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We investigate the transport of interacting electrons through single-mode quantum wires whose parameters
are periodically modulated on the scale of the electronic Fermi wavelength. The Umklapp scattering and
backscattering of electrons can be described in terms of nonuniform quantum sine-Gordon-like models that
also incorporate the effects of electronic reservoirs~electrodes! adiabatically coupled to the wire. We concen-
trate on weak Umklapp scattering and analyze the precursors of the Mott transition. At half-filling the tem-
perature dependence of the extra resistanceDR5R2p\/e2 of a modulated quantum wire of lengthL changes
from the interaction-dependent ‘‘bulk’’ power-lawDR}T4Kr23 at high temperatures (T@vr /L) to the uni-
versalDR}T2 behavior at low temperatures (T!vr /L). Away from half-filling the ‘‘bulk’’ results are quali-
tatively incorrect even at high temperaturesvr /L!T!T* despite the fact that the electron coherence in the
wire is absent in this regime.@S0163-1829~97!53144-4#

Since its discovery in 1949 the Mott transition~MT! ~Ref.
1! remains the focus of intensive investigations. Much
progress has been achieved in the theory of the MT in one
spatial dimension~see reviews 2–4!. Recent breakthroughs
in technology have opened at least two intriguing opportuni-
ties for experimental observation of the MT in artificially
fabricated and naturally grown one-dimensional~1D! con-
ductors.

First, it became possible to fabricate long and clean quan-
tum wires.5,6 This system has been successfully used for the
detection of non-Fermi-liquid behavior of interacting elec-
trons in one dimension.5,6 It should be technologically pos-
sible to modulate the electrostatic potential along the wire
with the perioda52p/G of the order of the electronic Fermi
wavelength using selective wet etching of the donor layer.
By varying the concentration of electrons with an additional
gate one can study the effects of the electron backscattering
and Umklapp scattering on transport through modulated
quantum wire~MQW!. In an infinite system the electron
backscattering leads to the opening of the gap at the bound-
ary of the Brillouin zone,G52kF . More interestingly, at
half-filling, G54kF , the Mott gap is formed7 due to the
Umklapp scattering which occurs only in the interacting
systems.2–4 By changing the position of the Fermi level with
respect to the gaps one can effectively control electronic
transport.

Second, drastic progress has been recently achieved in the
synthesis of single-wall carbon nanotubes.8 Coherent elec-
tron transport and single-electron effects in this system have
been demonstrated in recent experiments.9 Theoretically,
low-energy properties of ‘‘armchair’’ nanotubes can be de-
scribed by a two-chain Hubbard model at half-filling.10 The
Umklapp scattering causes these~otherwise metallic! nano-
tubes to experience a MT at low temperatures.11,10

Previous research has addressed the effect of Umklapp
scattering on the transport in uniform~and formally infinite!
1D systems.14,11,10

In a realistic experimental layout the system~MQW or
carbon nanotube! is connected to external electric contacts
that can be considered as reservoirs of noninteracting elec-
trons. The presence of the reservoirs makes the systemnon-
uniform. This has important consequences for the transport
through clean12 and dirty13 quantum wires. The investigation
of the effects of Umklapp scattering and backscattering of
electrons on transport through realistic MQW’s forms the
focus of this work.

Umklapp scattering, G.4kF . We consider a single-
channel MQW adiabatically coupled to two perfect noninter-
acting 1D leads that model electronic reservoirs12 ~see inset
of Fig. 1!. At low energiesE!EF the system can be treated
within the bosonization formalism.2,3 To describe the trans-
port it is enough to consider the charge partH5Hr1HU of
the bosonized Hamiltonian, which is decoupled from the spin
part. The charge part contains the standard Tomonaga-
Luttinger term (\51),

Hr5E
2`

` dx

p H vr~x!

