
Predator: A Predictable SDRAM Memory Controller

Benny Akesson
Technische Universiteit

Eindhoven
The Netherlands

k.b.akesson@tue.nl

Kees Goossens
NXP Semiconductors

Research &
Delft University of Technology

The Netherlands
kees.goossens@nxp.com

Markus Ringhofer
Graz University of Technology

Austria
markus.ringhofer@tugraz.at

ABSTRACT
Memory requirements of intellectual property components (IP) in
contemporary multi-processor systems-on-chip are increasing. Large
high-speed external memories, such as DDR2 SDRAMs, are shared
between a multitude of IPs to satisfy these requirements at a low
cost per bit. However, SDRAMs have highly variable access times
that depend on previous requests. This makes it difficult to ac-
curately and analytically determine latencies and the useful band-
width at design time, and hence to guarantee that hard real-time
requirements are met.

The main contribution of this paper is a memory controller de-
sign that provides a guaranteed minimum bandwidth and a maxi-
mum latency bound to the IPs. This is accomplished using a novel
two-step approach to predictable SDRAM sharing. First, we define
memory access groups, corresponding to precomputed sequences
of SDRAM commands, with known efficiency and latency. Sec-
ond, a predictable arbiter is used to schedule these groups dynami-
cally at run-time, such that an allocated bandwidth and a maximum
latency bound is guaranteed to the IPs. The approach is general
and covers all generations of SDRAM. We present a modular im-
plementation of our memory controller that is efficiently integrated
into the network interface of a network-on-chip. The area of the
implementation is cheap, and scales linearly with the number of
IPs. An instance with six ports runs at 200 MHz and requires 0.042
mm2 in 0.13µm CMOS technology.

Categories and Subject Descriptors: B.8.2 [Performance and re-
liability]: Performance Analysis and Design Aids

General Terms: Design, Reliability, Verification

Keywords: System-on-Chip, Memory Controller, SDRAM, Pre-
dictability

1. INTRODUCTION
Chip design is getting increasingly complex, as technological ad-

vances allow highly integrated systems on a single piece of sili-
con. A contemporary multi-processor system-on-chip (SoC) fea-
tures a large number of intellectual property components (IP), such
as streaming hardware accelerators and processors with caches,
which communicate through shared memory. The resulting mem-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

ory traffic is dynamic and the arrivals of requests at the memory
controller are not fully known at design time. Some of the IPs
have hard real-time requirements that must be satisfied to ensure
the functional correctness of the SoC [5]. High-speed external
memories, such as DDR2 SDRAMs [10], are used, as the mem-
ory capacity requirements of these systems cannot be satisfied in
a cost-effective way by on-chip SRAM. These memories must be
efficiently utilized, as they are one of the main SoC performance
bottle-necks [5]. A difficulty when sharing SDRAM is that they
have a highly variable access time that depends on previous re-
quests, resulting in interference between the IPs sharing the re-
source, hereafter referred to as requestors. As a consequence, the
amount of available bandwidth to/from external memory that is
useful to the IP, referred to as net bandwidth, also depends on
traffic [19]. These effects complicate analytical design-time veri-
fication, which is required to guarantee that hard real-time require-
ments are satisfied.

Existing external memory controllers are either not sufficiently
flexible to handle the increasing complexity of SoCs, or do not sup-
port analytical design-time verification of hard real-time require-
ments. Statically scheduled memory controllers execute precom-
puted schedules, which makes them predictable, but also unable to
adapt to changes in traffic and distinguish latency requirements of
critical requestors without over-allocating. Other controllers use
dynamic scheduling [13] that is flexible and maximize the offered
net bandwidth, but where it is difficult to bound the latency of a re-
quest analytically. As a result, the offered net bandwidth can only
be estimated by simulation, making bandwidth allocation a diffi-
cult task that must be re-evaluated every time a requestor is added,
removed or changes configuration.

