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Abstract

Salinity drops in estuaries after heavy rains are expected to increase in frequency and intensity over the next decades, with 

physiological and ecological consequences for the inhabitant organisms. It was investigated whether low salinity stress 

increases predation risk on three relevant commercial bivalves in Europe. In laboratory, juveniles of Venerupis corrugata, 

Cerastoderma edule, and the introduced Ruditapes philippinarum were subjected to low salinities (5, 10 and control 35) 

during two consecutive days and, afterwards, exposed to one of two common predators in the shellfish beds: the shore crab 

Carcinus maenas and the gastropod Bolinus brandaris, a non-indigenous species present in some Galician shellfish beds. 

Two types of choice experiment were done: one offering each predator one prey species previously exposed to one of the 

three salinities, and the other offering each predator the three prey species at the same time, previously exposed to one of the 

three salinities. Consumption of both predators and predatory behaviour of C. maenas (handling time, rejections, consump-

tion rate) were measured. Predation rates and foraging behaviour differed, with B. brandaris being more generalist than C. 

maenas. Still, both predators consumed significantly more stressed (salinity 5 and 10) than non-stressed prey. The overall 

consumption of the native species C. edule and V. corrugata was greater than that of R. philippinarum, likely due to their 

vulnerability to low salinity and physical traits (e.g., thinner shell, valve gape). Increasing precipitations can alter salinity 

gradients in shellfish beds, and thus affect the population dynamics of harvested bivalves via predator–prey interactions.

Introduction

Salinity is an important factor in shaping the boundaries 

of species distributions, influencing small and large-scale 

biotic interactions (Berger and Kharazova 1997; Smyth and 

Elliott 2016). In estuaries, salinity values usually fluctuate. 

The nature of such fluctuations can be cyclic, due to the 

tidal regime, or episodic, due to increased river run-off 

after heavy rainfalls, evaporation in warmer conditions or 

anthropogenic inputs such as dam or industrial effluent dis-

charges (Cardoso et al. 2008; Elliott and Whitfield 2011; 

Parada et al. 2012; Wolanksi and Elliott 2015). Organisms 

inhabiting estuarine areas have the ability to regulate their 

physiological, biological and behavioural responses to cyclic 

changes, while extreme salinity fluctuations may impair 

such responses (Verdelhos et al. 2015; Peteiro et al. 2018; 

Domínguez et al. 2020; Woodin et al. 2020) with far-reach-

ing consequences for the survival and recruitment of these 

organisms (Beukema and Dekker 2005; Petes et al. 2007; 

Talmage and Gobler 2011; Vázquez et al. submitted).

Predator-prey interaction is one of the most important 

biotic processes in shaping the structure and dynamics of 

populations and communities of estuaries and other inter-

tidal shores (Menge 1983; Wilson 1991; Rosa et al. 2008). 

Fluctuations in salinity may affect predator–prey dynam-

ics in different ways (Seitz 2011; Smith et al. 2018). For 

instance, foraging efficiency may be altered since short 

periods of low salinity often limit predator activity, e.g., 
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decreasing activity levels in starfish (Forcucci and Lawrence 

1986), increasing searching time in gastropods (Zhang et al. 

2017) and, in general, decreasing feeding rates (Garton and 

Stickle 1980; Stickle et al. 1985; Breen and Metaxas 2008). 

Alternatively, if the predator can avoid stress and the prey 

has limited movement, there can be a salinity threshold 

below which increased exposure becomes detrimental to 

prey resistance (Witman and Grange 1998; McLeod et al. 

2008). Costs of maintenance of internal osmolality (Car-

regosa et al. 2014) may divert expenditures from other physi-

ological and biological processes, such as feeding, respi-

ration, growth, reproduction or anti-predator mechanisms 

(Kinne 1971; Akberali and Trueman 1985). Individual clams 

often respond to chemical cues released from a conspecific 

victim of predation or from a predator (Whitlow et al. 2003; 

Cheung et al. 2004; Smee and Weissburg 2006; Griffiths 

and Richardson 2006), and this response may be inhibited 

by stress.

The Galician shellfish beds (NW Spain) are a human-

dominated environment located in estuarine areas called 

rias, which support important shellfisheries due to their 

high productivity (Figueiras et al. 2002). As a consequence, 

they suffer not only natural but also anthropogenic impacts 

(Alvarez et al. 2006; Filgueiras and Prego 2007; Parada et al. 

2012; Villalba et al. 2014; Olabarria et al. 2016). Climate 

change is expected to directly affect the salinity patterns 

of estuaries in two major ways: (1) a continued rise in sea 

level, and (2) altered river flow via changes in pattern of 

rainfall and drought. Climate projections for the Atlantic 

European coast predict an increase in frequency and inten-

sity of precipitation, primarily in the winter (Cardoso Pereira 

et al. 2020; Lorenzo and Alvarez 2020), as has already been 

observed in some areas (Cardoso et al. 2008; Grilo et al. 

2011), but not in others (Sáez de Cámara et al. 2015).

The native venerid Venerupis corrugata (Gmelin, 1791), 

the introduced Ruditapes philippinarum (Adams and Reeve 

1850), and the native cockle Cerastoderma edule (Linnaeus 

1758) are three of the most relevant commercial species of 

bivalves in Europe, particularly in Galicia (NW Iberian Pen-

insula). The landings of these species represented an aver-

age of ~ 5.800 tonnes per year, the 71% of the total bivalve 

captures with an average market value of ~ 42 millions of 

euros per year in the period 2001–2020 (elaboration based 

on official data from www. pesca degalicia.com, last access 

May 2021). Because they occur in different habitats, i.e. 

position on the shore, burrowing ability, and also differ in 

morphological and behavioural traits (e.g. siphon length, 

shell thickness, valve gaping), these species differ in their 

abilities to cope with sudden salinity changes (Woodin 

et al. 2020; Domínguez et al. 2020) and in their resistance 

to predators (Whitlow et al. 2003; Curtis et al. 2012; Brom 

and Szopa 2016). Particularly V. corrugata is vulnerable to 

drops in salinity (Domínguez et al. 2020) as reflected in its 

higher densities in low intertidal and shallow subtidal habi-

tats (Carregosa et al. 2014; Macho et al. 2016). All three spe-

cies live in euryhaline conditions and are osmoconformers 

able to regulate to different extents their ionic concentrations 

to match the external environment, although their primary 

responses to salinity stress are behavioural, including valve 

closure (Shumway 1977; Akberali and Trueman 1985; Kim 

et al. 2001; Verdelhos et al. 2015; Domínguez et al. 2020) 

and burrowing (Woodin et al. 2020).

