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Signaling individuals must effectively capture and hold the atten-
tion of intended conspecific receivers while limiting eavesdropping
by potential predators. A possible mechanism for achieving this
balance is for individuals to modulate the physical properties of
their signals or to alter the proportion of time spent signaling, de-
pending upon local levels of predation pressure. We test the hypo-
thesis that prey can alter their visual signaling behavior to decrease
conspicuousness and potentially limit predation risk via modula-
tion of signal properties or display rate. To do so, we conducted
a manipulative experiment in nature to evaluate the possible effect
of predation pressure on the physical properties of movement-
based signals and on the proportion of time spent signaling by
using a well-understood predator–prey system in the Bahamas,
the semiarboreal lizard Anolis sagrei, and one of its main preda-
tors, the curly-tailed lizard Leiocephalus carinatus. We find that on
islands onto which the predator was introduced, male anoles re-
duce the maximum amplitude of head-bob displays but not the
proportion of time spent signaling, in comparison with control islands
lacking the predator. This reduction of amplitude also decreases
signal active space, which might alter the reproductive success of
signaling individuals. We suggest that future studies of predator–
prey interactions consider the risk effects generated by changes in
signals or signaling behavior to fully determine the influence of
predation pressure on the dynamics of prey populations.

communication | signal modulation

The process of communication is central to many aspects of
social interaction, from attracting mates to establishing ter-

ritories. The major prerequisite for communication is that an
individual or its signal must effectively capture and hold the at-
tention of intended receivers (1, 2). However, communication
rarely occurs in a context free from the risk of predation, and
thus the presence of predators is an important selective pressure
on the physical designs of signals and the behaviors associated
with their display (e.g., refs. 3–9). In fact, predation pressure
typically results in signals with reduced conspicuousness (i.e., the
likelihood of being seen by a predator) at one or both of two
timescales: (i) across generations (i.e., via evolutionary mecha-
nisms) or (ii) within the lifetime of an individual (i.e., via be-
havioral mechanisms). The evolution of less conspicuous signal
properties in response to predation pressure has been demon-
strated across signaling modalities, including acoustic, electrical,
visual, and ultrasonic signals (e.g., refs. 9, 10). Predation pressure
also shapes the evolution of the behaviors associated with the
production of signals, often resulting in a shift in the amount of
time spent signaling throughout the day or in the use of less
vulnerable display sites (11–16).
Behavioral changes favoring a reduction in the likelihood of

communication-associated predation typically precede evolu-
tionary changes (12). This process most likely is driven by the
plasticity of behavioral traits, which may change within the life-
time of an individual. Therefore, elucidating the behavioral mech-
anisms by which organisms can decrease the conspicuousness of
their signals in response to predation has become a major area of
inquiry in behavioral and evolutionary ecology (5, 11, 13).

An individual can behaviorally limit the conspicuousness of its
signal to a predator via two non-mutually exclusive strategies.
Commonly, individuals modulate the amount of time they spend
displaying throughout the day. This response decreases the amount
of time an individual is vulnerable to detection by a predator or
narrows a signaler’s temporal window of vulnerability (e.g., refs. 17–
19). An alternative response is for an individual to modify the
physical properties of its signal’s design to decrease the ability of
a predator to detect or localize the signaler (e.g., ref. 20). These
changes often diminish the active space of a signal, which is defined
as the maximum distance at which the signal can capture the at-
tention of a receiver. A smaller active space limits the probability of
predation by shrinking the area over which a signal can be detected
by a predator (i.e., narrowing the spatial window of vulnerability).
Visual signals frequently are used to study the effects of pre-

dation pressure on communication (e.g., refs. 21–23). Visual
signals typically consist of both color and motion components,
with motion often cited as the most salient feature of the display
(24–26). Nevertheless, most studies evaluating the effects of
predation pressure on the conspicuousness of visual signals have
focused on coloration and, in most cases, on changes on an evo-
lutionary timescale (e.g., 27–29). Here, we evaluate the hypothesis
that the movement-based visual signaling behavior of a prey
species may change via behavioral mechanisms (e.g., modulation
of signal properties or proportion of time spent signaling) to
decrease conspicuousness and potentially limit predation risk.
We evaluate the effect of predation pressure on the physical

