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Precuneus brain response changes 
differently during human–robot 
and human–human dyadic social 
interaction
Nicolas Spatola1* & Thierry Chaminade2*

Human–human interactions (HHI) and human–robot interactions (HRI) are compared to identify 
differences between cognitive processes reflecting bonding in social interactions with natural and 
artificial agents. We capitalize on a unique corpus of neuroimaging data (fMRI) recorded while 
participants freely discussed with another human or a conversational robotic head, in order to study a 
crucial parameter of human social cognition, namely that social interactions are adaptive bidirectional 
processes that evolve over time. We used linear statistics to identify regions of the brain where 
activity changes differently when participants carry out twelve one-minute conversations, alternating 
between a human and a robotic interlocutor. Results show that activity in the posterior cingulate 
cortex, a key region associated with social cognition, increases over time in HHI but not in HRI. 
These results are interpreted as reflecting a process of strengthening social bonding during repeated 
exchanges when the interacting agent is a human, but not a robot.

We, Humans, are intrinsically social beings. Throughout our evolution, social interactions have structured our 
behaviors, our brains and ultimately our  environment1. Thanks to technology, our species continuously diversi-
fies the way people engage with fellow humans, and more recently, with artificial agents such as social robots. In 
addition to providing new forms of social interaction, these artificial agents also offer opportunities to investigate 
human social  cognition2–4. In the past decade, the emergence of paradigms comparing Human-Robots Interac-
tions (HRI) to Human–Human Interactions (HHI)2–6 opened new avenues for studying social interactions and 
to better understand how the human social brain, initially devoted to HHI, adapts to HRI. However, crucial 
questions remain about how we engage in HRI, and in particular how our tendency to attribute mental properties 
to other agents apply to robots. In the present study, capitalizing on a unique fMRI corpus, we investigate how 
the human brain activity is differently affected by repeated interaction with a human and a robot.

To explain human social cognition, the “cognitive systems theory” posits the existence of a “social cognition 
system” and a “physical cognition system”7–10. Numerous neuroimaging studies provide evidence for extended 
different neural networks specialized in each of these  systems9,11. This distinction was theorized decades ago 
by philosopher Daniel Dennett, asserting that we adopt an intentional stance (attributing mental states, such 
as intention, to make sense of an agent’s actions, e.g. she takes her car and drive because she wants to go to the 
restaurant) only when interacting with fellow humans, and a design stance (explaining the agent’s actions through 
functional causation, e.g. a car is propelled by the chemical energy contained in gasoline) when interacting with 
mechanical agents because of a lower level of abstraction in explaining an observed action. Results from social 
cognitive neurosciences latter confirmed that the  activation12 of the social brain was significantly increased when 
interacting with humans compared to robot or computer  agents13, yet it is possible to adopt, to a certain extent, 
an intentional stance toward social  robots14,15.

However, these investigations usually consider the interaction as a stable process from the beginning to the 
end of an experiment. In other words, the stance we would adopt at the onset of an interaction is thought to 
remain stable until its end. This assumption contradicts the way humans naturally engage in interactions with 
others. During an interaction, individuals’ perception of the interactor evolves according to the characteristics of 
the interaction, in particular the representation of the other agent one builds  online16,17. Therefore, the represen-
tation of the interactive agent evolves over time instead of remaining exclusively restricted to either the physical 
or the social cognition system (respectively, a design and an intentional stance). This is likely to be untrue. Here, 
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we posit that processes involved in HHI and HRI could vary differently depending on the past history of the 
interaction at the time of measurement. For instance, one could first adopt automatically a default stance, when 
the human and robot agents are unfamiliar, that would be common to both agents: the intentional stance. As the 
interaction unfolds, the stance would adapt according to the nature of agent, a human or a robot, the individual is 
interacting with, through an iterative process. Importantly, this implies that both interlocutors behave differently, 
meaning that their behavior displays information about their nature, as it the case with the current data. The 
influence of time should be lessened when the nature of the agent is induced by contextual information rather 
than perceivable cues. This hypothesis, of different changes in how the adopted stance adapts during repeated 
human–human interactions (HHI) and human–robot interactions (HRI) is tested here by analyzing a corpus of 
human–human and human–robot natural conversations that includes fMRI brain data as physiological record-
ings reflecting cognitive  processes13.