The main contribution of this paper is a memory controller de-
sign that provides a guaranteed minimum net bandwidth and a max-
imum latency bound to the requestors. This is accomplished using
a novel two-step approach to predictable shared SDRAM access
that combines elements of statically and dynamically scheduled
memory controllers. First, we define read and write groups, cor-
responding to static sequences of SDRAM commands, with known
efficiency and latency. This allows a lower bound on the offered
net bandwidth to be determined. Second, requestors are sched-
uled dynamically at run-time by a Credit-Controlled Static-Priority
(CCSP) [1] arbiter that is composed of a rate regulator and a sched-
uler. The rate regulator isolates requestors and guarantees their al-
located net bandwidths independently of each other’s behavior. The
static-priority scheduler provides a maximum latency bound that is
decoupled from the allocated bandwidth. The implementation of
the design is modular and the area scales linearly with the num-
ber of requestors. An instance with six ports runs at 200 MHz and
requires 0.042 mm2 in 0.13µm CMOS technology.

This paper is organized as follows. In Section 2, we review re-
lated work. We proceed in Section 3 by briefly explaining the basic

operation of an SDRAM and defining the concept of memory ef-
ficiency. In Section 4, we propose a solution to the problem that
allows us to verify at design time that bandwidth and latency re-
quirements are satisfied. We show the implementation of our mem-
ory controller in Section 5, before discussing experimental results
in Section 6. Finally, we present conclusions and future work in
Section 7.

2. RELATED WORK
External memory controllers can be statically or dynamically

scheduled. The level of predictability is high for statically sched-
uled controllers, as the latency of a request and the offered net
bandwidth can be computed at design time. For this reason, stat-
ically scheduled memory controllers are used in some embedded
systems with very strict real-time requirements, such as TV pic-
ture improvement ICs [15]. However, the precomputed schedule
makes these controllers unable to adapt to any changes in traffic.
Requestors have to wait for their reserved slots in the schedule be-
fore they receive service, which makes latency inversely propor-
tional to the allocated bandwidth. This coupling between latency
and allocated bandwidth makes these controllers unable to distin-
guish requestors with low latency requirements without reserving
more slots in the schedule, resulting in low memory utilization. Fi-
nally, a large number of schedules have to be computed and stored
in memory, as convergence of application domains in new SoCs
causes a combinatorial explosion with respect to the number of use-
cases [8]. These properties prevent statically scheduled controllers
from scaling to larger systems with more requestors and more dy-
namic applications.

Dynamically scheduled memory controllers are more prevalent
in areas where the traffic is not known up front, and target high
flexibility and efficiency, at the expense of predictability. They of-
fer sophisticated features, such as support for preemption and re-
ordering [13], to optimize the offered net bandwidth and average
latency. These features complicate design-time analysis and make
it very difficult to provide analytical latency bounds.

The dynamically scheduled SDRAM controllers in [9,11,18] all
use priorities to decouple latency and rate, and provide rate regu-
lation to isolate requestors and prevent starvation. The arbitration
in [11] supports preemption for high-priority requestors to reduce
latency. Like [12, 18], it furthermore considers the memory state
when scheduling to increase the amount of net bandwidth. No an-
alytical bounds are presented on latency or on net bandwidth for
any of these controllers thus preventing analytical design-time ver-
ification of hard real-time requirements. A streaming memory con-
troller is presented in [2] that uses an access granularity of a full
row (1 KB) to minimize power. Although this granularity allows
the amount of net bandwidth to be determined at design time, it
results in high latencies and large buffering. The scheduler is simi-
lar to weighted round-robin, which provides isolation of requestors
through rate regulation, but does not decouple latency and rate. No
general latency bounds are presented for this controller.

3. SHARING SDRAM
This section addresses the difficulties with sharing SDRAM in a

predictable manner. First, Section 3.1 briefly presents the basics of
SDRAM operation. We proceed in Section 3.2 by defining memory
efficiency, and giving some insight into the complexities of deter-
mining the net bandwidth provided by an SDRAM at design time.

3.1 SDRAM operation
SDRAMs have a three dimensional layout. The three dimen-

sions are banks, rows and columns. A bank stores a number of
word-sized elements in rows and columns, as shown in Figure 1.