After a stressful event, or stressful period, bivalves need 

to resume filtration and excrete metabolic products of anaer-

obic metabolism to avoid toxicity (Griffiths and Griffiths 

1987). Duration of valve closure following stress differs 

between species; for instance, fewer adults of V. corrugata 

and C. edule maintained closed valves compared to adults 

of R. philippinarum after salinities equal to and below 15 

were applied (Domínguez et al. 2020). Below 15, burrow-

ing activity of these species was also reduced (Woodin et al. 

2020), which might increase the encounter rate between 

predator and prey. These traits can increase vulnerability 

to predation, not only facilitating the valve opening by the 

predator, but also the detection of prey by chemical cues 

(Hayden et al. 2007; Hay 2009).

Two species, the shore crab Carcinus maenas (Linnaeus 

1758) and the gastropod Bolinus brandaris (Linnaeus 1758) 

are common predators of juvenile bivalves in the intertidal 

fishing beds (Seed 1993; Richards et al. 1999; Klassen and 

Locke 2007; Bañón et al. 2008; Smallegange et al. 2009; 

Dethier et al. 2019). The shore crab has been an invasive 

species for over a decade in a fishing bed in Ría de Arousa 

(42° 29′25″N, 8° 50′24″W, Bañón et al. 2008). It can cope 

with low salinities by efficient osmoregulation of its extra-

cellular fluid (Jillette et al. 2011; Klassen and Locke 2007), 

maintaining activity (Breen and Metaxas 2008; Curtis 

et al. 2012) or avoiding short-term stress by an increased 

locomotor activity defined as halokinesis (Thomas et al. 

1981; McGaw et al. 1999). The impact of low salinity on B. 

brandaris is less studied; Dalla Via and Tappeiner (1981) 

found lower activity and oxygen consumption under low 

salinities. Together, these two predators can have a strong 

impact on the abundance, composition and dynamics of 

bivalve populations in shellfish beds. Their feeding strategies 

differ due to their morphologies. Shore crabs use their claws 

(chelipeds) to probe into the sediment and find prey and, 

they can exhibit two distinctive feeding techniques. When 

they feed on small prey, the minor chela immobilizes the 

prey and the major chela crushes the shell. When they are 

forced to feed on larger prey, with risk of claw damage, the 

crabs adopt a slower technique of cutting along the valve’s 

edges (Smallegange and van der Meer 2003). They can dig 

down some centimetres in the sediment, causing an escape 

response in bivalves by burrowing deeper (Whitlow et al. 

2003). The feeding strategy of B. brandaris is less studied 

http://www.pesca
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and may be similar to that or other muricids. The smaller 

individuals drill prey shell, whereas marginal chipping is 

adopted more frequently by larger gastropods (Peharda and 

Morton 2006). They can also adopt different techniques 

depending on bivalve shell thickness. It was found that 

Tapes spp. were consumed by chipping the shell margin, 

while thinner shelled bivalves were accessed using the labral 

spine in the border of the operculum aperture to push prey’s 

valves, breaking them followed by proboscis insertion (Mor-

ton et al. 2007). However, the labral spine is a feature that 

varies upon species (Marko and Vermeij 1999) and seems 

to be absent in B. brandaris (personal obs.). This species 

may likely use the inner lip of their shell to open the bivalve 

and suck the glandular tissue of the clam with its proboscis.

Predator consumption is a combination of both preda-

tor and prey traits (e.g., prey size, prey vulnerability, prey 

availability, quality or profitability, handling time, or the 

past experience of the predator and prey) (Munari and Mis-

tri 2011). Here, we carried out laboratory experiments to 

investigate the predation activity and consumption rates of 

two predator species, C. maenas and B. brandaris, on juve-

nile bivalves previously exposed to short-term salinity stress 

levels that reflect those occurring in Galician shellfish beds. 

The hypotheses tested were that (1) predation rates would be 

greater on the more stressed individuals (exposed to salini-

ties of 5 or 10 > exposed to 35), and (2) predators would 

consume more vulnerable species, depending on their shell 

morphology, burrowing capacity and valve closure ability 

(C. edule > V. corrugata > R. philippinarum). With regard 

to predator behaviour, the hypotheses tested were that (1) 

handling time and (2) rejection rate would be highest for 

the least stressed prey, and for the species with shells most 

resistant to crushing, R. philippinarum > C. edule > V. cor-

rugata (Coffen-Smout 1998).

Materials and methods

The experiments were performed at Estación de Ciencias 

Mariñas de Toralla (CIM-ECIMAT; www. cim. uvigo. gal) of 

Universidade de Vigo (NW Spain), in May 2017.