This corpus allows us to address the effect of repeating similar human–human and human–robot interactions. 
Importantly, these interactions were unconstrained and the behaviors were unique for each participant and each 
trial, hence also between the two agents. We analyzed whether the local brain physiological correlates of these 
interactions evolved differently according to the nature of the interlocutor. We were able to identify differences 
in how physiological activity recorded with fMRI when engaging in a natural social interaction with an natural 
or an anthropomorphic artificial agent evolves in brain regions that are not directly related to the behavior itself, 
an unconstrained bidirectional  conversation18.

In the experiment, participant comfortably lying in an fMRI scanner discussed with a human conspecific and 
a robotic device resembling a human head and face (Fig. 1). They believed the robot to be autonomous, while it 
was in fact controlled at distance by the human agent through a simple remote interface with a limited number 
of utterances to select from by pressing virtual buttons on a touchscreen. They had to discuss images represent-
ing “super-heroes” and “rotten fruits” supposedly designed for an advertisement campaign, during twelve trials 
(≈ 1 min/trial) for each interlocutor. Overall, from beginning to end, the acquisition of the 24 trials used in the 
analyses, 12 for each agent recorded alternatively, lasted around 40 min for each participant. This paradigm of 
online natural discussion comparing human and robot agents is the first of its kind in the sense that control of 
the behavior is limited to the instruction to “freely discuss the images”, while recordings of the behavior are used 
to extract variables for later analysis (see for  example19 for an analysis of different linguistic alignments between 
HHI and HRI and their neurophysiological correlates).

Results
Analytical approach. A linear statistical parametric model (SPM), defining each one-minute interaction 
trial independently, was computed for each participant separately using  SPM1220, allowing to estimate whole-
brain maps of ß-weights corresponding to linear changes of activity for each individual trial. An average of 
estimated ß-weights was extracted, using MarsBar  toolbox21, for each trial and participant, in regions of interest 
covering the whole brain. Two-hundred forty-six regions were taken from a connectivity-based parcellation of 
the  brain22, complemented by an additional mask of the hypothalamus that was developed for a previous study 
of social  interactions13 as it was not available in the original parcellation. Two vectors of 12 mean ß estimates 
were obtained for each participant and each region, corresponding to the 12 HHI and HRI trials. We conducted 
a multivariate linear mixed model analysis of these ß estimates defined by the type of agent (human vs. robot), 
the 12 consecutive trials of interaction (that represent time) and the 247 Regions Of Interest (ROIs). The use of 
a single model including all ROIs was used to control for repeated measures across brain regions, Participants 
were introduced in the model as a random effect (see “Methods” section). The results presented here focus on 
significant interactions between the nature of the agent and the trials in all regions of interest, at the conservative 
threshold of p < 0.001.

Analyses. Interestingly, in the main analysis including both human and robot conditions as independent 
variables, we only found five cortical regions in which the ß estimates significantly evolved differently through 
time for the human and the robot agent. Four of these formed two clusters around the sulcus in the Posterior 
Cingulate Cortex (PCC) bilaterally, as illustrated in Fig. 2. All four regions yielded similar statistical results (dor-
sal PCC, upper bank of the cingulate sulcus and medial wall above: left: B = − 0.14, t(20) =  − 3.30,  CI95% [− 0.23; 
− 0.06]; right: B = − 0.15, t(20) =  − 3.48,  CI95% [− 0.23; − 0.06]; ventral PCC, ventral bank of the cingulate sulcus 
and medial cingulate gyrus: left: B = − 0.16, t(20) =  − 3.82,  CI95% [− 0.24; − 0.08]; right: B = − 0.15, t(20) =  − 3.67, 