Kr~x!
~¹ur!21vr~x!Kr~x!~¹fr!2J ,

~1!

associated with the forward scattering of electrons and the
nonlinear term

HU5E
2`

`

dxU~x!cos4ur ~2!

describing the Umklapp scattering. Hereur and fr are
bosonic fields satisfying the commutation relation
@ur(x),fr(x8)#5( ip/4) sign(x2x8), vr is the velocity of
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charge excitations, andKr is a standard interaction param-
eter of the Tomonaga-Luttinger model (Kr51 for noninter-
acting electrons!. The amplitudeU of the Umklapp scatter-
ing is proportional to the 2kF-Fourier componentV(2kF) of
the electron-electron interaction. In particular, for a weak
periodic potential W(x)5W0cosGx, W0!EF we obtain
U5V(2kF)W0 /8pvFa.

We will assume that the Umklapp scattering as well as the
Coulomb interaction of electrons occur only in the MQW
(uxu,L/2), which is characterized by position-independent
parameters@Kr(x),vr(x),U(x)#5(K,vw ,U) in Eqs.~1! and
~2!. The parameters change stepwise atx56L/2 acquiring
noninteracting values (1,v l ,0) in the leads (uxu.L/2).12 Let
us note that despite the assumption that the wire is coupled to
the leads via adiabatic contacts with sizeR@2p/kF the use
of stepwise approximation is legitimate at low energies,
E!vF /R!EF .

To evaluate the currentI 52e^u̇r&/p through the wire
we consider the Heisenberg equations foru̇r and ḟr. The
equations should be supplemented with the boundary
conditions16

¹^ur6fr&ux→7`5m6 /v l , ~3!

which reflect the fact that the chemical potentialm1 (m2) of
the left ~right! reservoir determines an excess densityr1

(r2) of rightgoing ~leftgoing! electrons in the left~right!
lead, r65m6 /pv (r650 corresponds to half-filling,
G54kF).

In what follows we will concentrate on precursors of the
MT due to weak Umklapp scattering that can be treated per-
turbatively. We decompose the fieldsur andfr into classi-
cal partsucl , fcl (c numbers! and fluctuationsû, f̂. In the
absence of Umklapp scattering (U50) the solution of the
Heisenberg equations satisfying the boundary conditions~3!
has the form

ucl
~0!~x,t !5

q

4
x2

eV

2
t for uxu,

L

2
, ~4!

where eV5m12m2 is the dc voltage applied, and
q52K(m11m2)/vw54kF2G characterizes a deviation of
the electron density from half-filling. The current following
from this solution corresponds to the Landauer formula,
I (0)5(2e2/h)V.

The correctionDI to the currentI (0) due to Umklapp
processes arises to the second order in the scattering ampli-
tudeU. It can be found by expressing the difference of elec-
tronic densities^¹ur(2`)2¹ur(`)& at the ends of the
wire from the Heisenberg equation forḟr and substituting
the result into the boundary condition~3!. After some alge-
bra we obtain,17

DI 522eU2E
2L/2

L/2 dx

p

dx8

p
E

0

`

dtsin@q~x2x8!2Vt#

3ImG~x,x8;t !, ~5!

with V52 eV andG(x,x8;t)5^e4i û(x,t)e24i û(x8,0)&, where
the average is taken over equilibrium fluctuations of the field
û(x,t) described by Eq.~1!. The functionG(x,x8;t) is given
by

G~x,x8;t !5exp$28^ûû22û û81 û8û8&%, ~6!

where û5 û(x,t) and û85 û(x8,0). The correlators~6!
are related to the imaginary part of the retarded Green’s
function Dv

(R)(x,x8) via the fluctuation-dissipation theorem
(kB51),

^ûû8&52E dv

2p
e2 ivtS coth

v

2T
11D ImDv

~R!~x,x8!. ~7!

To evaluate the retarded Green’s functionDv
(R)(x,x8) we

write down the Euclidian Lagrangian corresponding to the
Hamiltonian ~1!, solve the Euler-Lagrange equation for the
Matsubara Green’s functionDv

(M )(x,x8),12 and continue the
latter to real frequencies,Dv

(R)(x,x8)5D2 iv1e
(M ) (x,x8),

e→10. This gives the following expression for the spectral
function:

ImDv
~R!~x,x8!52

pK

4v

~K1
4 2K2

4 !cosp~x2x8!18KK1K2cosp~x1x8!cospL

K1
4 22K1

2 K2
2 cos2pL1K2

4
, ~8!

