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Predator and prey perception in copepods due to 

hydromechanical signals 

Thomas Kiarboe*, Andre W. Visser 

Danish Institute for Fisheries Research, Charlottenlund Castle, DK-2920 Charlottenlund, Denmark 

ABSTRACT: Copepods can perceive moving predators and prey by means of the hydrodynamical dis- 
turbances these generate. We formulate a simplified, general model of the fluid disturbance generated 
by a plankter that is moving or generating a feeding current and we estimate the magnitude and atten- 
uation of the different components of the fluid disturbance. We use this model to argue that prey per- 
ception depends on the absolute magnitude of the fluid velocity generated by the moving prey, while 
predator perception depends on the magnitude of one or several of the components of the fluid veloc- 
ity gradients (deformation rate, vorticity, acceleration) generated by the predator. On the assumption 
that hydrodynamic disturbances are perceived through the mechanical bending of sensory setae, we 
estimate the magnitude of the signal strength due to each of the fluid disturbance components. We then 
derive equations for reaction distances as a function of threshold signal strength and the size and veloc- 
ity of the prey or predator. We provide a conceptual framework for quantifying threshold signal 
strengths and, hence, perception distances. The model is illustrated by several examples, and we 
demonstrate, for example, (1) how larval fish behaviour is adapted to allow their undetected approach 
up to the strike distance of their copepod prey, (2) that prey velocity is much more significant for prey 
encounter rates than traditionally assumed, even for cruising predators, (3) that prey perception is 
strongly biased towards large and rapidly swimming/sinking prey particles, and (4) that the model can 
accommodate the 3 orders of magnitude variation in clearance rates observed in the copepod Oithona 
similis feeding on motile protists and sinking particles. We finally discuss the implications of hydro- 
mechanical predator and prey perception to trophic interactions and vertical particle fluxes, and sug- 
gest important research questions that may be addressed. 

KEY WORDS: Hydrodynamic model. Fish larval behaviour . Oithona feeding . Vertical flux 

INTRODUCTION 

Predator and prey perception are fundamental for 

trophic interactions in marine plankton, and prey or 

predator perception distances are critical to capture 

success and escape probability, respectively. Predator 

and prey perception in marine planktonic animals can 

be due to visual, mechanical or chemical signals. This 

study examines aspects of mechanical predator and 

prey perception with special emphasis on perception 

distances in copepods. 

A body moving through water generates velocity 

gradients, the magnitude of which depends on the size 

and velocity of the moving body. This is the case 

whether the body moves due to a body force (gravity or 

buoyancy, e.g. a sinking faecal pellet or an ascending 

Noctiluca scintillans) or it is self propelled (e.g. a cruis- 

ing copepod with a feeding current). A predator may 

perceive the fluid velocity generated by a moving prey 

(and hence attack), and a prey may perceive the veloc- 

ity gradients generated by a moving predator (and 

hence escape). It has been demonstrated experimen- 

tally that copepods are able to perceive such fluid dis- 

turbances and to respond accordingly (Schroder 1967, 

Haury et al. 1980, Fields & Yen 1996, 1997, Heuch & 

Karlsen 1997), although it has not always been clear to 

which component of the fluid disturbance (fluid veloc- 

ity, fluid acceleration, velocity gradient, or other char- 

acteristics) the copepod responds. 

In this study, using idealised models, we attempt to 

quantify the magnitude and attenuation of the differ- 

ent components of the fluid disturbance generated by a 

moving body and to identify the component(s) that 

0 Inter-Research 1999 

Resale of full article not permitted 



82 Mar Ecol Prog Ser 179: 81-95, 1999 

(a) Along streamline velocity gradient 

Translation Rotation Deformation 

may be detected by a copepod. If one knows the mag- 

nitude of the fluid disturbance required to elicit a 

response, it is possible to estimate the distance at 

which a copepod can perceive a predator or a prey as a 

function of the size and velocity of the predator or prey. 

Following Tiselius & Jonsson (1990) and Tiselius et 

al. (1997). we examined the fluid velocity and velocity 

gradients generated by a moving plankter by treating 

the swimming organism as a translating sphere at 

low Reynolds number (i.e. laminar flow). We recognise 

that this is a great simplification, both because few 

plankters are spherical and because the analysis 

ignores hydrodynamical signals generated by moving 

appendages, which may also be important (Kirk 1985). 