Figure 1.  Single frames extracted from the live video feeds projected on a screen visible on a mirror positioned 
in front of the scanned participants’ eyes, with the Human (left) vs Robot (right) male conversant. Informed 
consent from participant for publication was obtained.
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 CI95% [− 0.24; − 0.07]; all ps < 0.001). When considering HHI and HRI separately, an increase of the ß estimates 
over time was only found for the HHI condition in these four areas (Fig. 3; dorsal PCC: left: B = 0.11, t(20) = 4.01, 
 CI95% [0.06; 0.18]; right: B = 0.10, t(20) = 3.45,  CI95% [0.04; 0.16]; ventral PCC: left: B = 0.12, t(20) = 4.09,  CI95% 
[0.06; 0.18]; right: B = 0.11, t(20) = 3.83,  CI95% [0.05; 0.17]; all ps < 0.001), with no significant effect of trial number 
(time) in HRI (dorsal PCC: left: B = − 0.02, t(20) =  − 0.52,  CI95% [− 0.07; 0.04]; right: B = − 0.04, t(20) =  − 1.36, 
 CI95% [− 0.10; 0.02]; ventral PCC: left: B = − 0.04, t(20) =  − 1.30,  CI95% [− 0.10; 0.02]; right: B = − 0.04, t(20) =  
− 1.32,  CI95% [− 0.09; 0.02]; all ps > 0.001). The brain activity increases with time in these posterior medial regions 
of interest bilaterally when interacting with the human. Interestingly, none of these regions were significantly 
affected by the nature of the interacting agent without taking into account the time variable. In other words, 
without considering the effect of time on the BOLD signal, one would have concluded that activity in this core 
area of the social brain didn’t differ between HHI and HRI, as illustrated by the density plots shown on the left 
side of each panels in Fig. 3. We also performed t-tests between HHI and HRI for each ROI and trial number, and 
only a few yielded significant results. This confirms the approach chosen for the statistical analysis: behaviors 
vary trial per trial, it is therefore not expected that the effect of the agent would be significant at the same time 
points across participants; yet the linear approach spanning the whole duration of the experiment and using trial 
number as a proxy for time confirms that it is the repetition of trials that affected brain activity in the precuneus, 
instead of one (or a few subset of) specific trial(s) common to all participants.

A significant interaction between the agent and the trial number was found in a region of interest corre-
sponding to the right fusiform gyrus (B = − 0.14, t(20) =  − 3.64,  CI95% [− 0.22; − 0.07], p < 0.001). The pattern 
was different from regions of the previous cluster, as the activity didn’t significantly changed in HHI (B = − 0.02, 

Figure 2.  Regions of interest in the posterior cingulate cortex (dorsal bank of the sulcus in red, ventral bank 
in green and purple for the right and left hemispheres respectively) where the bold signal is differently affected 
by time depending on the nature of the agent. The right ventral fusiform region can be seen in purple on the 
bottom of the left brain (pointed by an arrow).

Figure 3.  BOLD signal as a function of the type of interactor (human vs robot) and consecutive trials 
(corresponding to time) in the dorsal and ventral Posterior Cingulate Cortex (PCC) bilaterally.
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t(20) = 0.73,  CI95% [− 0.03; 0.07], p = 0.466), but decreased with time in HRI (B = − 0.12, t(20) =  − 4.25,  CI95% 
[− 0.17; − 0.06], p < 0.001).

Discussion
According to the analysis presented here, time, operationalized as trial number in a corpus comprising consecu-
tive trials of natural social interactions, affects the activity differently depending of the nature of the interlocutor, 
a human or a robot, in five brain regions. The right fusiform cortex had the following dynamic: activity signifi-
cantly decreased with time for the robot, while changes were not significant for the human. Given that that the 
fusiform gyrus activity is associated with the visual processing of faces, and that the response to the robot, but 
not to the human, significantly reduced with time, our interpretation is that participants became familiar to the 
novelty of the previously unknown robotic  face23,24.