Description Parameter Min. cycles
ACT to ACT cmd delay (same bank) tRC 11
ACT to ACT cmd delay (diff. bank) tRRD 2
ACT to RD or WR cmd delay tRCD 3
PRE to ACT cmd delay tRP 3
Average REF to REF cmd delay tREFI 1560
REF to ACT cmd delay tRFC 15
CAS latency CL 3
Write recovery time tWR 3
Write-to-read turn-around time tWTR 2
Read-to-write turn-around time tRTW 4 / 6a

Table 1: Relevant timing parameters for a 32Mb x16 DDR2-
400B memory device.
a4 cycles if BL = 4 and 6 cycles if BL = 8

On an SDRAM access, the address of the request is decoded into
bank, row and column addresses using a memory map. A bank has
two states, idle and active. The bank is activated from the idle state
by an activate (ACT) command that loads the requested row onto
a row buffer, which stores the most recently activated row. Once
the bank has been activated, column accesses such as read (RD)
and write (WR) bursts can be issued to access the columns in the
row buffer. These bursts have a programmable burst length (BL)
of 4 or 8 words (for DDR2 SDRAM). Finally, a precharge (PRE)
command is issued to return the bank to the idle state. This stores
the row in the buffer back into the memory array. Read and write
commands can be issued with an auto-precharge flag resulting in an
automatic precharge at the earliest possible moment after the trans-
fer is completed. In order to retain data, all rows in the SDRAM
have to be refreshed regularly, which is done by precharging all
banks and issuing a refresh (REF) command. If no other command
is required during a clock cycle, a no-operation (NOP) command
is issued.

row buffer

activate

bank

read write

precharge

Figure 1: The multi-banked architecture of SDRAM.

SDRAMs have timing constraints defining the required mini-
mum delay between different commands. Table 1 summarizes the
most relevant constraints for a 64 MB DDR2-400B [10] device,
which serves as example memory throughout this paper. The core
of this memory runs at 200 MHz and the data bus at 400 MHz, as it
transfers data on both the rising and falling edges of the core clock.

A benefit of a multi-bank architecture is that commands to dif-
ferent banks can be pipelined. While data is being transferred to or
from a bank, the other banks can be precharged and activated with
another row for a later request. This process, called bank prepara-
tion, sometimes completely hides the precharge and activate delays.

3.2 Memory efficiency
The bandwidth available from a memory ideally corresponds to

the product of the word width and the clock frequency, referred
to as the peak bandwidth (800 MB/s for our device). SDRAMs
cannot, however, be fully utilized due to stall cycles caused by the
timing constraints of the memory or memory controller policies.
This is captured by the concept of memory efficiency. Memory
efficiency is defined as the fraction of the amount of clock cycles in

which requested data is transferred, and the total number of clock
cycles. Net bandwidth is hence the product of the peak bandwidth
and the memory efficiency.

A useful classification of memory efficiency into five categories
is presented in [19]. The categories are: 1) refresh efficiency, 2)
read/write efficiency, 3) bank efficiency, 4) command efficiency,
and 5) data efficiency. Memory efficiency can be expressed as the
product of these efficiencies. All of these categories, except refresh
efficiency, are traffic dependent, and hence difficult to determine
at design time. We proceed by briefly looking into the different
categories.

Refresh efficiency
An SDRAM needs to be refreshed regularly in order to retain data
integrity. A refresh command that requires tRFC cycles to com-
plete must be issued every tREFI cycles on average. Before the
refresh command is issued, all banks have to be precharged. Re-
fresh efficiency, eref, is independent of traffic, and can be calculated
at design time. Refresh efficiency depends on the memory size, and
is typically between 95-99% for DDR2 memories.

Read/write efficiency
SDRAMs have a bi-directional data bus that requires time to switch
from read to write and vice versa. This results in lost cycles as the
direction of the data bus is being reversed. In order to use the data
bus of a DDR SDRAM at maximum efficiency, a read or write
command must be issued every BL/2 cycles. We quantify the cost
of switching directions as the number of extra cycles before the read
or write command can be issued, which can be derived from [10].
The cost of a read/write switch is trtw = tRTW − BL/2 and for a
write/read switch twtr = CL−1+tWTR, corresponding to 2 cycles
and 4 cycles, respectively, for our example memory. Read/write
efficiency, erw, depends on the number of read/write switches, and
cannot be determined at design time, unless the read and write mix
is known. The worst-case read/write efficiency for traffic consisting
of 70% reads and 30% writes equals 93.8%, according to a formula
presented in [19].

Bank efficiency
The access time of an SDRAM is highly variable. A read or write
command can be issued immediately to an active row. If a com-
mand, however, targets an inactive row (row miss), it first requires
a precharge followed by an activate command. This requires at least
an additional tRP+tRCD cycles (6 cycles for our memory) before
the read or write command can be issued. The penalty can be even
larger, as tRC cycles must separate one activate command from
another within the same bank, according to Table 1. This overhead
is captured by bank efficiency, ebank, which is highly dependent on
the target addresses of requests, and how they are mapped to the
different banks of the memory by the memory map.