However, this simplification makes the problem amen- Fig- l -  Schematic of fluid motion. (a) An along streamline 
velocity gradient is characterised by translation and pure  

to quantitative and Our gen- longitudinal deformation, (b)  A simple shear flow is 

eral. Zaret (1980) developed a much more detailed tensed by translation, rotation and pure shear deformation 
model of the fluid disturbance generated by a specific 

organism (the cladoceran Bosmina) and a discussion of 

more complex real situations can be found in Yen & ity gradient at any point in the fluid equals the sum of 

Strickler (1996). Despite its simplicity, our quantitative the deformation rate and the rotation. 

analysis may help to identify some important charac- Vorticity describes the rotational component of the 

teristics of predator and prey perception, may have flow. It has units of (radians) per unit time and can be 

direct application to some special situations, and may viewed as solid body rotation. By definition, vorticity 

help identify possible new research avenues. In the fol- equals twice the rotation rate. Vorticity is a vector 

lowing we first provide models of fluid disturbance; quantity and points 'upwards' from the plane where 

then discuss which component(s) of the fluid distur- the rotation is anti-clockwise. In 3-D space, vorticity 

bance may elicit response in different situations; and has 3 components. We shall call the axis about which 

finally provide examples to illustrate the theory and there is maximum rotation, the principal axis of vortic- 

discuss some of its potential implications for trophic ity; vorticity around axes perpendicular to the principal 

interactions in the pelagic realm. axis is then zero. Vorticity is non-zero wherever there 

are velocity gradients perpendicular to the direction of 

the flow. Therefore, in a flow field where the velocity 

CHARACTERIZATION OF THE FLOW FIELD: changes only in the direction of the flow, vorticity is 

DEFINITION OF TERMS zero (Fig. la) .  In a simple shear flow, i.e. where the 

velocity changes only in the direction perpendicular to 

In our reading of the biological literature, it has the flow, the vorticity is equal to the velocity gradient 

become apparent to us that there is a considerable con- (Fig. lb) .  

fusion in terminology and quantification of the differ- Deformation can be visualised by considering a 

ent components of fluid motion. Shear, velocity gradi- fluid-filled spherical balloon in a flow field. In a uni- 

ent and deformation rate are often used synonymously; form flow with no velocity gradients, the balloon will 

terms such as 'stretching deformation' and 'shear keep its shape and the deformation rate is zero. In the 

deformation' are used without definition and may not presence of velocity gradients, different parts of the 

mean the same to all, and vorticity and strain remain a balloon will travel with different velocities, and the 

mystery to many. We will therefore start with an expla- balloon will change shape; it deforms. However, the 

nation of the terms we use in the following (a more rig- volume of the balloon remains constant because the 

orous treatment is given in Appendix 1). fluid is incompressible. Therefore, if the balloon 

In a moving fluid, the motion of a fluid element can stretches in one direction, it will compress in others. To 

be split up into 3 parts: translation as a rigid body, rota- quantify deformation rate we need to define reference 

tion as a rigid body, and deformation (Pedley 1997; axes. Deformation rate, like vorticity, has units of in- 

Fig. 1). These can be quantified, respectively, by the verse time. It is the velocity per unit distance at which 

'fluid velocity' (field), the 'vorticity' (solid body rota- the 2 points at the periphery of the balloon that are 

tion), and the 'deformation rate' (or rate of strain). Both intersected by a particular reference axis move to- 

the rotational and the deformation components are wards or away from one another. We shall define the 

due to velocity gradients and, quantitatively, the veloc- 'maximum deformation rate' as the deformation rate 
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along the axis that yields the fastest rate. The nature of 

deformation is independent of the direction of the 

velocity gradients; however, we may distinguish 

between pure 'shear deformation' and pure 'longitudi- 

nal deformation' which occur in flows characterised 

solely by simple shear or along-flow velocity gradients, 

respectively (Fig. 1). 

The term 'shear' is often used in the biological litera- 

ture, but it is only well defined in a simple shear flow 

(i.e. velocity gradients solely perpendicular to the flow 

direction), where it equals the magnitude of the veloc- 

ity gradient. We shall refrain from using the term 

except in this special case. 

In the following we provide equations for fluid veloc- 

ity, deformation rate, vorticity and acceleration around 

a translating sphere, often without proof. We refer to a 

formal mathematical treatment in Appendix 1. 

MODEL OF THE FLOW FIELD 

Classic solutions of the low Reynolds number flow 

around a moving sphere (Stokes 1851, cf. Batchelor 

1967) are often presented in terms of streamlines, ei- 

ther as a creeping flow around a fixed sphere (Fig. 2a), 

or for a translating sphere (Fig. 2b). Despite the differ- 

ent patterns of the stream lines, these 2 cases are in 

fact identical and are related by a coordinate transfor- 

mation, i.e. coordinates fixed on the sphere (Fig. 2a) 

versus coordinates fixed with respect to the far field 

fluid (Fig. 2b). In this latter case, the streamlines are 

time dependent, i.e. some time later, the sphere to- 

gether with the streamlines will have moved. How- 

ever, Fig. 2b can also be interpreted as the 'spherical 

pump' solution. That is, fluid is pumped at a uniform 

rate through a fixed spherical region of space. There- 

fore, the 2 different solutions in Fig. 2 allow 2 different 

interpretations in our context, viz.: (1) flow around a 

Fig. 2. Streamlines for creeping flow (a) around a fixed sphere 
or (b) around a translating sphere. Spatial coordinates are in 

units of sphere radii 

moving plankter (e.g. sinking or ascending particle, a 

swimming flagellate, the nose of an approaching fish); 

and (2) the flow field of a copepod feeding current. 

The assumption of Stokes' flow (Fig. 2) is only strictly 

valid for Reynolds number Re << 1, but yields accurate 

descriptions up to Re = 1 (White 1974). At higher Re the 

flow begins deviating significantly behind the particle. 