More directly related to our hypotheses, four other regions formed a cortical cluster in the posterior cin-
gulate cortex (PCC) bilaterally. The left and right regions on the ventral bank of the posterior cingulate sulcus 
correspond to Brodmann area 31, and the dorsal ones, to Brodmann area  2322. Reference to Brodmann areas 
can be relevant because, as they are defined based on their cytoarchitectonic  properties25 they correspond to 
homogeneous areas of neuronal processing. The brain parcellation used here defines homogenous areas on the 
basis of their functional and anatomical connectivity, which is believed to detail further the cytoarchitectonics 
used originally by  Brodmann26. Across primates species including  humans27, areas 23 and 31 of the PCC are 
characterized by an increase of size and of proportion of superficial layers interpreted as "a progressive structural 
differentiation permitting an increasing amount of intracortical information-processing capacities"25. Importantly 
for the current analysis, they have not been associated with speech in any specific way, so that it is unlikely that 
their finding in the current analysis could be explained by the differences in verbal behaviors of the two inter-
locutors. An additional argument discarding such an interpretation is that they were not identified in direct 
contrasts between the two agents (described in Figs. 2 and 3 and in Rauchbauer et al.13), a result conformed by 
the density of estimates on the left of each PCC plot in Fig. 2. Altogether, these arguments favor the interpreta-
tion that the present finding reflects a mechanism associated with dynamical changes associated with repeated 
social interactions instead of lower sensory differences between the human and robot agents.

Involvement of the PCC has been reported in a number of tasks pertaining to social  cognition27, such as self-
reflection27, the sense of agency (attributing executed or imagined actions to  oneself28 or to another  agent29), 
familiarity, of  people30 or places and  objects31), or emotional judgements about  words32 or  faces33. The PCC is sys-
tematically activated in tasks that require self-generated thoughts, including self-referential processing, episodic 
or autobiographical memory, future thinking, mentalizing, spatial navigation, and conceptual  processing34–36. 
One common theme to all these tasks, suggested by the connectivity of the  region37 is to bring together auto-
biographical memory, as it is directly connected to parahippocampal areas involved in episodic  memories38, 
and emotional processing from adjacent cingular areas. It is also close and connected to early visual areas, in 
particular from the ventral stream, a possible explanation of its involvement in mental  imagery29,37. The PCC 
is also the central node of the Default Mode Network (DMN), originally defined by an increased connectivity 
during rest compared to task-oriented  activity39,40. It is now well established that the DMN and the “social brain” 
areas overlap  largely41, one hypothesis being that DMN activity takes place when the brain is free to monitor both 
the environment and inner world without task  constraints27. Altogether, it was proposed that the PCC plays a 
central role in adapting behaviors to changes in the world: it acts as a gateway controlling whether and which 
task-positive network should be engaged as a function of external information on the one hand, and self-episodic 
memory and emotional  processing42 on the other hand.

The current results further the understanding of the involvement of this region by showing its activity is 
evolving during natural social interactions. These changes argue for a dynamic process in HHI with an increase 
of social engagement with the human agent as an iterative process. In contrast, in HRI, this process isn’t signifi-
cantly influenced by time. While it is not possible to ascertain the origin of these different dynamics, the fact 
that ß estimates increase with repeated interactions are significant in the PCC areas for the human only argues in 
favor of an accumulation of social information with time, while the robotic device used in this experiment only 
provides limited social signals. These different dynamics in the PCC could represent the building of familiarity 
or trust and a deepening of the (emotional) engagement in the interaction restricted to the human interlocutor 
despite the relative short period of time involved (12 min with each agent). This result echoes the top-down con-
trol proposed by Daniel Dennett’s intentional stance that postulates that we would rather adopt a design stance 
when facing a  machine12. As such we expect a drop of PCC activity on the long-term in HRI as theorized in the 
initialization, familiarization and stabilization  framework43. In this framework, during the initialization stage 
the novelty  effect44, the lack of knowledge required to develop a specific representation of the  robot45, the will to 
efficiently interact with this new agent)46 and as a consequence, the tendency to reproduce the way we engage 
with humans on  HRI47 would lead to the reliance on a common default stance. This initialization stage would be 
followed by a drop in mentalistic attributions when the initial apparent complexity of the robot is contradicted 
by its limited social abilities: the default, initial, intentional stance is kept for the human, but replaced by the 
mechanical stance for the robot.