Command efficiency
Even though a DDR device transfers data on both the rising and the
falling edge of the clock, commands can only be issued once every
clock cycle. Sometimes a required activate or precharge command
has to be delayed because another command is already issued in
that clock cycle. This results in lost cycles when a read or write
command has to be postponed due to a row miss. The impact of
this is connected to the burst length, where smaller bursts result
in lower efficiency. Command efficiency, ecmd, is traffic dependent
and can generally not be calculated at design time, but is estimated
in [19] to be between 95-100%.

Data efficiency
Data efficiency, edata, is defined as the fraction of a memory ac-
cess that actually contains requested data. This can be less than
100% since external memories are accessed with a minimum burst
length; four words for a DDR2 SDRAM. The problem is not only
related to fine-grained requests, but also to how data is aligned with
respect to a memory burst. This is because a burst is required to ac-
cess BL words from an address that is evenly divisible by the burst
length. Data efficiency is traffic dependent, but can be computed
at design time if the minimum access granularity of the memory,
and the size and alignment of requests are known. For example, a
large aligned cache line from an L2 cache typically has a data effi-
ciency of 100%. On the other hand, [19] computes a data efficiency
of 75% for an MPEG2 stream. For the purpose of this paper, we
assume aligned requests with a size that is a multiple of the fixed
access granularity, unless otherwise noted, which results in a data
efficiency of 100%.

We conclude from this section that it is, in general, difficult
to determine memory efficiency analytically at design time. Fig-
ure 2 shows the worst-case memory efficiency (excluding data effi-
ciency), resulting from simple worst-case analysis, for burst lengths
of four and eight words. The calculated efficiency assumes that ev-
ery burst targets a different row in the same bank, and that there is
a read/write switch between every burst. This results in unaccept-
ably low efficiency, less than 40% for all memories in the figure,
due to bank conflicts (that hide the read/write switching cost). We
conclude from the figure that we must be able to guarantee at de-
sign time that fewer bank conflicts occur to improve efficiency and
provide a tighter bound than that of simple worst-case analysis. We
furthermore see that the worst-case efficiency drops as the memo-
ries become faster, indicating that the problem is becoming more
severe. The reason is that the timings in the memory core are more
or less the same for all DDR2 memories. Increasing clock frequen-
cies hence results in longer timings measured in clock cycles. This
trend is expected to continue into the DDR3 generation of SDRAM.

 0

 20

 40

 60

 80

 100

DDR2-400B

DDR2-533B

DDR2-667C

DDR2-800C

W
or

st
-c

as
e

ef
fic

ie
nc

y
[%

]

Memory device

Burst size 8
Burst size 4

Figure 2: Worst-case memory efficiency for a number of DDR2
memories.

4. PROPOSED SOLUTION
In this section we present a novel approach to memory controller

design that allows us to provide a net bandwidth guarantee and
a maximum bound on latency. We present three memory access
groups in Section 4.1 and derive a lower bound on memory effi-
ciency based on the classification in Section 3.2. We proceed in
Section 4.2 by explaining how a predictable arbiter schedules these
groups dynamically at run-time to provide a guaranteed net band-
width and maximum latency bound, while keeping requestors iso-
lated.

4.1 Memory access groups
Memory access in our memory controller design is based on

three memory access groups, a read group, a write group, and a re-
fresh group. In this section, we show how to construct these groups
to account for the different categories of memory efficiency, such
that the efficiency of an arbitrary combination of groups can be
bounded at design time. The groups used in this paper have been
composed manually for our example memory, although the method
is general and applies to all SDRAMs.

The read and write groups are composed of one read or write
burst to all banks in sequence. This is a highly efficient way to
access memory that makes maximum use of bank preparation. A
limitation of this approach is that memory is accessed with a fixed
granularity of BL × nbanks × wmem B, where nbanks correspond to
the number of banks and wmem to the width of the memory in-
terface. This equals 64 B for our example memory with a burst
length of eight words and four banks. Some SoCs, such as [4], are
designed with the efficiency of SDRAM in mind, and choose the
request sizes of the IPs as a multiple of this granularity where pos-
sible. This access granularity also fits well with the size of a typical
L2 cache line, and even with the L1 cache line size of certain pro-
cessors, such as the TriMedia 3270 [17]. Smaller grained accesses
are supported by applying a read or write mask and throwing away
unwanted data, which impacts the data efficiency of the solution.