However, even up to quite high Reynolds numbers, of 

the order of 10 or more, there is limited effect upstream 

of the particle (cf. Lamb 1932, Batchelor 1967 for 

Oseen's correction, and Van Dyke 1988 for mapped 

flow fields up to Re order 10000). Because in this work 

we consider only the flow characteristics upstream of 

the equator of the particle, our considerations are 

robust up to at least Re of the order of 10. This is why 

the Stokes' flow (Fig. 2a) accurately represents the 

observed flow off the equator of an ascending Noc- 

tiluca scintlllans (Re = 0. l, Ki~rboe & Titelman 1998) or 

a descending marine snow particle (Re = 2, Ploug & 

Jsrgensen 1999). Likewise, and despite the simplicity 

of the model, the upstream flow characteristics of a 

copepod feeding current is well represented by the 

spherical pump solution, Fig. 2b, in Centropages typi- 

cus (Re = 3, Kisrboe et al. 1999, in this issue), Euchaete 

rimana (Re - 8, Fields & Yen 1997), the huge Pleuro- 

mamma xiphias (Re = 75, Fields & Yen 1993) and other 

copepods (Tiselius & Jonsson 1990). 

In the following we will concentrate on case (a) and 

note that most of the flow field characteristics for case 

(a) and (b) are identical; the only significant difference 

is the magnitude and distribution of acceleration. 

Table 1 explains the symbols used. 

The stream function for creeping flow of velocity U 

around a rigid sphere of radius c is given in Appendix 

1 (Eq. A15). The fluid velocity components in the radial 

and tangential directions are (cf. Eqs. A12 & A13) 

where (r,0) are spherical coordinates (cf. Appendix 1). 

We have plotted the magnitude of the velocity, lul = 

J(U? + u8'), in Fig. 3a and the attenuation of the veloc- 

ity in the directions directly in front (8 = 0') and off the 

equator (8 = 90") of the sphere in Fig. 4a. High fluid 

velocities extend far into the fluid; even 15 radii in 

front of the sphere, the fluid velocity is still ca 10 % of 

the sphere's velocity (or feeding current). 

A general formulation of the maximum deformation 

rate, A(0, r), is given in Appendix 1 (Eqs. A4 to A8) and 

is plotted in Fig. 3b. Specific evaluations (from 

Eq. A15) directly in front of the sphere (at 8 = 0') and 

off its equator (0 = 90") are 
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Table 1. Glossary 

General acceleration 
Acceleration in the radial direction 
Acceleration in the tangential direction 
Acceleration threshold for response 
Clearance rate 
Radius of sphere; length scale of predator 
Rate of strain tensor 
Gravitational acceleration 
Length scale of perceiving organism ( -  radius) 
Offset of centre of mass and geometric centre of a body 
Spherical coordinate; radial distance 
Reaction distance 
Reaction distance due to deformation, acceleration, vorticity, and shear, respectively 
Signal strength; velocity difference 
Threshold signal strength; velocity difference 
Signal strength due to deformation, acceleration, vorticity and shear, respectively; velocity difference 
Velocity of sphere relative to far field fluid; velocity scale 
General fluid velocity 
Radial velocity 
Tangential velocity 
Threshold fluid velocity for response 
General particle velocity 
Maximum rate of deformation 
Threshold deformation rate for response 
Principal components of rate of strain 
Spherical coordinate; azimuthal angle 
Shear rate; does not have a robust definition 
Dynamic viscosity 
Spherical coordinate; polar angle 
Density 
Density of fluid 
Density of particle 
General stream function 
Vorticity 
Azimuthal (spherical coordinates) component of vorticity 
Horizontal component of vorticity 
Critical horizontal vorticity for which an eccentric body begins to tumble 
Threshold vorticity for response 
Steady state orientation, angle relative to vertical 
Rotation rate 
Divergence operator 
Partial derivative operator 

and are plotted in Fig. 4b. Deformation rate attenuates 

rapidly along the side of the particle, but extends much 

further in front of it. In addition, it has a maximum 

value ( 3 U / 8 c )  at a distance (r = 42c)  in front of the 

sphere. 

In spherical coordinates, the vorticity has only 1 com- 

ponent, given by (Eq. A9) 

In contrast to deformation, vorticity is zero directly in 

front of the particle, and highest off its equator (Figs. 3c 

& 4c). The axis of the vorticity is in this 2-D representa- 

tion perpendicular to the plane. Vorticity extends 

around the equator of the particle as a doughnut of 

solid body rotation. 

Fluid acceleration, a(r ,8)  = u.Vu, is everywhere pro- 

portional to the magnitude of the velocity gradient and 

to the curvature of the streamlines. Of the flow para- 

meters, this is the only one that is different for the 

creeping flow and the feeding current (Fig. 3d,e). Gen- 

eral equations for each case are given in Appendix 1 

(Eq. A16 & A20). At 8 = 0" and 90" the equation for the 

creeping flow simplifies to: 



Maximum WHICH COMPONENTS OF THE FLUID 

DISTURBANCE CAN BE PERCEIVED? 