properties of movement-based signals and on the proportion of
time spent signaling by using a well-understood predator–prey
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system: the small semiarboreal lizard Anolis sagrei and one of its
main predators, the much larger, mostly terrestrial curly-tailed
lizard Leiocephalus carinatus (see ref. 30, for photographs of this
predator–prey interaction). Previous experiments showed that
curly-tailed lizards may be a major selective force on A. sagrei, and
their presence, even at low density, may greatly affect the de-
mography and structural niche of A. sagrei (31–34). In response to
the presence of curly-tailed lizards, male A. sagrei rarely use the
ground, moving higher up in the vegetation to perches that usually
are narrower and less exposed than those used by males where
curly-tails are absent (32, 33). Furthermore, this shift in habitat
use may occur in a short period, and the magnitude of the re-
sponse seems to be proportional to changes in the activity of curly-
tailed lizards (34). Finally, the perceived threat of predation is
sufficiently strong that under natural conditions, if presented with
a single curly-tailed lizard, individuals of A. sagrei will flee imme-
diately at the mere sight of the predator (32).
In anoles, including A. sagrei, social interactions are mediated

by visual displays, which combine abrupt movements of the head
(head bobs) with expansion and retraction of a colorful throat
fan, termed a “dewlap” (35–37). These signals are given spon-
taneously by males to advertise their presence as they patrol their
territories, as well as being directed toward other individuals
during courtship and the settlement of territorial disputes (38–
40). Theoretical predictions, supported by empirical data, have
shown that the physical properties of head-bob displays in A. sagrei,
particularly the square wave-like temporal pattern generated by
rapid changes in head position, are highly conspicuous to visually
oriented receivers, even when those receivers are inattentive (41,
42). The amplitude of these movements determines the maxi-
mum distance from which the sensory system of a conspecific is
stimulated effectively by the signal—what is termed the “active
space.” For a territorial species such as A. sagrei, the active space
may affect an individual’s ability to repel rivals and attract mates
from a distance (40, 43). Thus, in the context of social interac-
tions, selection should favor signals that maximize active space.
However, curly-tailed lizards, like anoles, are visually oriented,
communicate using head-bob displays that move along a vertical
axis, and must detect prey that move in rapid bursts, suggesting
that the visual systems of curly-tailed lizards also are likely to be
sensitive to sudden linear movements (44–46) (also, see ref. 42 for
a discussion of visual motion detection). As a result, male Anolis
lizards in the presence of curly-tailed lizards may face contrasting
selection pressures, because displays that maximize the conspecific
active space (i.e., displays with high-amplitude head movements)
should be beneficial with regard to intraspecific interactions but
detrimental with regard to predator–prey interactions.
In this study, we used a replicated experimental design con-

ducted under natural conditions to address the effects of the
presence of L. carinatus on the signals (head-bob displays) of
A. sagrei. We predict that the amplitude of spontaneous head
bobs, and thus conspicuousness, should be lower for populations
in which L. carinatus is present. Furthermore, we also expect to
find a difference in the proportion of time spent signaling be-
tween populations, with a decreased proportion of time allocated
to signaling in populations exposed to L. carinatus. Finally, we
evaluate whether changes in signal properties might affect the
efficacy of head bobs during social interactions by using an em-
pirically derived motion detection model for A. sagrei to test for
differences in the conspecific active space of signals.