The cluster of four PCC areas showed a significant increase of linear estimate associated with the time spent 
interacting with the human; the fact that this region is a major controller of the social brain  network48 suggests 
that social cognitive representations are updated during repeated interactions with a fellow human. In contrast, 
no linear changes with time, increase or decrease, is found when the interacting partner is the robot. This contrast 
between brain dynamics during HHI and HRI interactions in the PCC, suggesting that the robot is not consid-
ered a valid social partner, constitutes an important starting point for further investigations, despite a number 
of limitations. The most obvious limitation concerns the poor social cues depicted by the conversational robot 
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used in this experiment. The limited social cues provided by the facial expressions and the speech, intonations, 
is clearly a limitation of the experiment. While intended initially to increase experimentally the contrast between 
interactions with the human and the robot agent, we acknowledge it obviously limits the generalizability of the 
present results to human–robot interactions in general. It should be noted though that this is true of all studies of 
human–robot interactions, but is unfortunately rarely mentioned as a fundamental factor to interpret the results. 
Meanwhile, we would like to highlight the larger perspectives of this research program. One of them is to find 
objective neurophysiological markers of the social acceptability of an artificial agent during repeated interactions. 
We focused here on the effect of repeated exposure and found that the dynamics of posterior areas of the cingulate 
cortex offer a promising metric of such social history. In parallel, analyses focused on identifying neurophysi-
ological markers of verbal alignment with, empathic response towards, or attribution of intentions to, humanoid 
robots, need to be performed to identify brain markers associated with other dimensions of social bonding.

A final perspective is to identify the respective role of perceptual and contextual cues on the acceptance of 
artificial agents such as humanoid robots as social partners. Some authors posit that reaching a certain threshold 
of social complexity—for instance adding some non-monotonic (evolving through time) social behavior such as 
self-disclosure49, non-verbal behaviors such as eye contact, joint attention and  emotions50 or social  support51,52—
robots could maintain users’ social  engagement52. At first glance the present results argue for a negative answer, 
but they should be considered as very preliminary. Interacting with a human naturally entails strong bidirectional 
and iterative social cognition processes—“strong” is taken in relation to human–robot interactions; of course, 
there are multiple examples in which two individuals won’t cope well and the match will not be that “strong”; 
what is important is the comparison to interactions with humanoid robots. A laugh from the participant can 
trigger a reacting laugh in a human partner, and a joke is likely to be carried over time. But in the present experi-
ment, such behaviors were impossible during human–robot interactions. One should say almost impossible as 
even though the human actually controlling the robot could refer to a previous interaction, the limited number 
of possible utterances available to the robot made spontaneous adapted responses quasi impossible and, in any 
ways, far from reproducing natural social interactions. While technical limitations are a part of the explanation, 
another reason was experimental. The final objective of this research program is to compare these results with 
those obtained with a socially optimized robot, in order to compare the effect of the contextual knowledge(or 
belief) about the autonomous nature of the artificial agent on the brain correlates of the interaction while control-
ling the quality of social cues provided by the robot. Reproducing natural interactions with an artificial device 
is a challenging task that is still ongoing.