Copepods are equipped with hairs and setae extend- 

ing in all directions, particularly on the antennules and 

the telson, and these function as mechanoreceptors 

(Strickler & Bal 1973, Yen et al. 1992). In the following 

it is assumed that it is the mechanical 'bending' of 

setae extending into the fluid which is perceived by 

the copepod. Such bending may occur if there is a 

velocity difference between the copepod and the 

Absolute acceleration 
ambient fluid. The base of the setae moves with the 

4- --.... , copepod, whereas its tip moves with the local fluid 

velocity. The setae appear to be velocity rather than 

displacement sensors, and displacement rates of as lit- 

tle as 20 pm S-' are enough to elicit a neurophysiologi- 

cal response in copepods (Yen et al. 1992). This does 

not necessarily imply that behavioural responses have 

the same threshold value. Sinking, swimming and 

other behaviours of a copepod may cause considerable 

velocity differences without eliciting escape responses. 

In the following we shall disregard velocity differences 

due to the organism's own behaviour, assuming that 
Absolute acceleration 

the copepod can distinguish these from fluid distur- 

bances caused by a moving predator or prey. 

In the following we shall distinguish between the 

perception of an approaching predator and a moving 

- a: Velocity b: Deformation rate 

- - 8 = 90' 

-4 -2 0 2 4 - 
e, 

Fig. 3 .  Fluid flow around (a-d) a fixed sphere and (e) 4 
a translating sphere. Contour plots of (a) the absolute I I g 0.2 - , 

3 1 1  magnitude of the velocity measured relative to the 2: b 

particle, (b) maximum deformation rate, (c) vorticity 
O ' 
m 0 6 0.0 

and (d, e)  fluid acceleration. Spatial coordinates are in 0 5 70 15 20 25 0 5 10 15 20 25 

units of sphere radii (c), velocity in units of body veloc- Distance, units c Distance, units of c 
ity (U) ,  deformation rate and vortlcity in units of U/c 

and acceleration ~n units of U*/C C: V0rticity d: Acceleration 
2 0 

- 
0 

5 1.5 - 4 ,  

Acceleration for the creeping flow has lobes of 
U) 

high acceleration in front (at r = 2 . 2 ~ )  and to the 

sides (at r = 1 .??c). with peak values of about 

0.08U2/c (Figs 30 & i d )  The acceleration in 

both these locations is in the radial direction 

(the tangential components are both zero). 0.0 

However, the situations are somewhat different. 0 5 10 15 20 25 0 5 10 15 20 25 30 

At 8 = 0°, the acceleration is along the stream- Distance, unlts of c Distance, un~ts of c 

line so that fluid elements speed up and slow 
Fig. 4. Fluid velocity, deformation rate, vorticity and acceleration as 

down. At = is perpendicular functions of distance to a sphere (creeping flow solution); plotted in 
to the streamlines and is manifest in the curva- the move direction and perpendicular to the move direction off the 
ture of the fluid path. equator (i.e. at 8 = 0 and 90") 



86 Mar Ecol Prog Ser 179: 81-95, 1999 

prey. Typically, a prey is much smaller than its preda- 

tor. Thus, a prey will be more or less embedded in the 

flow generated by a predator; it will almost follow the 

streamlines. Conversely, the larger predator will not be 

moved by the local fluid disturbances generated by a 

small moving prey. Therefore, a large (predator) and a 

small (prey) particle, moving through the fluid, may be 

perceived by different components of the fluid distur- 

bance. 

Prey perceiving predator 

Generally, all parts of a rigid prey particle almost fol- 

lowing the streamlines of the flow in a velocity gradi- 

ent cannot travel with the same velocity as the ambient 

fluid, and there will thus be a velocity difference 

between the prey and the fluid (Zaret 1980). A velocity 

difference can arise due to fluid deformation, vorticity 

and acceleration. 

Deformation. The magnitude of the velocity differ- 

ence (signal strength, S) due to deformation is (cf. 

Haury et  al. 1980) 

where L is the linear dimension (radius) of the prey 

and A is the maximum deformation rate of the fluid. 

The rate of deformation also has components in other 

directions, but these will yield smaller signals and 

can, thus, be disregarded. Eq. (8) can also be inter- 

preted as the differential between receptor signals on 

different parts of the body. This, in effect, results in 

Eq. (8) and more explicitly emphasises that multiple 

sensors are involved. The signal strength due to de- 

formation is proportional to the deformation rate as 

well as the size of the prey. Its magnitude is indepen- 

dent of the direction of the velocity gradient, but may 

of course depend somewhat on the orientation of a 

(non-spherical) prey. 

Vorticity. Vorticity may likewise cause a velocity dif- 

ference depending on properties of the prey and on 

the orientation of the principal axis of vorticity (i.e. 

depending on the direction of movement of the preda- 

tor). If the prey's centre of mass is identical to its geo- 

metric centre, then the prey will exactly follow the 

solid body fluid rotation, and there will be no velocity 

difference. However, most zooplankters have the cen- 

tre of mass slightly offset from the geometrical centre 

(bottom-heavy), and they therefore resume a specific 

orientation in still water. If the steady state orientation 

is offset due to vorticity, the organisms will tend to 

reorientate due to the gravitational torque and assume 

a constant orientation where the gravitational torque is 

balanced by the shear induced viscous drag torque. 