FIG. 1. The extra resistance of modulated quantum wire at half-
filling ( q50) as a function of temperature.K51,0.75,0.5,0.25 for
the curves from top to bottom at high temperatures. Dash-dotted
lines correspond to the low- and high-temperature asymptotics@see
text below Eq.~9!#. Inset: layout of the system.
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whereK6516K andp5v/vw .
Although the results~5!–~8! are generally valid for non-

linear transport, in this paper we will concentrate on the lin-
ear response regime. The latter can be conveniently de-
scribed in terms of the extra resistanceDR52(h/
2e2)2limV→0DI /V of the quantum wire due to the Umklapp
scattering.

In order to elucidate the physics of the problem we start
from the ‘‘noninteracting’’ case,K51, where analytical re-
sults can readily be obtained~we imply that there is still a
short-range component of the Coulomb interaction,U
}V(2kF)Þ0). The extra resistance of MQW is given by

DR5R0E
0

l

dj~ l 2j!cos~ q̃j!
jcothj21

sinh2j
, ~9!

where R05(2pU2vw
2 /vc

4)h/2e2 is the scale of resistance,
l 52pTL/vw is the dimensionless temperature,
q̃5qvw/2pT parametrizes the deviation from half-filling,
and vc;EF is the high-frequency cutoff in the integration
~7!.

We start from the case of half-filling (q50). At low tem-
peraturesT!vw /L we obtain DR5(2p2R0/3)L2T2/vw

2 .
The quadratic dependence on the lengthL signals that the
amplitudes of the Umklapp scattering sum up coherently
along the MQW. At high temperaturesT@vw /L the coher-
ence is lost and the extra resistance is proportional to the
length of the wire,DR5pR0LT/vw . Note that the tempera-
ture dependence of the extra resistance changes from qua-
dratic to linear with increasing temperature.

Away from half-filling (qÞ0) the system displays three
different regimes depending on the temperature~see Fig. 2!.

At low temperaturesT!vw /L the interference effects show
up in the oscillatory dependence of the resistance on the
mismatch parameterq,

DR5
4p2R0T2

3vw
2 q2

~12cosqL!. ~10!

In the intermediate temperature rangevw /L!T!T* ~the pa-
rameterT* will be determined below! the oscillations disap-
pear and the extra resistance is given by Eq.~10! with
cosqL50. It might be surprising that the extra resistance
does not depend on the length of the wire in the regime when
the electron coherence in the wire is destroyed by thermal
fluctuations.

At even higher temperaturesT@T* the extra resistance
shows thermally activated behavior,

DR5
pR0LDq

2

2vwT

1

cosh~Dq /T!21
, ~11!

with Dq5vwq/2, in agreement with the result for the con-
ductance of an infinite system.14 By comparing Eq.~11! with
the result for intermediate temperatures we obtain
T* 52Dq / ln@Dq /(vw /L)#. Therefore, the ‘‘bulk’’ result~11!
becomes valid only at surprisingly high temperatures.

Now we turn to the interacting case (KÞ1). The tempera-
ture dependence of the resistance is determined by the be-
havior of the correlatorG(x,x8;t), Eq. ~6! @or D (R)(x,x8;t),
Eq. ~8!# at the time scale;1/T. At low temperatures
T!vw /L this time scale corresponds to low frequencies
v!vw /L at which the spectral function~8! is determined by
noninteracting electrons in the leads, ImDv

(R)(x,x8)
52p/4v. For this reason, the extra resistance is propor-
tional to T2 as in the noninteracting case; see Figs. 1 and 2.

At high temperaturesT@vw /L the behavior of the cor-
relator G(x,x8;t) @Eq. ~6!# on the time scale 1/T can be
evaluated by averaging the spectral function~8! over fast
oscillations with frequencies;vw /L. The averaged spectral
function has a simple form,

ImD̄v
~R!~x,x8!52

pK

4v
cos@v~x2x8!/vw#. ~12!