Materials and Methods
Study Site and Experimental Design. We examined lizard populations on nine
small islands (mean vegetated area, 280 ± 64 m2) in the Snake Creek region of
Great Abaco Island, Bahamas. These islands are characterized by a rocky sub-
strate and dominated by relatively sparse shrubbery typically less than 2 m in
height (see ref. 31 for a general description of the vegetation on similar islands
from this area). The islands used for this study are a subset of those used for

a larger experiment started in May 2008, which evaluates the impact of a top
predator, L. carinatus, across multiple levels of the food web. In the latter ex-
periment, 14 islands sustaining natural populations of A. sagrei were selected
and divided into seven pairs matched by area, vegetation profile, and A. sagrei
population size. For each pair, one island was randomly selected to introduce L.
carinatus (experimental islands) and the other was left alone (control islands). L.
carinatus occurs on nearby larger islands and is known to colonize the smaller
islands (31). Only adult L. carinatus were used as colonizers, and the number
relocated to each island was proportional to the population size of A. sagrei.
For this study, we sampled five experimental and four control islands chosen
because of their accessibility (the remote location of some islands made them
impractical for the intense monitoring of this project).

Data Collection. Focal observations were conducted from May 18 to June 11,
2011, to characterize general aspects of the behavior of male A. sagrei.
Observations were conducted from 0700 to 1900 hours on 240 males, for
a total of 77.1 h of observations. We visited each of the nine islands a min-
imum of seven times (range, 7–11 visits), walking systematically through
each island until a lizard was located. The individual then was filmed with
a portable mini-DV camcorder (Canon ZR-960) for ∼20 min or until it moved
out of sight (x = 19:3 min; range, 5.1–22.7). Videos were analyzed later in the
laboratory to extract relevant data. We calculated the mean perch height
for each individual as the mean of all perches used during the observation
period. These values were estimated during filming and then confirmed or
amended when necessary using a tape measure immediately following the
observation. Changes in perch height occurred when a lizard moved to
a new perch (i.e., branch or trunk) or moved along the same perch a distance
that exceeded the body length of the lizard. Proportion of time spent sig-
naling was calculated as the proportion of time an individual gave head-bob
displays and/or dewlap flashes during the observation period.

To evaluate whether the presence of curly-tailed lizards had an impact on
the physical properties of the head-bob displays of A. sagrei, we filmed
spontaneous broadcast displays (i.e., nondirected displays given to advertise
the presence of the signaler) of 39 adult male A. sagrei using a Canon GL2
mini-DV camcorder. Each individual was filmed only once, and we avoided
resampling individuals by identifying each lizard with a unique mark that was
applied before the study. We visited eight of the nine islands on at least four
separate occasions, for a minimum of eight total hours per island (see Table S1
for detailed sampling efforts). We visited one island only twice, for 5.5 total
hours, because we successfully filmed all known adult males during those trips.
Spontaneous displays were recorded during the same period of dates and
times of day as described above for the behavioral data. Before filming, we
secured the camcorder to a tripod ∼4 m from and approximately at the same
height as the focal anole. For each individual, we recorded the perch height
and perch diameter of the display site. Following each display, we placed
a ping pong ball of known size at the site of the display to serve as a standard
that could be used later to convert all movement distances to real units.

Video Analysis. We imported all video footage into the video editing appli-
cation iMovie, inwhichwe trimmedand converted clips of each visual display to
a format appropriate for the motion analysis software VideoPoint 2.5, which
allows users to superimpose a Cartesian coordinate system onto a sequence of
video frames. First, we plotted the position of the snout of the lizard (i.e.,
a landmark) on every frame (30 frames per second). We then measured the
pixel length of the standard (i.e., the ping pong ball) and converted the units
of a Cartesian coordinate system overlaid onto all frames of the video clip
from pixels to real units (millimeters). Next, we rotated the coordinate system
such that the vertical (y) axis was aligned with the apparent axis of maximal
head motion (i.e., maximum amplitude). Because this alignment is achieved
“by eye,” an underestimate of maximum head amplitude might occur. To
reduce the likelihood of this error, we also rotated the coordinate system 5° to
the right and 5° to the left of our original alignment and then compared the
maximum head amplitudes given by all three alignments (rotation typically
resulted in a shift in calculated amplitude of less than 0.5 mm). We used data
obtained from the alignment that yielded the largest maximum head ampli-
tude. We also counted the number of individual head bobs (i.e., a movement
of the head up and then back down) in each display.