The read and write groups are designed to eliminate interference
between requestors. This is accomplished by ensuring that an ar-
bitrary row can be activated without delay cycles caused by pre-
vious requests. According to [10], two timing constraints must be
satisfied for this to hold. First, there must be at least tRC cycles
between consecutive activate commands to the same bank. Second,
there must be at least tWR + tRP cycles from the completion of
the last write burst to a bank, before a new activate command can
be issued to that bank. All bank conflicts are accounted for once
these constraints are met. One read or write burst to each bank with
burst length 8 satisfies these requirements for our example memory
and yield a bank efficiency of 100%.

Figure 3 shows a read and a write group for our example mem-
ory. The numbers in the figure correspond to the number of the
corresponding bank. We have wrapped the elements on the data
bus with respect to the length of the groups. This shows that the
groups are pipelined and very efficient, as they transfer data during
all cycles when groups of the same type follow each other. All read
and write commands are issued with auto precharge, since we want
to be able to activate an arbitrary row as fast as possible. There is no
contention on the command bus in these groups, and the command
efficiency is hence 100%.

Unlike [19], we do not use the average read/write mix to com-
pute the read/write efficiency, as this average may not be repre-
sentative for shorter intervals. This may result in less available
net bandwidth than computed during these intervals, potentially
violating the bandwidth guarantees of the requestors. Our bound
on read/write efficiency is computed according to Equation (1),
where tgroup corresponds to the number of cycles in the read and

ACT
0 NOP NOP 0

RD ACT
1 NOP NOP 1

RD ACT
2 NOP NOP 2

RD ACT
3 NOP NOP 3

RD

2 2 2 2 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2

cmd

data

ACT
0 NOP NOP 0

WR ACT
1 NOP NOP 1

WR ACT
2 NOP NOP 2

WR ACT
3 NOP NOP 3

WR

2 2 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 22data

cmd

Figure 3: Read group (above) and write group (below) with
burst length 8 for DDR2-400.

write groups. The equation determines the fraction of cycles dur-
ing one read and one write group that data is transferred, assuming
a maximum number of switches. This results in a lower bound on
read/write efficiency of 84.2%.

erw =
2 × BL/2 × nbanks

2 × tgroup + trtw + twtr
(1)

The refresh group consists of a single refresh command issued
after 10 NOP commands. This gives just enough time for the last
auto precharge from a write group to finish. This is the worst case,
as auto precharge after a read group finishes faster. The refresh
requires tRFC cycles to finish, giving the refresh group for our ex-
ample memory a total length tref = 25 cycles. A refresh group
is scheduled as soon as possible after tREFI − twtr − tgroup cy-
cles. This avoids preempting a group in progress, while ensuring
that a refresh command is issued at least every tREFI cycles. The
switching cost from write to read is used in the expression, as it is
larger than its counterpart in the other direction for all DDR2 mem-
ories. It furthermore takes four cycles before the first read or write
command is issued after the refresh group is finished, as shown in
Figure 3. Refresh efficiency, for our example, hence equals 98.1%,
according to Equation (2).

eref = 1 −
10 + 4 + tRFC

tREFI − twtr − tgroup
(2)

Having accounted for all categories of memory efficiency, we
conclude that our solution provides a guaranteed efficiency of eref×

erw × ebank × ecmd × edata = 0.981 × 0.842 × 1 × 1 × 1 = 82.6%
for aligned requests with a size that is a multiple of the fixed access
granularity. This corresponds to 660.9 MB/s for our memory.

Read and write groups with burst length 4 have also been com-
posed. These groups require 12 cycles to satisfy all timing require-
ments, and result in a memory efficiency of 60.3%. This choice
may be beneficial for systems with smaller request sizes, as the
access granularity is reduced to 32 B, which may increase data ef-
ficiency.

4.2 Arbitration
A predictable arbiter is required to schedule the memory access

groups in order to bound latency. Our approach is valid for any
arbiter providing a maximum latency bound, but we have chosen
a Credit-Controlled Static-Priority arbiter [1] for our implementa-
tion. A CCSP arbiter consists of a rate regulator and a static-priority
scheduler. This particular scheduler fits well with our requirements
for five reasons: 1) it isolates requestors by means of rate regula-
tion, 2) it guarantees an allocated bandwidth and a maximum la-
tency bound, 3) it decouples latency and rate using priorities, 4)
it has negligible over-allocation, and 5) it has a cheap RTL imple-
mentation and runs at high speed.