Animal collection and maintenance

Individuals of V. corrugata and R. philippinarum were 

provided by hatcheries in Galicia, whereas juvenile cock-

les C. edule were collected at Ría de Noia (42° 47′ 0″ N, 

8° 53′ 0″ W) and transported to the laboratory in refriger-

ated boxes. Clams were kept for several days (minimum 

1 week, maximum 4 weeks) in baskets hanging off the 

ECIMAT dock to acclimatize to natural conditions. On 

the day prior to salinity stress, bivalves were taken to the 

laboratory and measured to the nearest 1 mm. Bivalves of 

sizes 19–24 mm in maximum shell length were selected 

and placed in a total of 64 or 60 (depending on the experi-

ment) 1 L-plastic beakers (17 cm tall, 10.8 cm diameter) 

filled with sand from a nearby intertidal area for use in the 

experiments. Sand was extracted from approximately the 

upper 4 cm of sediment at Canido (42° 11′ 36.27″ N 8° 

47′ 50.15″ W), a semi-protected intertidal sand flat with 

mean grain size of 0.19 mm (see Woodin et al. 2020). Such 

sizes are those that are normally seeded into the shellfish 

beds. Size at first sexual maturity of R. philippinarum is 

29.4 mm in shell length (i.e., before 1 year old) (Moura 

et al. 2017), of V. corrugata is 22 mm (Maia et al. 2006), 

and of C. edule is 15–19 mm (Mejuto 1984; Pérez-Cama-

cho and Román 1984). Therefore, throughout this paper, 

the term juvenile was maintained for all prey, although 

some individuals of C. edule and V. corrugata could fall 

out of this category.

The predators, C. maenas and B. brandaris, were manu-

ally collected with the collaboration of the fisher’s guilds 

from the shellfish beds of Noia (42° 47′0″N, 8° 53′0″W) 

and O Grove (42° 49′6″N, 8° 86′5″W) and transported 

to the laboratory in refrigerated boxes. Size range of C. 

maenas was from 28 to 58 mm carapace width (45.7 ± 6.5; 

mean ± S.D) and of B. brandaris from 61 to 87 mm shell 

length (69.4 ± 5.2). Once in the laboratory, they were 

maintained in PVC flow-through tanks with 50 μm-filtered 

seawater placed in separate rooms. Tanks with shore crabs 

and gastropods were provided with rocks and a fine bot-

tom-layer of sand (⁓1 cm depth), respectively, to mimic 

natural conditions in the field. A maximum of 20 shore 

crabs and 12 gastropods were kept in each 110 L (n = 6, 

dimensions 80 × 60 × 33) and 80  L (n = 6, dimensions 

80 × 60 × 22 cm) tanks, respectively, in rooms with ambi-

ent temperature at ~ 18–20 ºC and a 16:8 h light: dark pho-

toperiod. Seawater temperature in tanks was 19.1 ± 0.6 ºC 

corresponding to average sea surface temperature recorded 

in the Ria de Vigo at that time of the year (www. meteo 

galic ia. gal). Predators were fed daily with fresh clams of 

the same species as offered in the experiment. Feeding 

was ceased, and all food remains were removed from the 

tanks 24 h before the start of the experiment in case of C. 

maenas, and 48 h before the start of the experiment in case 

of B. brandaris. A total of 2790 bivalves and 186 predators 

were used in the experiments.

Experiment setup

Prior to the predation experiments, prey bivalves were 

exposed to salinity stress treatments for a period of 48 h. 

Predators were not exposed to salinity stress treatments.

http://www.cim.uvigo.gal
http://www.meteogalicia.gal
http://www.meteogalicia.gal
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Prey salinity stress

Salinity treatments were defined according to our field 

records taken over the previous years (2015–2017) by Mini-

CTDs (Star  Oddi®) placed in the first bottom centimetres 

of the water column at local shellfish beds. These records 

indicated steep salinity drops during low tides (Fig. 1) with 

values as low as 5 for longer periods after heavy rains, as 

reported previously by Parada et al. (2012). A clear physi-

ological salinity threshold at 15 for the studied species 

was detected by Domínguez et al. (2020). Taking this into 

account, the experimental salinity treatments were set at 5 

and 10 for the stress, and 35 for the control treatment (S5, 

S10 and S35, hereinafter). The stress was maintained con-

tinuously for the duration of the 2 days; longer exposure 

would lead to mortality of C. edule (Verdelhos et al. 2015).

To expose bivalves to salinity treatments, three 480 L 

tanks (S5, S10 and S35) filled with 50 μm-filtered seawater 

and constant aeration were setup in a room at ambient tem-

perature, ~ 18–20 °C. The salinity drop was simulated by 

mixing 50 μm-filtered seawater with dechlorinated freshwa-

ter to reach the treatment salinity in each of the three tanks. 

Salinity was measured by salinity probes (Hach, HQ40d) 

positioned at the bottom and top of the tanks. This salin-

ity treatment was maintained for 2 consecutive days, with 

aeration and periodic correction of salinity if necessary, by 

adding dechlorinated freshwater, as slight increases hap-

pened due to evaporation. In any case, such effects can be 

similar to those experienced in the field. Five individuals 

of the same species were placed at the sediment surface of 

each beaker, which had 2 bottom orifices of 1 cm diameter 

covered by 80 μm mesh to avoid sediment loss, but to allow 

a water flux through the column of sediment. Bivalves were 

allowed to burrow, and those that did not burrow within 8 h, 

were replaced. Following the burrowing period the beakers 

with the bivalves were placed in the low salinity tanks for 

48 h. The bivalves were offered food every day (microalgae 

mixture of Isochrysis galbana, Tetraselmis suecica, Chae-

toceros gracilis and Rhodomonas lens, constituting a 1% 

maintenance diet based on a dry weight of 0.68 g, same pro-

cedure as in Domínguez et al. 2020). For each experimental 

salinity, a total of 16 plastic beakers were submerged in each 

of the three tanks.

Predation (“cafeteria”) experiments

After the stress period, the plastic beakers filled with sedi-

ment and with the bivalves were immediately transferred 

to aquaria with running seawater at ambient salinity, ~ 35. 