Predicting the Conspecific Signaling Active Space. Both the visual system and
motion perception of anoles in general and A. sagrei in particular are well
characterized. Behavioral experiments show that movements in a particular
range of visual angles (0.2–0.8°) are more likely to capture the attention of
anoles, includingA. sagrei, than movements below or above that range; in other
words, movements between 0.2° and 0.8° appear to maximally stimulate the
motion detectors of receivers (25, 40, 42). The visual angle (θ) of a movement
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is the angle at which that movement subtends the eye of a viewer and is
given by

θ = 2arctanðS=2DÞ, [1]

where S is the amplitude of the movement and D is the distance between
the moving object and the eye of the viewer (47).

Using Eq. 1, we calculated the distance (Do) at which the head movement
of greatest amplitude for each display has a visual angle of 0.2°. At a dis-
tance beyond Do, the head movement generates a suboptimal response by
the motion detectors of an anoline viewer of the display. Therefore, Do

provides an estimate of the maximum distance for which the sensory system
of an inattentive anoline receiver will be stimulated optimally by the head
movement of a signaler and may be considered a metric for the conspecific
active space of a signal (25, 40, 42, 48). This conspecific active space is the
maximum straight-line distance from which another anole is predicted to
detect a display.

Statistical Analysis. We calculated the mean value for each island for each of
the following variables: mean perch height, proportion of time spent signaling,
maximum amplitude of head-bob displays, and number of head bobs per
display. Data for proportion of time spent signaling was arcsine square-root
transformed. After confirming that all four variables were distributed normally
by using the Shapiro–Wilk normality test, we compared control and experi-
mental treatments using one-tailed, unequal variance t tests (Welch’s two-
sample t tests). We used two-tailed Pearson correlations to test for associations
between the maximum amplitude of head-bob displays and both perch height
and diameter within each of the treatments. All tests were performed using R
statistical programming language V 2.15.0 (49) at α = 0.05.

Ethical Note. All aspects of this study were approved by the Institutional
Animal Care and Use Committee of Duke University.

Results
Male A. sagrei perched over twice as high above the ground on
islands where L. carinatus was present ðx= 76:9± 10:6  cmÞ than
on control islands (x= 33:8± 4:2  cm; t = −3.76, P = 0.01, n = 9;
Fig. 1). However, males from the control and experimental treat-
ments did not differ significantly in the proportion of time spent
signaling (control: x= 0:040± 0:007; experimental: x= 0:027± 0:004,
t = 1.74, P = 0.07, n = 9; Fig. 2A) or in the number of head bobs per
display (control: x= 6:4± 0:8 bobs/display; experimental: x= 6:3± 0:3
bobs/display, t = 0.01, P = 0.46, n = 9; Fig. 2B).

The mean maximum amplitude of head bobs from experi-
mental islands was 7.2 mm smaller than that of control islands
(experimental: x= 12:9± 2:2 mm; control: x= 20:1± 0:5 mm; t =
3.18, P = 0.01, n = 9; Fig. 3A). Under the relatively simple as-
sumption that the vegetation is not obstructing the receiver’s
view of the signaling lizard, this difference in amplitude corre-
sponds to a difference in active space (i.e., the maximum range
of a signal) of more than 2 m between treatments (x= 3:7± 0:6 m
vs. x= 5:8± 0:1 m; Fig. 3B).
To examine the possibility that differences in amplitude were

influenced by differences in the perch height or diameter se-
lected by the signaling individuals, we tested for a correlation
between both perch height and perch diameter and maximum
head amplitude. Perch height was not correlated with the max-
imum amplitude of head-bob displays in either treatment (con-
trol: r = 0.02, P = 0.94, n = 20; experimental: r = −0.04, P = 0.87,
n = 19). Similarly, perch diameter was not correlated with display
amplitude in either treatment (control: r = −0.08, P = 0.73, n =
20; experimental: r = −0.17, P = 0.49, n = 19).