In conclusion, the main objective of this research program, that pertains both to understanding the social 
cognitive neuroscientific bases of human social cognition and to anticipating the future of human–robot inter-
actions, is to identify parameters of a social interaction that are influenced, quantitatively or qualitatively, by 
distinct aspects of the interacting agent’s individual characteristics, with a particular focus to distinguish between 
contextual knowledge about the nature of the robot and the social cues the robot conveys through its behavior. As 
mentioned earlier, this issue will be addressed directly by reproducing the same experiment but with a humanoid 
robot with significantly improved social competences. This should allow us to answer the key question: Can an 
artificial agent be considered as a human-like social partner if it acts as a human, or will it forever be considered 
as an artifact given our knowledge of its true nature, towards which it is impossible to adopt an intentional stance 
or express sincere  empathy53?

Materials and methods
The present research has been performed in accordance with the Declaration of Helsinki, and informed consent 
was obtained from each participant.

Procedure. Twenty-five participants came to participate to the experiment, and 24 included in the analyses 
after one participant was excluded for insufficient task compliance (17 women, M age = 26.76 years, SD. = 7.96).

In order for participants to be unaware of the real objectives of the experiment, a cover story was presented to 
justify the experimental task. Participants believed they participated to a neuromarketing experiment investigat-
ing whether they could find the purpose of two upcoming marketing campaigns after observing three images 
for each campaign and discussing about them with the two partners. The experimenter introduced them to 
their two interlocutors for the experiment, a fellow human also participating to the experiment (in reality, an 
experimenter [author TC for men, a master student for women] of the same gender than the participant) and 
a back-projected conversational robotic head (Furhat from  KTH54). The gender, voice and various accessories 
of the artificial agent were adapted to increase the resemblance between the human and the artificial agent. 
After participants were installed in the scanner, they underwent four sessions of approximately eight minutes of 
functional magnetic resonance imaging (fMRI) acquisition during which the BOLD signal (Blood Oxygen-Level 
Dependent) was recorded continuously, each consisting of 6 experimental trials that proceeded as follows: a pic-
ture appeared for 8.3 s, then after a 3 s pause with a white fixation cross on a black background, a live discussion 
of approximately 60 s took place, alternatively with the human and the robot. There were additional periods of 
rest, approximately 5 s, at the beginning and end of each session as well as between individual trials. Both the 
participant and interlocutor could hear each other in real-time, and the participant additionally saw a live video 
feed of the interlocutor, human or robot. In total, each participant took part in twelve one-minute conversations 
with the human and twelve one-minute conversations with the artificial agent. Anatomical images as well as 
images of the inhomogeneities of the magnetic field used in the analysis were recorded while participants were 
in the scanner (details in Rauchbauer et al.13).
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Agent speech. In each trial, the participant was instructed to initiate the discussion. The human speech was 
unconstrained. The robot’s production was controlled by the same confederate who was acting as the human 
interlocutor: it has a set of pre-recorded answers that were selected online by pressing virtual buttons on a touch-
sensitive tablet. Examples of answers, some generic (e.g. “yes”, “no”, “maybe”, “I don’t know”, “Can you repeat the 
question?”) and others specific to an image (“It’s a yellow pear”) or to the campaign (“Maybe it’s a campaign to 
promote local fruit”) are given in Table 1. The robot text-to-speech synthesizer (Amazon Polly, voices Lea and 
Matthieu for French) then produced the selected utterance, with the robot’s own lip-syncing controller. Indi-
vidual tuning of the recorded audio gain was performed to ensure that the volume and understandability of the 
confederates’ voices would be similar across participants.

Given the lack of constraints for the human speech compared to the limited number of different utterances of 
the robot, there were differences in their respective productions (e.g. increased response delay; limited response 
repertoire; limited vocalization). It is important to stress here that in this experiment, these differences are part 
of the experimental question, that is incoming verbal information is representative of the nature of the agent 
being interacted with.