Aquaria were placed in an experimental room with con-

trolled air temperature (18–20 ºC) and a 16:8 h light: dark 

photoperiod, with red lights while photo recording at night 

to minimize disturbing animals. In each aquarium, four 

plastic beakers were fully inserted in a polystyrene platform 

(50 × 40 cm of surface, approximately) with custom-made 

holes of the size of the containers; then, the platform and 

Fig. 1  Salinity data for a 

shellfish bed in Cambados, Ría 

de Arousa during April 2017 

registered with miniCTDs 

placed in the first 5 cm of the 

water column, near the sedi-
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upper part of the beakers were completely covered by sand 

(Fig. 2). All plastic beakers were randomly located within 

the aquarium, and aquaria were randomly located within 

the experimental room. Four synchronized photo cameras, 

each located above each group of four experimental aquaria, 

took one photograph every 30 s, over a period of 24 or 48 h, 

to record prey and predator behaviour. Preliminary record-

ing indicated that crabs rarely altered behaviours such as 

manipulation of a bivalve, within 30 s.

Two different choice experiments were consecutively 

done to further investigate predation on the same prey spe-

cies, but with different levels of salinity stress, designated as 

salinity choice experiment (Fig. 3a), and the predation upon 

the three species with the same level of stress, called prey 

choice experiment (Fig. 3b).

For the Salinity choice experiment, three beakers with 

the same species of bivalves previously exposed to each of 

the salinity treatments (S5, S10, S35), and an additional 

procedural control beaker without bivalves only with sand 

and kept at S35, were randomly placed in each of the 16 

aquaria. The procedural control was a choice alternative for 

the predator. One predator was introduced in the middle of 

each aquarium, and then the aquarium was covered with a 

mesh to prevent escape. Predators were left for 24 h and 48 h 

in case of C. maenas and B. brandaris, respectively, as the 

gastropod has lower predation rates (pers. obs.). At the end 

of each run, the numbers of prey eaten (empty shells), dead 

(valves opened with flesh inside) or alive (either buried or 

unburied) were recorded. Predators, bivalves and sediment 

were not reused in subsequent experiments.

For the Prey choice experiment, three beakers, each one 

with a different species stressed at the same salinity treat-

ment, and an additional procedural control beaker with only 

sand, were randomly placed in each of the 15 aquaria; 5 

1

2

3

4

5

Fig. 2  Setup of the mesocosm experiment: 1) aquarium, 2) container 

with sand and bivalves, 3) predator, 4) camera, 5) red led light

Salinity choice experiment Prey choice experiment
Predators

x

3prey sp
x

3 runs5 3510

Salinity treatments

Prey

R. philippinarum

C. edule

V. corrugata

x
2 predator sp

x
2 predator sp

5 bivalves/3 salinity in 16 aquaria 5 bivalves/ 3 prey sp in 5 aquaria/ 3 salinities

a b

Fig. 3  Design of the mesocosm experiment. Each aquarium with four 

small beakers inside filled with sediment to allow bivalves to burrow. 

In each beaker, 5 juvenile bivalves were seeded in the Salinity choice 

experiment a: aquaria with bivalves of the same species stressed at 

different salinity treatments and, Prey choice experiment b: aquaria 

with 5 bivalves of each prey species under the same salinity treat-

ment; sp is abbreviation for species
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aquaria per each salinity treatment. This procedure was 

repeated over the course of three consecutive days to 

increase the number of replicates (5 aquaria × 3 runs, n = 15 

beakers of each combination of treatment and species). 

Predators were introduced following the same procedure as 

the previous experiment. Since aquaria had to be reused for 

consecutive runs, all elements were removed and cleaned 

with fresh water in between runs and the sediment replaced 

with new sediment. Predators, bivalves and sediment were 

not reused in subsequent experiments.

Response variables

To investigate the effect of salinity stress on predation rates, 

prey selection and predation behaviour, different response 

variables were measured and calculated.

 (i) Total prey consumption (number of prey consumed 

during a run: 24 h for C. maenas and 48 h for B. 

brandaris).

 (ii) Early prey consumption (number of prey consumed 

in the first 4 h) for C. maenas.

 (iii) Handling time to first bite (HBT) (number of min of 

physical manipulation of a bivalve including excavat-

ing it from the sediment, ending in a first bite, meas-

ured during the first 4 h of each run) for C. maenas.

 (iv) Handling time plus period of consumption (HCT) 

(number of min of physical manipulation of a bivalve 

for its opening and then consumption until the crab 

abandoned the clam, measured during the first 4 h of 

each run) for C. maenas.

 (v) Burrowing time of C. maenas (burrowing within the 

sediment in a beaker, during the first 4 h of each run).

 (vi) Total rejections (number of times a predator rejected 

a handled prey, during the first 4 h of each run) for C. 

maenas.

 (vii) Fraction consumed upon capture by C. maenas, 

calculated as number of consumptions/(number of 

rejections+number of consumptions).

Handling time was calculated assuming that behaviour 

was the same during the 30  s interval between the two 

sequential photographs. Two metrics are given, first the 

combined handling time plus consumption time measure-

ment (HCT) and second handling time to first bite (HBT). 

Crab behaviour once the bivalve was opened, i.e. the end 

of handling time, was to take a bite and then move slightly 

away while macerating the bite. This is HBT and is likely 

very close to true handling time, which we could not deter-

mine in ~ 20 percent of the cases given crab positioning and 

camera angles. All crab handling data are reported conserva-

tively as HBT. We did not analyse the foraging behaviour 

of the gastropod B. brandaris because it was not possible to 

observe its behaviour from zenithal photographs.

Additionally, information on the number of bivalves 

found on the sediment surface at the beginning of each run 

and the position and state of the bivalves remaining at the 

end was recorded. These data were not analysed statistically 

because there were a number of inconsistencies between 

data recorded at the end of the experiments and the real posi-

tion of the bivalves registered on the pictures, due to preda-

tor activity moving bivalves between beakers. They served, 

however, to show the main trends on prey availability.

Statistical analysis

Aquaria from which predators escaped, were inactive, or 

spent more than half of the analysed period buried, were 

discarded from the analyses. The final number of replicates 

of each analysis is indicated in the tables below.