Discussion
Animals change the physical parameters of their signals (i.e.,
“signal modulation”) in response to changes in environmental
conditions, social interactions, or the presence of predators (50–56).
Surprisingly, modulation of the physical properties of movement-
based visual signals, which often are considered the most salient
components of visual displays, has not been documented as
a response to predation threat, despite evidence for predation-
associated modulation of signals in other sensory modalities (e.g.,
refs. 26, 57, 58). For example, it was shown that Gallus gallus
reduces the auditory frequency of its call, and potentially its
vulnerability to localization by predators, in response to the
presence of a potential predator (20).
Previous studies documented that male anoles modulate the

physical properties of their head bobs to increase visibility to
conspecifics under varying social and environmental conditions
(e.g., refs. 59–62). However, in this study, modulation of head-
bob amplitude may serve to decrease visibility to predators.
Moreover, we confirm previous reports that anoles respond to
predators by altering their habitat use in demonstrating that the
mean perch height of male A. sagrei during focal observations
was more than twice as great in the presence of curly-tailed liz-
ards than in their absence (Fig. 1). These findings are congruent
with previous studies that indicate that A. sagrei individuals
perceive the presence of L. carinatus as an increase in predation
risk (32–34).
Our results demonstrate that anoles do, indeed, modulate mo-

tion signals in response to predation pressure, probably to de-
crease signal conspicuousness to curly-tailed lizards. We found
that male A. sagrei on islands with predators produced head bobs
with much-reduced maximum amplitudes (up to 60%) in com-
parison with males on control islands (Fig. 3A). This result is
notable not only because it indicates that motion-signal modu-
lation occurs in response to predators, but also because it sug-
gests that modulation is not limited to courtship or alarm calls.
The displays given by A. sagrei may be categorized as spontaneous
broadcast signals, which often are used to advertise presence or
territory ownership. Also, although it has been shown that anoles
may give directed head-bob displays to approaching predators as
pursuit deterrent signals (63, 64), we never witnessed an in-
dividual of L. carinatus in the vicinity of the anoles while they
displayed in this study. Thus, in our case, it is highly unlikely that
the observed changes in the amplitude of the head bobs resulted
from prey–predator communication or interspecific territoriality.
An important aspect of the anole–Leiocephalus predator–prey

interaction is that curly-tailed lizards, like anoles, are visually
oriented animals (45, 46, 65). Although the properties of motion
detection in Leiocephalus have not been measured explicitly,
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increasing the distance between a moving object and the eye of
a receiver reduces the apparent size of the movement until at
some point, it no longer is detectable (66). Consequently, a rea-
sonable expectation is that reduction in the amplitude of A. sagrei
head bobs would have the effect of making those displays less
conspicuous to curly-tailed lizards (i.e., shortening the maximum
distance of detection). In such a scenario, reducing the amplitude
of head bobs likely would decrease the active space of signals to
the point at which the signaler would be likely to detect (and flee
or hide from) a moving predator from a much greater distance
than the predator could detect the signal, thereby limiting the risk
of unforeseen attacks.
One particular advantage of modulation is that it may take

place immediately and, if needed, be adjusted along a relatively
fine scale, because the physical properties of a signal are under
control of motor neurons. The ability of individuals to modify their
signaling display at such a fine temporal scale might provide an
effective mechanism to balance the tradeoff between effective so-
cial communication and predation pressure. Fine-scale modulation

has been documented in Anolis gundlachi during social inter-
actions under natural conditions, in which males are capable of
altering the amplitude of head-bob displays to effectively stimulate
the sensory systems of intended receivers located at varying
distances (62).
The fitness impact of predation on prey species traditionally