Data preparation. The processing of fMRI data followed standard procedures. The volumes acquired rep-
resent the blood oxygenation level-dependent signal (BOLD) in 2.5   cm3 voxels of the brain (repetition time 
1.205 s). Preprocessing entails a correction of temporal synchronization of the acquired slices, a realignment of 
the volumes on the first one, and a correction of the deformation due to the local distortions of the magnetic 
field. The Artifact Detection Toolbox (https:// www. nitrc. org/ proje cts/ artif act_ detect) was used to ensure that 
speaking by participants during the scanning didn’t yield movement artifacts that would have required exclusion 
of large chunk of data, which wasn’t the case with the standard threshold of 2 mm used. Note though that this is a 
clear limitation of the experiment: speech can’t be fully considered as natural when participants are lying supine 
in an fMRI scanner and required to refrain from moving their upper head (vocalizing mainly relies on the lower 
jaw, tongue and lips movements, themselves not known to lead to intractable artifacts in an fMRI experiment). 
Normalization allowed us to put the brains of all participants in the standard MNI space using the DARTEL 
 procedure55. Several nuisance covariates were computed to eliminate motion artifacts, potential blood pulse and 
respiration artifacts, which were highly relevant in a paradigm involving speech, as well as global grey matter 
signal, white matter activity, and cerebrospinal fluid activity to control global signal fluctuations unrelated to the 
task (TAPAS  toolkit56).

The analysis of fMRI data was first based on the general linear model implemented in  SPM20. Each trial 
was modelled as a single regressor, and the images presented before each discussion were modelled as a single 

Table 1.  Example of pre-recorded sentences pronounced by the robot, grouped according to their function in 
the conversation: presentations, generic answers, descriptions of an image (a pear in the series “rotten fruits”), 
and exchanges on the message of the advertising campaign.

French English

Bonjour Hello

Salut Hi

Je m’appelle Furhat My name is Furhat

Comment ça va ? How’s it going?

Bien Good

Merci Thank you

Oui Yes

Oui c’est possible Yes, it’s possible

Non No

Peut-être Maybe

C’est une poire It’s a pear

C’est une poire jaune It’s a yellow pear

La poire a l’air malade The pear looks sick

Elle paraît faible She seems weak

Elle semble fatigue She looks tired

La poire semble triste The pear looks sad

Elle n’a pas l’air contente She doesn’t look happy

Elle semble malheureuse She seems unhappy

Peut-être que quelqu’un l’a frappé Maybe somebody hit him

Peut-être qu’elle est malade et elle est devenue pourrie Maybe she’s sick and she’s gone rotten

Tu as une idée du message ? Do you have any idea what the message is?

C’est peut-être une campagne pour favoriser les fruits locaux Maybe it’s a campaign to promote local fruit

C’est peut-être pour manger des fruits et légumes avant qu’ils pourrissent Maybe it’s to eat fruits and vegetables before they rot

Ça pourrait être une pub pour des producteurs de fruits It could be an ad for fruit growers

https://www.nitrc.org/projects/artifact_detect
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regressor. These regressors were convolved this the HRF. Each session was also modelled removing the main 
effect of whole brain BOLD signal per session in effect normalizing the signals used for the ß estimates for 
individuals regressors. We used a brain parcellation formed from functional and connectivity brain data, the 
Brainnetome  atlas22, so that regions of interest represented sets of voxels that are homogeneous in terms of 
function. In each of the 246 regions of the atlas as well as in a hypothalamus mask developed in canonical MNI 
 space57 (The hypothalamus is absent from the Brainnetome parcellation) the ß estimates were extracted using 
the MarsBAR  toolbox21 and the set of values for the 24 participants, 12 sessions per agent and 247 regions were 
used for statistical analyses.

Ethics. The project received ethical approval from the Comité de Protection des Personnes (CPP) Sud-Mar-
seille 1 (approval number 2016-A01008-43). Written consent was obtained from all participants.

Informed consent. Informed consent was obtained from all subjects.

Data availability
Transcribed linguistic data can be found on Ortolang (https:// www. ortol ang. fr): https:// hdl. handle. net/ 11403/ 
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