By substituting the approximation~12! into Eqs.~5!–~7!
we obtain the power-law behavior of the extra resistance at
high temperaturesT@vw /L and half-filling (q50),

DR5
aU2vwL

e2vc
4K

T4K23, ~13!

wherea is a nonuniversal numerical factor~Fig. 1!.
The high-temperature result~13! agrees with the lowest-

order perturbative calculation of the dc conductivity of an
infinite system.14 On the other hand, it is well known that in
an infinite system at half-filling the Mott gapDM is formed
for an arbitrarily small amplitudeU of Umklapp scattering
provided that the Coulomb interaction is repulsive.2 At low
temperaturesT;DM the perturbative result14 breaks down
and the resistance starts to increase exponentially. Our re-
sults are valid at arbitrarily low temperatures for sufficiently
short wires,vw /L@DM .

FIG. 2. The same as Fig. 1, but away from half-filling. Different
curves in each family correspond toqL/p530 . . . 31.
K51,0.5,0.25,0.1 for the curves from top to bottom at high tem-
peratures. Dash-dotted lines correspond to asymptotics at interme-
diate and high temperatures@see Eqs.~10! and ~11! and the text in
between#.
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Note that unlike the case of the Luttinger liquid
with impurities13,15 the high-temperature behavior of the
extra resistance~13! gives no direct indication of the true
low-temperature properties of the system@the extra resis-
tance ~13! decreases with decreasing temperature for
Kr.3/4, despite the formation of the gap#. On the other
hand, the fact that the extra resistance~13! for a repulsively
interacting system (Kr,1) decreases somewhat slower than
in the noninteracting case or even increases with decreasing
temperature can be interpreted as a precursor of the Mott
transition.

The temperature dependence of the extra resistance away
from half-filling (qÞ0) is presented in Fig. 2. At high tem-
peratures T@max(Dq ,vw /L) this dependence obeys the
power law~13!. Note that also at intermediate temperatures
vw /L!T!Dq the DR(T) dependence is clearly affected by
the interaction. In particular, for strong enough interaction
the resistance shows ananomalous enhancementwith de-
creasing temperature~see curve forK50.1 in Fig. 2!. This
enhancement is a reminiscence of the corresponding effect at
high temperaturesT@Dq . The variations of the extra resis-
tance as a function of the mismatch parameterq disappear at
higher temperatures for stronger Coulomb interaction. This
can be interpreted as an enhancement of quantum interfer-
ence effects in the interacting system.

Electron backscattering, G.2kF . Apart from the Um-
klapp scattering~2!, the backscattering of electrons is de-
scribed by the Hamiltonian

Hb5E
2`

`

dxU~x!cos2urcos2us , ~14!

which couples the charge (r) and spin (s) degrees of
freedom.18 The backscattering current is given by the for-
mula analogous to Eq.~5! with

G~x,x8;t !5exp$22S j 5r,s^û j û j22û j û j81 û j8û j8&%, ~15!

q52kF2G, andV5eV. At filling one (G52kF) and low
temperaturesT!vw /L the extra resistance shows no depen-
dence on temperature and on the interaction strengths. At
high temperaturesT@vw /L we obtainDR}TKr1Ks23, Ks

being the interaction parameter in the spin channel.
In conclusion, we have analyzed the precursors of the

Mott transition observable in transport through modulated
quantum wires connected to electronic reservoirs. Known re-
sults for an infinite~‘‘bulk’’ ! system are valid only at rather
high temperaturesT@max(vw /L,T* ). In particular, at half-
filling the ‘‘bulk’’ power-law dependence of the extra resis-
tance, DR}T4K23 at high temperaturesT@vw /L crosses
over to the universal low-temperature (T!vw /L) behavior,
DR}T2, which does not depend on the interaction in the
wire. Surprisingly, away from half-filling the ‘‘bulk’’ results
fail to be valid at the intermediate-temperature range
vw /L!T!T* despite the electron coherence in the wire is
lost in this regime. An anomalous enhancement of the Um-
klapp scattering with decreasing temperature for strongly in-
teracting system in this regime should be contrasted to its
exponential suppression expected from the ‘‘bulk’’ theory.
Our results are expected to be relevant also for armchair
carbon nanotubes albeit the presence of the two energy bands
in this system should be carefully taken into account.
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