The steady state orientation, measured as an angle rel- 

ative to the vertical, 6,  is (modified from Jonsson et al. 

1991) 

where 1 is the distance between the centre of buoy- 

ancy and the centre of gravity, oh is the horizontal com- 

ponent of vorticity, p the dynamic viscosity, p, the den- 

sity of the prey, and g the gravitational acceleration. If 

5 exceeds 90°, which happens if the viscous torque 

exceeds the gravitational torque for all orientations, 

there will be no steady state orientation, and the prey 

will continue to rotate with the fluid (but at a rate less 

that of the fluid). Since sin9O0 = 1, the critical vorticity 

for steady-state orientation is 

At vorticities less the critical value, the prey will 

assume its steady state orientation and, thus, will not 

rotate. The velocity difference due to vorticity (S,) can 

therefore be estimated as 

Recall that vorticity equals twice the rotation, hence the 

factor of in Eq. (1 1) (see also Eq. Al).  At vorticities ex- 

ceeding the critical value, the velocity difference due to 

vorticity does not exceed % L  W{, irrespective of its ac- 

tual magnitude. [If the predator is moving vertically, 

then uh =ag; if the predator is moving horizontally, oh = 

0 laterally and oh = oo dorsally and ventrally]. 

Acceleration. In an accelerating fluid, a prey with a 

density different from that of the ambient water will 

travel at  a different velocity. The magnitude of this 'slip 

velocity' can be estimated as follows. The simplified 

equation of motion (ignoring gravity) for a rigid sphere 

moving with velocity v in a fluid moving with velocity 

u is (Maxey & Riley 1983) 

where 

and 

where F is the dynamic viscosity of the fluid and p, and 

pf the density of the particle and the fluid, respectively. 

If the fluid is under constant acceleration a (i.e. U = 

at),  the steady state solution to Eq. (12) is similar to 

Stokes' law; 

where .Sslip = Iv - ul is the maximum slip velocity. It is 

not possible to solve Eq. (12) explicitly for a more real- 

istic situation, when the acceleration instead of being 
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constant is increasing over time as the prey is 

approached by the predator (cf. Figs. 3 & 4). However, 

numerical solutions to Eq. (12) demonstrate that the 

actual slip velocity is consistently less than the above 

estimated S,,,,, which thus provides an upper estimate 

of the slip velocity, also in a flow field with spatially 

varying acceleration. Because a varies with L-2 

(Eq. 13), signal strength due to this mechanism, .Ssli,, 

scales with L2. 

Scaling. The 3 signal strengths attenuate differently 

as they are associated with different components of the 

flow (Figs. 3 & 4). The 'choice' of component therefore 

has implications on the distance at which a prey may 

perceive a predator. That is, different signals are per- 

ceived at different distances. We therefore compare 

the magnitudes of the different sources of velocity dif- 

ference. For simplicity, we consider only the special 

case of 8 = 0". Here, the vorticity is zero and the accel- 

eration magnitude equals the velocity multiplied by the 

along-flow velocity gradient (which in this case = A) ,  

i.e. a, = u,A. Thus, from Eqs. (8) & (15), the 2 sources of 

velocity difference, Sdef and .Ssli,, are equal when 

where U,' is the critical fluid velocity magnitude at 

which the 2 sources of velocity difference are equal. 

Reorganising and combining with Eq. (13) yields 

Thus, the critical velocity is inversely proportional to 

the size of the prey organism. If one assumes that the 

copepod has an excess density of 5 %, pc = 1 g cm-3 and 

y = 10-2 g cm-' S-', then U; = L-' cm2 S-' when L is in 

cm. For fluid velocities less the critical velocity, Sder 

exceeds .Sshp, and vice versa. For small prey, e.g. a 

100 I.lm nauplius, the critical fluid velocity (-100 cm S-') 

exceeds that which can be generated by its predators 

(2 swimming velocity), and Sdef provides the strongest 

signal. Conversely, for larger prey, e.g. a 1 cm cope- 

pod, one can imagine that its (correspondingly larger) 

predators may produce fluid velocities that exceed the 

critical velocity (1 cm S-') and the slip velocity may, 

therefore, provide the strongest signal. Although true 

in a general sense, the latter situation is outside the 

model regime. 

Although the magnitude of the velocity difference 

due to the different mechanisms may differ markedly, 

one cannot immediately rule out the weaker signal. 

The velocity difference due to slippage is homoge- 

neous across the entire body of the prey while the 

velocity difference due to fluid deformation and vortic- 

ity varies across the body. Therefore, the copepod prey 

may be able to distinguish between the different types 

of signals. Whether a copepod responds to vorticity 

may depend on its normal behaviour. If it frequently 

reorientates (due to swimming and jumping) and sub- 

sequently rotates back towards steady state orienta- 

tion, the velocity differences thus generated may be 

indistinguishable from signals due to predator induced 

vorticity. Clearly, observations and experiments are 

required to identify the relevant components and to 

estimate threshold values. 