Requestors are characterized according to the (σ, ρ) model [3],
which uses a linear function to bound the amount of requested data
in an interval. The bounding function is determined by two param-
eters, burstiness, σ, and average request rate, ρ. Burstiness can be
interpreted as the maximum amount of data that can be requested
at any instant in time. Since memory requests are served by the
memory controller in a non-preemptive manner, the maximum re-
quest size, ŝ, for each requestor is also required to be specified. A
graphical interpretation of this terminology is shown in Figure 4.
The characterization of requestors is defined in Definition 1, where
R is the set of requestors sharing the resource. An abstract resource
view is used in [1], where a service unit corresponds to the access
granularity of the resource. We hence express σ and ŝ in units of
the fixed granularity of the read and write groups. We furthermore
express ρ as the required fraction of the available net bandwidth.

C
um

ul
at

iv
e

da
ta

Time [cycles]

σ

w

w̌′

ŵ

ρ

w′

δ̂

Figure 4: Request curve and service curve along with their cor-
responding bounds.

DEFINITION 1. The amount of requested data, w, by a requestor
r ∈ R is characterized as (σ, ρ, ŝ). The amount of requested data
is in any time interval [τ, t] upper bounded by
ŵ(t − τ) = σ + ρ × (t − τ).

The rate regulator isolates requestors from each other and pro-
tects requestors that behave according to their specification from
those that do not, by enforcing the specified rate and burstiness. A
requestor that does not behave according to its specification hence
only invalidates its own latency guarantee. This is a key prop-
erty in providing guaranteed service to requestors with timing con-
straints [20], and fits with the requirement that requestors must be
isolated.

It is shown in [1] that a CCSP arbiter belongs to the class of
latency-rate (LR) servers [16] and guarantees a requestor its allo-
cated bandwidth, ρ, and a maximum delay bound, δ̂. Delay is de-
fined as the time a request spends from entering the request queue
until it is scheduled. The maximum delay for a requestor with pri-
ority level p (lower level indicates higher priority) is computed ac-
cording to Equation (3), where max∀r∈R ŝr accounts for that re-
quests in progress are not allowed to be preempted. This is a stan-
dard delay bound [3] for static-priority schedulers in combination
with (σ, ρ)-constrained requestors that defines a guaranteed service
curve, w̌′, as shown in Figure 4.

δ̂p =
max∀r∈R ŝr +

∑p

j=0
σj

1 −
∑p−1

j=0
ρj

(3)

Due to the abstract resource view, the maximum delay in Equa-
tion (3) is expressed as the maximum number of read or write
groups that are scheduled before the first group of the considered
request. Equation (5) translates this into clock cycles. It is straight-
forward to compute the time before the first or last data word of the
request is available in the response queue of the requestor, consid-
ering that the exact compositions of the groups are known. Equa-
tion (4) computes the time of the read and write groups, plus the
maximum additional time required for read/write switches. This
considers read requests, which is the worst-case, as their experi-
enced switching cost is slightly higher than that of a write group.
Equation (5) adds the maximum interference from refreshes during
this interval.

taux(x) = x × tgroup +

⌈

x + 1

2

⌉

× twtr +

⌊

x + 1

2

⌋

× trtw (4)

ttot(x) =

⌈

taux(x)

tREFI − twtr − tgroup

⌉

× tref + taux(x) (5)

S
D

R
A

M

Memory ControllerNetwork Interface

Arbiter

Memory
Mapping

Controller
Engine

R
eq

ue
st

Q
ue

ue
s

R
es

po
ns

e
Q

ue
ue

s

write data

cmd

read data

pe
nd

in
g

re
qu

es
t

logical addr

Generator
Command

physical addr

Figure 5: Memory controller architecture.

5. CONTROLLER ARCHITECTURE
The proposed memory controller has been implemented in VHDL

in the context of a multi-processor SoC that is interconnected using
the Æthereal NoC [6]. The memory controller architecture, shown
in Figure 5, is modular and consists of four functional blocks: 1)
Controller Engine, 2) CCSP Arbiter, 3) Memory mapping, and 4)
Command Generator.