has been measured by mortality rate. However, an emerging view
is that predation also may affect the individual fitness of prey
indirectly through so-called risk effects that contribute to a re-
duction in reproductive success (reviewed in refs. 67, 68). Based
on our understanding of the natural history of anoles, including
their social dynamics and the contribution of territory size to
male reproductive success (69–71), the observed changes in the
physical properties of head-bob displays in response to the pres-
ence of L. carinatus are likely to decrease the fitness of territorial
males in multiple ways. Our signal-detection modeling approach
reveals a 35% reduction in the conspecific active space of anoles
in the presence of predators (Fig. 3B). One obvious effect of such
a reduction in active space might be a decrease in the ability of
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territorial males to attract distant females and successfully repel
males before potentially dangerous close-range encounters, perhaps
leading to smaller territory sizes and fewer females with which to
mate. This influence of changes in signal active space on territory
size (and possibly mate attraction) has been demonstrated in
red-winged blackbirds (Agelaius phoeniceus) (48, 58, 72) and
spring peepers (Hyla crucifer) (73). Such changes might then have
cascading effects on sexually selected traits and mating strategies.
We predicted that male A. sagrei would respond to the pres-

ence of L. carinatus by not only decreasing display amplitude, but
also by decreasing the proportion of time spent signaling. How-
ever, we found no statistical difference in the proportion of time
spent signaling (although proportion of time spent signaling is 67%
higher on control islands than on islands on which Leiocephalus
were present, a difference with a P value of 0.07 in a one-tailed
comparison; Fig. 2A). Because our sample size is relatively small,
it is possible that the lack of a significant difference reflects a
lack of statistical power. Given that the difference in number of
head bobs per display, which might serve as another means of
altering an individual’s temporal window of vulnerability, clearly
is nonsignificant (Fig. 2B) and assuming that the lack of differ-
ence we detected in proportion of time spent displaying is real,
then A. sagrei does not follow the same trend found in other
studies that find a decrease in proportion of time allocated to
signaling to be one of the responses exhibited by prey species to
a perceived increase in predation threat (e.g., refs. 6, 74–76). For
example, male túngara frogs reduce their calling rate, defined as
the proportion of time spent calling, in response to the presence
of frog-eating bats (77), and male Trinidadian guppies shorten
the duration of courtship displays in the presence of predatory fish
(16). It should be noted that most studies reporting decreases in
signaling focused on mating displays (e.g., refs. 16, 77); however,
A. sagrei head-bob displays not only are given as part of courtship
displays, but also commonly are used for many aspects of anole
social interactions.
In this case, two non-mutually exclusive explanations might

account for the failure of A. sagrei to conform to the general
pattern seen in other species (78). First, as we discussed above,
the decrease in signal amplitude and its effect on the signal
conspicuousness may reduce the likelihood of predation, such

that altering the proportion of time spent signaling would impart
little or no additional benefit. In other words, males have adopted
one of two effective antipredator strategies. Second, the impor-
tance of holding a territory and attracting mates might select
against a decrease in the amount of time allocated to signaling.
In anoles, including A. sagrei, males patrol their territories while
producing displays that function to advertise their position to
nearby rivals and females and to repel potential intruders (79–
81). As we discussed above, the reduced amplitude of displays
limits the active space over which the display can be detected,
but within that active space, males still can attract nearby mates
or repel nearby rivals by not decreasing the proportion of time
spent signaling. Therefore, it is possible that a decrease in the
proportion of their daily activity allocated to display might not be
advantageous, even in the presence of predators, because such
a strategy might hamper the ability of males to hold a territory.
Replicated large-scale manipulations, conducted under natu-

ral conditions with natural populations, have provided some of
the strongest evidence that predation is a major selective force
shaping the evolution of social signals (see ref. 29 and references
therein). We have demonstrated that these effects include modu-
lation of head-bob displays by A. sagrei. Because these signals are
used in a variety of contexts related to social interactions, the
indirect effects of such modulation might have great con-
sequences, altering not only selection pressures, but possibly the
social dynamics and population structure of prey species. Recent
studies of predator–prey interactions show that elucidating the
importance of risk effects on prey populations is crucial for un-
derstanding the evolutionary forces shaping predator–prey inter-
actions (67, 68, 82). We propose that changes in social signals
also be included in these studies, because those changes have the
potential to change the population dynamics of prey species.
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