Predator perceiving prey 

As noted above, the fluid disturbance generated by a 

small moving prey will not significantly move a large 

predator. Thus, the larger predator will not follow the 

streamlines of the flow generated by a small prey but 

rather be 'anchored' in the fluid (disregarding gravita- 

tional effects). Therefore, the fluid disturbance causes 

a velocity difference between any spot on the predator 

and the ambient fluid, which simply equals the (local) 

fluid velocity generated by the moving prey. We thus 

propose that the relevant characteristic of the fluid dis- 

turbance is the absolute magnitude of the fluid velocity 

rather than deformation rate or acceleration, i.e. signal 

strength S ,  = U. 

PREY AND PREDATOR PERCEPTION DISTANCE 

In estimating perception distances, we will assume 

that the signal strength (- velocity difference between 

fluid and animal) will have to exceed some threshold 

value, S', to elicit a response. This translates to thresh- 

old values for the different fluid components consid- 

ered (from Eqs. 8, 11 & 15), viz. A' ,  W', a ' ,  and U * .  By 

inserting these threshold values in the equations that 

describe the attenuation of the relevant characteristic 

of the fluid flow, one can estimate the perception dis- 

tance (R) by solving for r. Analytical solutions to the 

general equations given in Appendix 1 often do not 

exist, and therefore, below we only give solutions to 

the special cases of 8 = 0" and 8 = 90°, i.e. directly in 

front of and directly off the equator of the moving 

plankter. Perception distances in other directions will 

be intermediate. 

Deformation rate. At 8 = 0, the reaction distance R,,, 

= r(A') due to deformation is found by solving Eq. (3) 

(Eq. 3 actually has 2 solutions; Eq. 18 gives that 

furthest away from the sphere). Similarly at 8 = 90' (cf. 

Eq. 4)  
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Vorticity. At 0 = 0" vorticity is zero, while at  0 = 90°, 

the reaction distance due to vorticity is (cf. Eq. 5) 

Vorticity and deformation. Assume that the copepod 

is able to perceive both vorticity and deformation: how 

should these 2 signals be considered simultaneously? 

At 0 = 90°, the velocity gradient is exactly perpendicu- 

lar to the stream Lines and thus equals the shear (y): 

Fluid acceleration. We found no analytical solutions, 

but numerical solutions are  given in Fig. 5. 

Fluid velocity. The reaction distance equations 

above relate to aspects of the velocity gradients and 

are relevant to prey perceiving predators, while preda- 

tors perceiving prey respond to the absolute fluid 

velocity magnitude. Fluid velocity relative to a station- 

ary coordinate system, rather than relative to the mov- 

ing sphere, is obtained by replacing the bracketed 

terms in Eqs. (1) & (2) with 1 - the bracketed terms 

(Eqs. A18 & A19). Solving these equations in our 2 

directions for r a t  lul = U' yields 

and R,(0 = 90") = c(-K-"" + KlJ3)-' 
Signal strength in simple shear is (25) 

S, = yL = ( k m  + A)L (22) where K = [2um/U + (1 + ~ ( u ' / U ) ~ ) ' . ~ ]  

and it thus follows that the signals from the 2 compo- 

nents are  additive. The reaction distance at  0 = 90" is 

found by solving Eq. 21 for r a t  y = 7': 

This somewhat special situation (simple shear flow, the 

copepod responding to both vorticity and deformation) 

is the only one in which shear may provide the trigger- 

ing signal. 

0 5 10 

U scaled by U* (=S,') 

U scaled by (a'~c)O.~ 

(= (s^ , , ,~ [c (P-~  )]l0 5, 

Fig. 5 illustrates the dependency of reaction distance 

on the velocity, size and threshold signal strength for 

the different flow characteristics. In all cases, R is 

directly proportional to c, the size of the predator or 

prey, and increases monotonically with the translation 

or feeding current velocity. Deformation rate can be 

perceived at  much longer distance in front of the 

predator than along its sides. However, if vorticity is 

perceived, the combined effect of vorticity and defor- 

mation rate is perceived about equally far in both 

directions. 

U scaled by CA' (= cS*,,IL) 
U scaled by cm' (= 2cS;IL) 

Fig. 5 Perception distance at B = 0 and 90" as a 
0 10 20 30 function of size Ic and Li. threshold sianal 

U scaled by cy' (= cS,'IL) strength (S') and move velocity considering &ch 
of the components of the fluid disturbance 
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EXAMPLES AND ILLUSTRATION OF THE THEORY 

In the following w e  move from illustrations of details 

of the above model, to considerations of its more gen- 

eral implications. 

