19 (8) 5.63

100 27 26 0.14 69.70 (105) 1.53 17.72 (20) 0.27 13.05 (16) 0.22 8.75 (11) 0.16

28 27 1.02 127.02 (189) 8.98 18.60 (21) 0.65 12.62 (16) 0.48 8.41 (11) 0.36

29 28 9.36 231.53 (343) 61.27 18.82 (21) 1.67 12.24 (16) 1.16 8.07 (11) 0.89

210 29 94.26 417.55 (625) 472.63 18.61 (21) 4.57 11.62 (16) 3.03 7.63 (11) 2.42

211 210 1072.72 742.34 (1123) 5330.16 17.91 (21) 14.28 10.78 (16) 8.87 7.41 (10) 7.55

In this example, We use the initial condition as the initial guess in the first time
step, and find that it takes more iteration numbers to converge. In Table ??, we list the
iteration number of the first time step. The performance of the proposed preconditioner
is still better than the circulant preconditioner.
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Example 4. We consider the two dimensional fractional diffusion equation

∂u(x, y, t)

∂t
= d+(x, y, t)

∂αu(x, y, t)

∂+xα
+ d−(x, y, t)

∂αu(x, y, t)

∂−xα

+ e+(x, y, t)
∂βu(x, y, t)

∂+yβ
+ e−(x, y, t)

∂βu(x, y, t)

∂−yβ
+ f(x, y, t),

(x, y) ∈ Ω , [xL, xR]× [yL, yR], t ∈ (0, Tf ],

u(x, y, t) = 0 for (x, y) ∈ ∂Ω and 0 ≤ t ≤ Tf ,

u(x, y, 0) = u0(x, y) for (x, y) ∈ Ω.

In the numerical tests, we choose α = β = 1.2, [xL, xR] = [yL, yR] = [0, 2], Tf = 1,
f(x, y, t) = 0 and

d+(x, y, t) = d−(x, y, t) = dx,tdy,t = e4tx4αy4β , e+(x, y, t) = e−(x, y, t) = ex,tey,t = e4t(2−x)4α(2−y)4β .

The initial condition is given by

u(x, y, 0) = x2(2− x)2y2(2− y)2.

Assume the number of spatial discretization points in x-direction and y-direction are
Nx and Ny respectively. The coefficient matrix in this example is given by

A = ηI +


Dx,1

Dx,2

. . .

Dx,Ny

 (I ⊗ Tα) +


Wx,1

Wx,2

. . .

Wx,Ny

 (I ⊗ T ᵀ
α)

+


Dy,1

Dy,2

. . .

Dy,Nx

 (Tβ ⊗ I) +


Wy,1

Wy,2

. . .

Wy,Nx

 (T ᵀ
β ⊗ I),

where Tα and Tβ are the discretization matrices for the fractional orders α and β, respec-
tively (similar to T defined in (6)). The diagonals of diagonal matrices Dx,j , Wx,j , Dy,j

and Wy,j are defined by

(Dx,j)i,i = d+(xi, yj), (Wx,j)i,i = d−(xi, yj), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

(Di,y)j,j = e+(xi, yj), (Wi,y)j,j = e−(xi, yj), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

We consider the sample points to be x̃1, x̃2, · · · , x̃ℓx and ỹ1, ỹ2, · · · , ỹℓy . The corresponding
matrices are

C̃u,v = ηI+d+(x̃u, ỹv)(I⊗Tα)+d−(x̃u, ỹv)(I⊗T ᵀ
α)+e+(x̃u, ỹv)(Tβ⊗I)+e−(x̃u, ỹv)(T

ᵀ
β ⊗I),
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for 1 ≤ i ≤ ℓx and 1 ≤ j ≤ ℓy. Then we obtain the preconditioner

B−1
3 =

Nx∑
i=1

Ny∑
j=1

(ei ⊗ ej)(ei ⊗ ej)
ᵀ

 ℓx∑
u=1

ℓy∑
v=1

ϕu,v(xi, yj)C̃
−1
u,v


=

Nx∑
i=1

Ny∑
j=1

(ei ⊗ ej)(ei ⊗ ej)
ᵀF

 ℓx∑
u=1

ℓy∑
v=1

ϕu,v(xi, yj)Λ̃
−1
u,v

F ∗

=

Nx∑
i=1

Ny∑
j=1

(ei ⊗ ej)(ei ⊗ ej)
ᵀ

ℓx∑
u=1

ℓy∑
v=1

F
(
ϕu,v(xi, yj)Λ̃

−1
u,v

)
F ∗

=

ℓx∑
u=1

ℓy∑
v=1

 Nx∑
i=1

Ny∑
j=1

(ei ⊗ ej)(ei ⊗ ej)
ᵀϕu,v(xi, yj)

F Λ̃−1
u,vF

∗

=

ℓx∑
u=1

ℓy∑
v=1

Φu,vF Λ̃−1
u,vF

∗.

Here F is the the two dimensional discrete Fourier transform matrix of size NxNy, Φu,v =
diag (ϕu,v(x1, y1), ϕu,v(x2, y1), . . . , ϕu,v(xN , yN )) are diagonal matrices. Now applying B−1

3

to any vector requires about O(ℓxℓyNxNy log(NxNy)) operations which is acceptable for
a moderate number ℓx and ℓy.

The results are reported in Table 4, where M denotes the number of time steps. Here
we set ℓ = ℓx = ℓy for the proposed preconditioner. In the experiment, we test ℓ = 2, 3, 4.
As the Gaussian Elimination is more expensive for this example, we do not report its
results. In the table, “−” means that the methods do not converge on at least one of the
time steps within 1000 iterations in the iterative solver. We can see that GMRES(C) does
not work well for this example. But our preconditioners still exhibit excellent performance.

Table 4: Numerical results for Example 4

Nx Ny M GMRES C-GMRES B3(2)-GMRES B3(3)-GMRES B3(4)-GMRES

Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

24 24 24 149.38 1.83 160.88 2.40 138.88 2.52 68.31 1.45 58.19 1.74

25 25 25 284.59 17.16 345.34 28.61 248.91 18.56 89.47 5.83 69.09 5.99

26 26 26 393.42 615.73 − − 330.44 455.23 108.16 70.63 73.17 46.26

27 27 27 442.41 6205.37 − − 374.66 4820.09 115.77 773.45 62.59 384.41

6 Concluding Remarks

In this paper, we have considered discretized linear systems arising from fractional diffusion
equations. The matrix structure of their coefficient martrices is the sum of a scaled
identity matrix and two diagonal-times-Toeplitz matrices. Preconditioning techniques for
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such Toeplitz-like matrices have not been studied and developed. The main contribution
of this paper is to develop approximate inverse preconditioners for these Toeplitz-like
matrices so that Krylov subspace methods for solving these preconditioned systems can
converge very quickly. We have presented numerical examples and have shown that the
proposed preconditioning technique is very effective and efficient.
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