To test the effect of salinity on total and early consump-

tion upon each prey species, and rejections, Generalized 

Linear Mixed effects models (GLMMs) were used, with a 

Poisson error distribution. Fraction consumed was analysed 

using a Linear Mixed Model (LMM) and handling time 

(HBT and HCT) using GLMMs, with a negative binomial 

distributions of errors. In the Salinity choice experiment 

models considered Salinity as fixed factor, Size as covariate, 

and Aquarium as random term, whereas in the Prey choice 

experiment, the fixed factor considered was prey Species. In 

the Salinity choice experiments the individual crabs could 

choose among clams of one species previously exposed to 

different salinities, so the fixed factor was Salinity. In the 

Prey choice experiments the individual crabs could choose 

among clams of different species, all of whom had been 

exposed to a single salinity so the fixed factor was prey Spe-

cies. Size of the predator was standardized by subtraction of 

the mean, and was included as a covariate to control for any 

effects caused by the size differences between individuals 

(Zuur et al. 2009). Because male and female crabs were not 

evenly distributed across treatments, we could not test for the 

effect of sex, and excluded it from the models. We find this 

justified because sex may not be a key parameter in the shore 

crab’s ability to consume clams, similar to the assumptions 

of Dethier et al. (2019), and our preliminary analysis con-

firmed this. Besides, the size of appendices may determine 

the selection of prey size (Elner 1980) and it is correlated 

with carapace width, which was measured and analysed.

We tested for homogeneity among slopes of the main 

treatments by including the interaction term ‘covari-

ate × main factor’ in the model. With a non-significant 

interaction term, homogeneity of slopes was assumed and 

the model excluding the interaction was re-run (McDonald 

2009). The same analysis was applied to test the effect of 

salinity and prey species on consumption in the Prey choice 
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experiment, and, in this case, factor Run and Aquarium were 

both considered as random terms.

The assumptions of normality and homogeneity of vari-

ances were checked by visual inspection of Q-Q plots and 

Levene’s test and Fligner-Killeen’s test, respectively. These 

tests resulted significant only for the total number of eaten 

C. edule and early eaten in the first 4 h in the Salinity stress 

experiment. However, as the p value was close to 0.05 data 

were left untransformed, except for fraction consumed that 

was arcsine-square root transformed. Overdispersion was 

also assessed for all models. Analyses were done using 

the lme4 package (Bates et al. 2015) and lmerTest package 

(Kuznetsova et al. 2017); car package was used for testing 

the significance of the models by Anova (Fox and Weisberg 

2019) in R version 3.6.1 (R Core Team 2019). Post-hoc tests 

were performed using emmeans package (Lenth 2020).

Results

Experiments with the predator C. maenas

Salinity choice experiment

In the Salinity choice experiment, where the prey species 

was the same but with different levels of salinity stress, 

non-stressed prey were consumed significantly less by the 

predator (Fig. 4, Table 1). The total number of V. corru-

gata consumed by C. maenas was significantly larger in S5 

and S10 than in S35, as was also true for C. edule (Fig. 4a, 

Table 1). In the case of R. philippinarum, the trend was the 

same although only individuals in S5 suffered significantly 

greater predation compared to S35 (Fig. 4a). 

Mean early prey consumption followed the same pattern, 

with the exception of V. corrugata, which was similarly little 

consumed in all treatments (Fig. 4b, Table S1).

The handling time to the first bite (HBT) differed sig-

nificantly among treatments for V. corrugata (χ2: 6.12, df 

2, p = 0.04), due to higher values in S35 compared to S10, 

and R. philippinarum (χ2: 5.55, df 2, p = 0.06), due to higher 

values in S35 compared to S5 (Fig. 4c, Table S1).

The composite of handling and consumption time (HCT) 

differed significantly among treatments for all prey species 

(Fig. 4d, Table S1). For V. corrugata, differences in HCT 

(χ2: 49.62, df 2, p < 0.001) were due to higher values in S5 

and, particularly, in S10 compared to S35. In the case of C. 

edule, significant differences among treatments for HCT (χ2: 

7.85, df 2, p = 0.02) were related to longer times in S5, and 

marginally in S10 (p = 0.051 and 0.09, respectively), than 

S35. For R. philippinarum, differences among treatments 

for HCT (χ2: 17.02, df 2, p < 0.001) were due to significantly 

higher values in S5 compared to S35, and marginally signifi-

cant compared to S10 (p = 0.09).
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The number of R. philipinarum individuals rejected by C. 

maenas differed significantly among treatments (χ2:15.81, 

df 2, p < 0.001), with more rejections in S10 than S5 and 

S35. In contrast, the number of V. corrugata and C. edule 

individuals rejected was small, i.e., on average less than 1 

(Fig. 4e, Table S1). Variability among aquaria was large for 

all prey species as shown by the large SD values and the 

variance explained by the random factor (Table S1).

Carcinus maenas consumed a greater fraction of the most 

stressed prey than of the clams from the other treatments 

(Fig. 4f, Table S1). The fraction consumed by C. maenas 

differed significantly among treatments for all prey species 

(V. corrugata: χ2: 9.92, df 2, p < 0.01; C. edule: χ2:15.55, 

df 2, p < 0.001; R. philippinarum: χ2:34.32, df 2, p < 0.001, 

Fig. 4f, Table S1). The fraction of V. corrugata consumed 

was significantly greater in S10 than S35. In the case of C. 

edule, it was significantly greater in S5 and S10 than in S35, 

whereas in R. philippinarum, consumption rate was signifi-

cantly greater in S5 than S10 and S35.

Prey choice experiment

When prey species and treatments were considered together 

in the Prey choice experiment, the general trend was that 

total consumption of predators was greater on stressed prey, 

mainly on stressed V. corrugata than on the other species 

(Fig. 5a). Post-hoc tests found differences among species in 

S10, with the greatest total consumption upon V. corrugata 

compared to the other two species (Table 2). Consumption 

upon non-stressed prey was smaller compared to the stressed 

individuals of the three species.