Sources of velocity difference 

The observations of Yen & Fields (1992) of the escape 

behaviour of copepod nauplii (Acartia hudsonica) 

entrained in the feeding current of a copepod may be 

used to illustrate the relative magnitude of the differ- 

ent sources of velocity difference between the prey 

and the ambient water. From their data we calculate 

a n  average velocity difference at the point of escape of 

0.03 cm S-'. From the size of the nauplius (250 pm),  the 

estimated fluid acceleration at  the point of escape 

(0.05 cm s - ~ ) ,  and by assuming a density difference of 

5 % ,  we estimate a slip velocity S,,,, = 10-' cm S-' 

(Eq. 15). This is only a minute fraction of the velocity 

difference observed. The average fluid deformation 

rate at  the point of escape can roughly be approxi- 

mated by the root-mean-square of their estimated 

'shear' and along stream line velocity gradient as 1.2 

(k0.8) S-', which yields .Sdef = 0.015 cm S-' (Eq. 8).  This 

is of the same order as that observed, and the differ- 

ence makes room for the effect of vorticity. The esti- 

mate is also similar to the threshold signal strength for 

deformation estimated for Acartia tonsa (0.013 cm S-') 

( K i ~ r b o e  et al. 1999). Thus, for this small nauplius, fluid 

acceleration per se provides a much smaller signal 

than the fluid deformation rate, and the signal pro- 

vided by the latter accords with that observed. 

Prey size effects on the capability of perceiving predator 

Independent of whether the characteristic of the flow 

to which a prey responds is fluid acceleration, fluid 

deformation rate and/or vorticity, the strength of the 

signal is dependent on the size of the prey, being pro- 

portional to the length of the prey or the length 

squared, respectively (Eqs. 8,  11 & 15). Thus, larger 

prey would be able to detect a predator from a longer 

distance than a small one. Consistent with this, Landry 

(1978) found that the escape probability of copepods 

(various species) to a siphon suction flow increased 

with their length, irrespective of species. This, of 

course, could be due both to longer reaction distance, 

as predicted, and to more efficient escape reactions of 

larger copepods. K i ~ r b o e  et al. (1999) provided direct 

experimental evidence of the predicted size-effect for 

developmental stages of Acartia tonsa responding to 

fluid deformation rate. 

There may be different threshold sensitivities be- 

tween species that are unrelated to size (cf. Fields & 

Yen 1997, Viitasalo et al. 1998) but the above suggests 

that there is a significant size effect. This does not nec- 

essarily imply that larger copepods are less susceptible 

to predation because larger copepods themselves gen- 

erate stronger hydrodynamical signals and may, thus, 

be perceived by their predators at a longer distance. 

Prey perceiving predator: copepods detecting fish 

larvae 

Most larval fish are almost exclusively planktivorous 

and feed mainly on small copepods and copepod nau- 

plii. We may think of the front part of a small fish as a 

translating (ha1f)sphere. Thus, Fig. 3a-d may be a suf- 

ficiently good approximation of the fluid disturbances 

in front of a swimming larval fish. Upon prey location, 

which is visual, fish larvae typically approach their 

prey front on. Immediately in front of the approaching 

fish (0 = 0) vorticity is zero, and in this idealised situa- 

tion the fluid disturbance most likely to be perceived 

by small (mm-sized) prey is, therefore, deformation 

rate as given by Eq. (3) 

In this situation, the reaction distance increases with 

the approach velocity of the predator, declines with 

increasing magnitude of the threshold deformation 

rate and is directly proportional to the size of the 

predator (c) (Eq. 18, Fig. 5b) .  The experiment of Wong 

(1996) provides a simple illustration of this latter pre- 

diction. The escape reaction distance of 2 species of 

freshwater copepods to a moving sphere varied in 

direct proportion to the size of the sphere. 

Eqs. (3) & (18) (Figs. 4 & 5) may help us understand 

some characteristics of the predatory behaviour of lar- 

val fish. Evident in Fig. 4b is a maximum deformation 

rate in front of a moving sphere, which is given by 

3U/8c. Consequently, there is a critical predator swim- 

ming velocity (UCR) below which a prey with a g ~ v e n  

threshold sensitivity (A' )  will be unable to sense the 

approaching predator, independent of how close it 

gets, UCR = 8cAS/3. Many larval fish are cruise preda- 

tors, i.e. they swim at a more or less constant velocity 

during search for food particles. Because swimming 

velocities of larval fish are of the order of 1 body length 

S-' (Miller et al. 1988), and since the ratio of head 

radius to body length is of the order of 0.05 to 0.1, typ- 

ical cruising velocities ( U  > 10 to 20 c S-') exceed the 

critical velocity of prey with threshold sensitivities, A', 

less than 5 to 10 S-'. Since most copepods appear to 

have threshold sensitivities less than that (0.5 to 5.0 S-',  

reviewed in K i ~ r b o e  et al. 1999), such a strategy would 

lead to escape reactions of the prey in front of the 

approaching predator and a very limited chance of 
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prey capture. Zooplankters would react to an 

approaching predator swimming at velocity U = 15c S-' 

at distances between 1 . 0 ~  (A' = 5 S-') and 3 . 8 ~  (A' = 

0.5 S-') (Eq. 18). However, larval fish predators may cir- 

cumvent this problem by being able to locate (visually) 

potential prey at even longer distances, and by reduc- 

ing cruislng speed when approaching prey location; 

both appear to be the case in larval and juvenile fish. 