Requests arrive at a network interface (NI) [14] on the edge of the
network, where they are buffered in separate request queues per re-
questor. The requestors are mapped to request queues, according to
their priorities. Priorities are changed between use-cases by using
the reconfiguration abilities of Æthereal [7] to change the mapping
of requestors to queues.

The NI signals to the arbiter, for each requestor, the size of the
request at the head of the queue and if it is a read or a write. Once
the memory controller is ready for a new group, the controller en-
gine instructs the arbiter to schedule a requestor. The static-priority
scheduler is implemented by a tree of multiplexors that grants ac-
cess to the highest priority requestor that has a pending request that
is considered eligible by the rate regulator. An index identifying the
scheduled requestor is returned to the controller engine along with
a read/write identifier. The controller engine uses this information
to route the destination address to the memory mapping and data to
and from the appropriate queue in the NI.

The memory mapping decodes the logical memory addresses of
the requestors, into a physical SDRAM address consisting of bank,
row and column. An interleaving memory map is used to map the
bursts of a group to different banks, as mentioned in Section 4.1.
For our example groups with burst length 8, this is implemented by
letting bits 3 to 4 in the logical memory address index the bank, 12
to 24 index the row, and 0 to 2 and 5 to 11 index the column.

The command generator generates the SDRAM commands cor-
responding to the scheduled memory access group. This is the only
part of the design that requires modification if the target memory is
changed.

The design is small for two reasons. First, because there are no
data buffers in the controller, as it re-uses buffering already present
in the network interface. Second, unlike [9,11], the command gen-
erator does not need to use registers to track the memory state, since
the memory access groups are designed with the timing constraints
of the memory in mind. Synthesis results in 0.13µm CMOS tech-
nology with six ports and a speed target of 200 MHz resulted in
a total area of 0.042 mm2. The arbiter is the dominant block of
the synthesized instance, as it accounts for almost half the total
area. Figure 6 shows a linear increase in the area of the arbiter as
the number of ports increase. The sizes of the memory mapping,
command generator and controller engine are constant and hence
unaffected by the number of ports.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

2 4 6 8 10 12

A
re

a
[m

m
2]

Ports

Figure 6: Controller area depending on the number of ports.

Requestor Bandwidth [B] Max [ns] Bound [ns]
r0 16499968 204 340
r1 16500032 304 615
r2 16499968 463 1185
r3 16499968 732 2810

Table 2: Results for use-case with four requestors with identical
behavior.

6. EXPERIMENTAL RESULTS
We demonstrate the analysis of the memory controller by ob-

serving simulation results from a SystemC model. The model is
implemented on the level of basic groups and is timing accurate.
For ease of understanding, we choose a simple use-case with four
hard real-time requestors, mimicked by traffic generators. The re-
questors have identical behavior with net bandwidth requirements
of 165 MB/s (ρ = 0.249) and burst sizes of 64 B (ŝ = 1). This
corresponds to a total load of 660 MB, or 82.5% of the peak band-
width. Priorities are assigned to the requestors in ascending order,
such that r0 have the highest priority, and r3 the lowest. Requests
are issued periodically, although jitter is introduced by the network.
Setting σ = 1.3 accounts for this jitter and prevents the rate reg-
ulator from slowing down the requestors, as long as they behave
according to their specification.

The use-case was simulated during 108 ns. Table 2 shows that all
requestors receive their allocated bandwidth, and that the maximum
measured delay is less than the calculated bound for all requestors.
We observe that the difference between the maximum measured de-
lay and the bound gets larger for lower priority requestors. A reason
for this is that the risk of maximum interference from higher prior-
ity requestors becomes increasingly unlikely for every requestor.

To illustrate the benefits of rate regulation, we doubled the re-
quested bandwidth of r0 without changing the requestor charac-
terization in the rate regulator. Table 3 shows that this causes the
maximum measured delay to explode for r0, while the others still
enjoy their guarantees. All requestors still receive their allocated
bandwidth, and r0 even receives some extra, since there is slightly
more offered net bandwidth than indicated by the lower bound.
This is because the worst-case amount of read/write switches did
not occur. These results confirm that rate regulation allows us to
give hard real-time guarantees to requestors that behave according
to their specification in the presence of, for example, soft real-time
requestors that cannot be accurately characterized.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we present a memory controller design that pro-

vides a guaranteed minimum bandwidth and a maximum latency
bound to the IPs. This is accomplished using a novel two-step ap-
proach to predictable SDRAM sharing. First, we define memory
access groups, corresponding to precomputed sequences of SDRAM