The early consumption in the Prey choice experiment dif-

fered among prey species in S10 (χ2: 7.54, df 2, p = 0.023), 

with a trend towards a greater consumption on V. corru-

gata than on R. philippinarum (p = 0.068). Almost no early 

consumption on non-stressed prey was found (Fig.  5b, 

Table S2).

The handling time to the first bite (HBT) and handling 

and consumption time (HCT) did not significantly differ 

among prey species in any treatment, except in S10 for HBT 

(χ2: 6.25, df 2, p = 0.044), due to a longer handling time of 

crabs before starting to eat V. corrugata compared to the 

other two species, although such trend was not detected by 

post-hoc tests (Fig. 5c, d, Table S2). Crabs tended to spend 

less time handling the most stressed V. corrugata and C. 

edule before starting to eat them (Fig. 5c) and more time to 

consume them completely (Fig. 5d).

The number of prey rejected by predators differed sig-

nificantly in S35 (χ2: 7.71, df 2, p = 0.021, Table S2) and 

the crab size (χ2: 5.21, df 1, p = 0.022, Table S2), due to 

a greater rejection of C. edule and R. philippinarum com-

pared to V. corrugata (p = 0.01, 0.04, respectively, Fig. 5e, 

Table S2). Also, larger crabs rejected a smaller number of 
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prey in S35 (data not shown). For this variable, the random 

factors contributed considerably to explain part of the vari-

ance (i.e. the large variance explained by run and aquaria, 

Table S2).

The fraction of clams consumed by C. maenas differed 

significantly among species in S10 (χ2: 5.64, df 2, p = 0.059, 

Table S2, Fig. 5f), although the post-hoc tests were only 

marginally significant with the greatest fraction consumed 

for V. corrugata compared to R. philippinarum (p = 0.073, 

Table S2). The lowest values for all species were found in 

S35.

Experiments with the predator B. brandaris

Salinity choice experiment

In the Salinity choice experiment (Fig. 6a, Table 3), the 

consumption of B. brandaris was greater on stressed than 

non-stressed C. edule. The consumption of V. corrugata and 

R. philippinarum was not significant relative to the salinity 

treatment, although a trend towards a greater consumption 

of stressed than non-stressed R. philippinarum was observed 

(Fig. 6a). There was a significant effect of the predator’s 

size on the consumption on V. corrugata, with smaller B. 

brandaris showing greater consumption (Table 3) and a 

similar trend for C. edule.

Prey choice experiment

In the Prey choice experiment, consumption differed sig-

nificantly among species. Bolinus brandaris preyed more 

intensely on C. edule compared to V. corrugata and R. 

philippinarum in each salinity treatment (Fig. 6b, Table 4). 

Consumption by predators tended to be greater on stressed 

than on non-stressed V. corrugata and R. philippinarum.

Position in the sediment and state of prey 
in the experiments

When using C. maenas as predator, the number of individu-

als on the surface at the beginning of the runs in the Salinity 

choice experiment was clearly larger for stressed C. edule, 

most of which were completely out of the sediment, followed 

by some stressed individuals of R. philippinarum and very 

few of V. corrugata (Fig. 7a,b). At the end of the runs, the 

number of C. edule remaining on surface decreased, par-

ticularly in S5 followed by S10 (Fig. 7c), and most of those 

in S35 were buried (Fig. 7d). Individuals of V. corrugata 

were almost completely buried independently of the treat-

ment both initially and at termination. Few individuals of R. 

philippinarum were buried under increasing stress compared 

to those buried in the controls (Fig. 7d). In the Prey choice 

experiment the pattern was similar, although very few indi-

viduals were completely exposed (Fig. 7e) and most stressed 

C. edule and R. philippinarum were at least semi-buried at 

the beginning of the experiment (Fig. 7f). At the end of the 

experiment, the number of individuals found on the surface 

increased slightly for all species and treatments, except per-

haps C. edule in S10 (Fig. 7g). Overall, the number of buried 

individuals showed no pattern for any species (Fig. 7h).

When using B. brandaris as predator, the only species 

found on the sediment surface in the Salinity choice experi-

ment was C. edule, particularly when individuals were 

stressed (Fig. 8a). This was again the species with most of 

individuals on surface at initiation in the Prey choice experi-

ment (Fig. 8c). Most of the remaining bivalves at the end of 

both experiments were found buried (Fig. 8b, d).

Discussion

Understanding the consequences of current and projected 

salinity fluctuations on predator–prey interactions in highly 

managed systems, such as intertidal shellfish beds, is rel-

evant, because they influence abundance and distribution 

patterns and population dynamics of species within the eco-

system (Sánchez-Salazar et al. 1987). Although an increase 

of extreme events can also negatively affect predator dynam-

ics through processes like recruitment (Seed 1993), scope 

for growth (Stickle and Bayne 1987) and juvenile survival 
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(Covernton and Harley 2020), salinity decreases may be 

even more unfavourable for less mobile species, such as 

bivalves (Domínguez et al. 2020).

Stressed prey are likely more vulnerable to predation, 

because their response to attack may be hindered, and/or 

their ability to find a refuge can be reduced as a consequence 

of stress (Tallqvist 2001). As initially predicted, our results 

showed that vulnerability of stressed prey to predators 

depended on the prey species. This was especially true with 

the shore crab C. maenas, one of the most important preda-

tors of many bivalve species (Masski and Guillou 1999; 