Requestor Bandwidth [B] Max [ns] Bound [ns]
r0 17327104 5316 340
r1 16500032 303 615
r2 16499968 364 1185
r3 16499968 737 2810

Table 3: Results for use-case where r0 is over-asking.

commands, with known efficiency and latency. Second, a pre-
dictable arbiter is used to schedule these groups dynamically at
run-time, such that an allocated bandwidth and a maximum latency
bound is guaranteed to the IPs. We present a modular implemen-
tation of our memory controller that is efficiently integrated into
the network interface of a network-on-chip. The area of the imple-
mentation is cheap, and scales linearly with the number of IPs. An
instance with six ports runs at 200 MHz and requires 0.042 mm2 in
0.13µm CMOS technology.

Future work in this direction involves developing an algorithm
for automatic generation of memory access groups, given a set of
memory timings and a burst size. With this it is possible to generate
the VHDL code for the corresponding command generator. This
significantly reduces the effort to provide a low-cost predictable
memory controller design for an arbitrary SDRAM memory.

8. REFERENCES
[1] B. Akesson et al. Real-Time Scheduling of Hybrid Systems using

Credit-Controlled Static-Priority Arbitration . Technical report, NXP
Semiconductors, 2007. NXP-R-TN 2007/00119.

[2] A. Burchard et al. A real-time streaming memory controller. In Proc. Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2005.

[3] R. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE
Trans. on Info. Theory, 37(1), 1991.

[4] S. Dutta et al. Viper: A multiprocessor SOC for advanced set-top box and
digital TV systems. IEEE Design and Test of Computers, 2001.

[5] K. Goossens et al. Interconnect and memory organization in SOCs for
advanced set-top boxes and TV — Evolution, analysis, and trends. In
Interconnect-Centric Design for Advanced SoC and NoC. Kluwer, 2004.

[6] K. Goossens et al. The Æthereal network on chip: Concepts, architectures, and
implementations. IEEE Design and Test of Computers, 22(5), 2005.

[7] A. Hansson and K. Goossens. Trade-offs in the configuration of a
network on chip for multiple use-cases. In The 1st ACM/IEEE International
Symposium on Networks-on-Chip, 2007.

[8] A. Hansson et al. Undisrupted quality-of-service during reconfiguration of
multiple applications in networks on chip. In Proc. Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2007.

[9] S. Heithecker and R. Ernst. Traffic shaping for an FPGA based SDRAM
controller with complex QoS requirements. In DAC ’05: Proceedings of the
42nd annual conference on Design automation, 2005.

[10] JEDEC Solid State Technology Association. DDR2 SDRAM Specification,
JESD79-2C edition, May 2006.

[11] T.-C. Lin et al. Quality-aware memory controller for multimedia platform
SoC. In IEEE Workshop on Signal Processing Systems, SIPS 2003, 2003.

[12] C. Macian et al. Beyond performance: Secure and fair memory management
for multiple systems on a chip. In IEEE International Conference on
Field-Programmable Technology (FPT), 2003.

[13] S. Rixner et al. Memory access scheduling. In ISCA ’00: Proceedings of the
27th annual international symposium on Computer architecture, 2000.

[14] A. Rădulescu et al. An efficient on-chip network interface offering guaranteed
services, shared-memory abstraction, and flexible network programming.
IEEE Trans. on CAD of Int. Circ. and Syst., 24(1), 2005.

[15] F. Steenhof, et al. Networks on chips for high-end consumer-electronics TV
system architectures. In Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2006.

[16] D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis
of traffic scheduling algorithms. IEEE/ACM Trans. Netw., 6(5), 1998.

[17] J.-W. van de Waerdt et al. The TM3270 media-processor. In MICRO 38:
Proceedings of the 38th annual IEEE/ACM International Symposium on
Microarchitecture, 2005.

[18] W.-D. Weber. Efficient Shared DRAM Subsystems for SOCs. Sonics, Inc, 2001.
White paper.

[19] L. Woltjer. Optimal DDR controller. Master’s thesis, University of Twente,
Jan. 2005.

[20] H. Zhang. Service disciplines for guaranteed performance service in
packet-switching networks. Proceedings of the IEEE, 83(10), 1995.