Curtis et al. 2012). With C. edule and V. corrugata both 

stress treatments (S5 and S10) were below the physiological 

salinity threshold of 15 previously reported for these spe-

cies (Domínguez et al. 2020), while for R. philippinarum 

differences in vulnerability were only evident for the lowest 

salinity treatment (S5) perhaps due to its larger tolerance to 

salinity stress (Domínguez et al. 2020). Such vulnerability 

of prey was reflected in the total consumption by crabs in 

24 h, which was greater on stressed prey. Additionally, non-

stressed prey had longer handling times (HBT) and fewer 

were eaten in the initial experimental period (Fig. 4). As 

intended by the experimental design, the studied bivalves 

appeared to have reached the threshold below which prey 

resistance decreased (Witman and Grange 1998; McLeod 

et al. 2008). Our results suggest that at salinities 5 and 10, 

these species of bivalves, particularly cockles, were too dam-

aged to recover normal burrowing activity right after the 

stress (Domínguez et al. 2020), remaining at or near the sur-

face (Online resource 1) (Figs. 7, 8), or failing to respond to 

predator cues (Beukema and Dekker 2005; Petes et al. 2007; 

Talmage and Gobler 2011). In the case of R. philippinarum, 

individuals stressed at S10 appeared to be more resistant to 

predation than at S5, as denoted by a larger number of rejec-

tions, while handling time and total and early consumption 

rates were intermediate between those for individuals in S5 

and S35 (Fig. 4). This was not seen in the individuals of V. 

corrugata and C. edule in S10 very likely due to the greater 

resistance of R. philippinarum to low salinity (Bidegain and 

Juanes 2013; Moura et al. 2017; Domínguez et al. 2020).

The handling times of both predators very likely differed 

depending on the anti-predator traits of bivalves, including 

Table 4  Summary of GLMM testing the effect of salinity treatments (S5, S10, S35) on total consumption of prey in 48 h for the Prey choice 

experiment both with B. brandaris as predator

The models used prey Species (Sp) as fixed factors, Aquarium and Run as random factors and predator size as covariate. Pos hoc tests results for 

the significant factor Species (Vc V. corrugata, Ce C. edule, Rp R. philippinarum) are shown. Data were not transformed

Values in bold are statistically significant (p < 0.05)

Variable Salinity 

treat-

ment

Replicates 

(Aquar-

ium)

Full model Parameter χ2 df p Variance SD Post-hoc p

Total

consumption

S5 n = 45 Cons ~ Sp * Size

 + (1|Aquarium) + (1|Run)

Random effects

Aquarium  < 0.01 0.05

Run 0 0

Fixed effects

Intercept 3.03 1 0.082

Sp 6.97 2 0.031 Vc-Ce 0.015

Size 3.36 1 0.067 Ce-Rp  < 0.001

Sp:Size 6.61 2 0.038

S10 n = 45 Cons ~ Sp + Size Random effects

 + (1|Aquarium) + (1|Run) Aquarium 0 0

Run 0 0

Fixed effects

Intercept 0.66 1 0.416

Sp 12.03 2 0.002 Vc-Ce 0.03

Size 0.67 1 0.412 Ce-Rp  < 0.01

S35 n = 45 Cons ~ Sp + Size Random effects

 + (1|Aquarium) + (1|Run) Aquarium 0 0

Run 0 0

Fixed effects

Intercept 0.06 1 0.79

Sp 28.86 2  < 0.001 Vc-Ce  < 0.001

Size  < 0.01 1 0.923 Ce-Rp  < 0.001
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Fig. 7  Results of the experiments with C.maenas. Mean (+ SD, 

n = 16–45) number of a individual bivalves found at surface and b 

semi-buried individuals at the beginning of the experiment (T0), c 

individuals found at surface and d buried individuals at the end of 

the experiment (T24) by treatment (S5, S10, S35) and prey species 

(Vc: V. corrugata, Ce: C. edule, Rp: R. philippinarum) in the Salinity 

choice experiment, e individual bivalves found at surface and f semi-

buried individuals at the beginning of the experiment (T0), g individ-

uals found at surface and h buried at the end of the experiment (T24) 

by treatment (S5, S10, S35) and prey species (Vc: V. corrugata, Ce: 

C. edule, Rp: R. philippinarum) in the Prey choice experiment 
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shell thickness and valve closure and, burrowing ability 

(Boulding 1984; Coffen-Smout 1998; Smallegange et al. 

2008; Verdelhos et al. 2015; Glaspie et al. 2017). The thick-

est R. philippinarum and the deeper burrower V. corrugata 

were manipulated for longer times before being consumed 

relative to C. edule. The cockle was found more often by the 

predators at the sediment surface, and has a clear valve gape. 

Similarly, the salinity stress appeared to cause a reduction 

in burrowing and valve closure ability, making all species 

more accessible compared to the S35 treatment. Handling 

time to the first bite was expected to be shorter for the more 

stressed prey since evasive prey behaviour to avoid being 

consumed (e.g., burrowing or valve closure) is often ener-

getically costly (Leonard et al. 1999; Nakoaka 2000) and 

stressed prey show worse performance (Verdelhos et al. 

2015; Domínguez et al. 2020; Woodin et al. 2020). In the 

Salinity choice experiment with C. maenas, the most stressed 

prey of all species had significantly shorter handling times 

(HBT) as expected (Fig. 4c). Interestingly, the composite 

metric of handling time and consumption time (HCT) was 

significantly longer for stressed prey than for non-stressed 

prey (Fig. 4d). In the Prey choice experiment this appeared 

to be most clear in consumption of V. corrugata, which is 

known to produce more degradation compounds than R. 

philippinarum at low salinities (Carregosa et al. 2014). If 

prey selection follows the energy maximization premise 

(MacArthur and Pianka 1966), our results suggest that crabs 

maximized energy by consuming more stressed prey, but 

at the expense of increased time expenditure in consump-

tion. This result apparently violates Charnov’s optimization 

theory (Charnov 1976), as crabs spent too much time han-

dling each individual prey for the energy gain they might 

represent. The degradation of flesh in stressed individuals 

might make difficult the total consumption of the bivalve 

in few movements so the crabs spent more time to finish 

the consumption. Behaviour of crabs is very plastic and, 

in absence of predators, they select smaller prey, therefore 

decreasing handling time (Smallegange and van der Meer 

2003) to minimise potential chelae damage (Smallegange 

et al. 2008) as crabs very often break part of their dactylus, 

and in some instances lose their chelipeds when attempting 

to crush clams (Juanes and Hartwick 1990). This risk could 

be also minimised by feeding on more vulnerable prey that 

offer less resistance, maybe because of gaping that facili-

tated the access to prey after stress. In this study, most of 

the shells preyed upon by crabs were intact, apart from few 

individuals, mainly V. corrugata and C. edule, which were 

found broken by chipping (Online resource 2).

The response of the gastropod B. brandaris differed from 

that of the shore crabs, because the gastropod consumed 
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Fig. 8  Results of the experiments with B.brandaris. Mean (+ SD, 

n = 16–45) of a number of individual bivalves found at surface at the 

beginning of the experiment (T0) and b total number of individu-

als found at the end of the experiment (T48) by treatment (S5, S10, 

S35) and prey species (Vc: V. corrugata, Ce: C. edule, Rp: R. philip-

pinarum) in the Salinity choice experiment, c number of individual 

bivalves found at surface at the beginning of the experiment (T0) 

and d total number of individuals found at the end of the experiment 

(T48) by treatment (S5, S10, S35) and prey species (Vc: V. corrugata, 

Ce: C. edule, Rp: R. philippinarum) in the Prey choice experiment 
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prey irrespectively of salinity exposure, except for C. edule. 

Gastropods may be less selective in their prey choice due to 

lower mobility (Vasconcelos et al. 2008), and predate upon 

prey that are easier to catch and open. They typically open 

bivalve shells by drilling or marginal chipping, depending on 

the prey size (Peharda and Morton 2006) as confirmed in our 

experiments in which all empty shells preyed by gastropods 

were intact and showed no evidence of drilling or damage.

When prey species were offered together, the overall total 

consumption of C. maenas was greater on stressed V. cor-

rugata in S10, and over both V. corrugata and C. edule in 

S5, although this difference was not significant. This con-

trasted with the previous experiment offering prey species 

separately, with a greater total consumption of C. edule, as 

expected given the great consumption of crabs of cockles in 

the field (Sánchez-Salazar et al. 1987; Whitton et al. 2012). 

This response can be the result of a combination of morpho-

logical (i.e. size, shape and shell thickness) and behavioural 

features of prey (Flynn and Smee 2010; Campbell et al. 

2019). Venerupis corrugata appear to possess a weaker and 

thinner shell compared to the other two species which are 

known to resist cracking (Coffen-Smout 1998; Brom and 

Szopa 2016) and juveniles used in the experiment were thin-

ner (personal observation). This characteristic, together with 

the fact that V. corrugata is quite vulnerable to low salinity 

(Domínguez et al. 2020), might result in a greater consump-

tion of crabs upon this species despite that C. edule showed 

similar vulnerability to low salinity (Domínguez et al. 2020). 

In contrast, R. philippinarum is a species more able to resist 

predation by its shell thickness and valve closure behaviour 

(Domínguez et al. 2020).

Burrowing behaviour, which is energetically costly, 

can be compromised by salinities ≤ 15 (Domínguez et al. 

2020; Woodin et al. 2020), and could also contribute to 

the observed patterns of consumption by crabs. This was 

reflected in the control treatment (S35), in which non-

stressed clams and cockles were less consumed. If physi-

ological and behavioural conditions are not compromised 

by stress, moving deeper into the sediment provides bivalves 

with spatial refuge from crabs and other predators. In the 

case of V. corrugata, this species often buries deeper than 

the others (~ 7 cm) (Macho et al. 2006), and even if not 

found on the surface as the cockles, their ability may be 

compromised (Domínguez et al. 2020) and, thus, may be 

found shallower. This, along with chemical signals released 

by damaged individuals may attract predators (Hayden et al. 

2007; Hay 2009; Zimmer-Faust et al. 1995). The gastropod 

clearly consumed more cockles over the other two bivalve 

species, independently of the treatments, and this differ-

ence increased when non-stressed individuals were offered 

(Fig. 6). This result reinforces the preference for this prey 

species that was more often found on the surface, which 

facilitated their capture, compared to the other two clams 

(Verdelhos et al. 2015; Domínguez et al. 2020).

In summary, stressed V. corrugata and C. edule were 

more vulnerable, although to a lesser extent compared to 

what is described in most studies in the literature. They were 

often conducted without sediment, the burrowing refuge for 

the bivalves and, therefore, found much greater predation 

rates (Mascaró and Seed 2001; Breen and Metaxas 2008; 

Curtis et al. 2012). The two predators showed different 

foraging behaviour because C. maenas showed a greater 

consumption over V. corrugata and C. edule, whereas B. 

brandaris consistently consumed more C. edule in the 

choice experiments. This might indicate a greater profit-

ability of each prey species for each predator related to a 

greater availability for capture and consumption (Seed 1993) 

and/or the ratio of energy content to handling time for these 

two prey species (Charnov 1976). Feeding behaviour of 

predators changed with the level of salinity stress of prey: 

the more sensitive and mobile C. maenas detected rapidly 

more vulnerable, stressed prey likely through chemical cues 

(Hayden et al. 2007; Hay 2009), while B. brandaris showed 

lower selection ability, likely related to its lower mobility 

despite using chemical cues to find prey (Croll 1983).

Galician shellfish beds are currently affected by heavy 

rain events (Parada et al. 2012; Domínguez et al. 2020) that 

are predicted to increase in frequency and intensity in the 

short-term future at least in the winter season (Jacob et al. 

2014; Cardoso Pereira et al. 2020; Lorenzo and Alvarez 

2020). Such changes may cause considerable impacts on 

structure and dynamics of populations of commercially 

important bivalves either directly and/or indirectly via 

alteration of predator–prey interactions. This information 

is particularly useful for shellfish stakeholders, by detailing 

risks for commercially important species from the native 

C. maenas or other invasive predators that are becoming 

abundant on shellfish beds.
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