The prey location distance in larval fish is generally of 

the order of 0.5 to 1.0 body length (Miller et al. 1988), 

or 5 to 10 c, well in excess of the reaction distance of 

the prey. After the prey has been located, the larval 

fish typically form an attack posture and very slowly 

approaches the prey until arriving at strike distance 

(Munk & Kiarboe 1985, Munk 1992). The lowered 

approach velocity reduces the distance at which the 

prey reacts to the approaching predator, and may 

allow the predator to come unnoticed up to the strike 

distance. Viitasalo et al. (1998) described the similar 

but slightly different behaviour of small (c = 0.1 cm) 3- 

spined stickleback preying upon copepods (Eury- 

temora). Upon prey location (>2 cm), the fish 

approaches the prey front on while slowing down, 

such that the final approach speed is reduced by a fac- 

tor of about 5 to = 1 cm S-'. The final approach speed is 

crucial for the predation attempt. The average final 

approach speed of unsuccessful attempts was 1.3 cm 

S-' and the copepods reacted by escape at an average 

distance of (measured from tip of snout, i.e. R -  c) 

0.24 cm and before the fish came at strike distance. 

This is consistent with a threshold deformation rate of 

1 .5 S-' (Eq. 3), which is close to that estimated in inde- 

pendent experiments (2 S-'). The observed threshold 

deformation rate further predicts that the fish should 

approach with a velocity less than 0.53 cm S-' to 

remain undetected up to the strike distance (0.08 cm). 

This is close to the average final approach speed of 

successful attacks, 0.48 cm S-'. Another copepod 

(Temora), with a higher estimated threshold deforma- 

tion rate (8 S-'), was unable to perceive the approach- 

ing fish and, thus, never managed to escape. This is 

also consistent with our model. 

Predator perceiving prey: ambush feeding copepods 

Since chemosensory perception of small prey parti- 

cles requires a feeding current (Andrews 1983), am- 

bush and cruise predators most likely perceive their 

prey by the hydromechanical disturbance they gener- 

ate. The simplest situation, to be considered below, is a 

stationary ambush predator, such as Oithona, that 

feeds on sinking or swimming particles. 

We assume that the predator reacts to the absolute 

magnitude of the fluid velocity at  some velocity thresh- 

old, U ' ,  and Eqs. (24) & (25) yield expressions for reac- 

tion distance (cf. Fig. 5) .  Several generalizations can be 

derived. First, prey particles with velocities U < U' will 

never be perceived. Thus, there is a lower threshold of 

the prey velocity - and, hence, size-spectrum- which 

is determined simply by the prey sinking/swimming 

velocity. 

Secondly, prey velocity is much more important for 

prey encounter rates than traditionally anticipated. Be- 

cause good approximations (for R >> c) of the reaction 

distances (Eqs. 24 & 25) are -3cU/2ua and 3cU!4ua for 

front and sidewards prey detection, respectively, it fol- 

lows that the reaction distance is approximately pro- 

portional to U. For an ambush predator, the clearance 

rate (p) scales with the reaction distance squared 

(depending on the geometry of the perception volume, 

though) and with the prey velocity, P R2U. However, 

because R scales with U, clearance scales with U3. 

Likewise for a cruise predator with swimming velocity 

V, p RZ(U2 + = U2(U2 + V2 ) O 5  - . Models of prey 

encounter rates often ignore the effect of prey swim- 

ming velocity because V >> U. However, since prey 

detection distance depends on prey velocity, this is not 

generally warranted. 

Thirdly, encounter rates with sinking particles are 

strongly size dependent. From Eqs. (24) & (25) it fol- 

lows that the reaction distance is directly proportional 

to prey particle size, c. The sinking or swimming veloc- 

ity of particles typically increases with particle size. For 

example, according to Stokes' law, particle sinking 

velocity scale with particle size squared. Therefore, 

since U = c2 and R cU c3, clearance rates of sink- 

ing particles, P = R 2 u  = c8, scale with particle size 

raised to a power of 8! Thus, stationary flux feeders 

perceiving sinking particles by means of the fluid dis- 

turbances generated by the prey should be very much 

biased towards large particles. The scaling factor may 

be somewhat relaxed, depending on the exact geome- 

try of the perceptive volume, and because the density 

of biological particles typically declines somewhat 

with size. Also, there is a maximum size of particles 

that a copepod can handle and consume. Yet, these 

considerations suggest a substantial size effect. Flux 

feeding copepods, such as Oithona (see below) or Neo- 

calanus cnstatus (Dagg 1993), may therefore provide 

quite efficient 'filters' for large sinking marine snow 

particles and fecal pellets. 

As an example of a copepod ambush predator we will 

examine the case for Oithona similis. This copepod 

does not produce a feeding current (Paffenhofer 1993) 

but hangs quietly and motionless in the water while 

slowly sinking. Videorecordings have demonstrated 

that it can perceive particles without direct contact, 

both by the antennules and by the telson (Svensen & 

Halvorsen unpubl.). For simplicity its sinking velocity 
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is, in the following, assumed to be zero. We further as- 

sume that 0. sirnilis perceives prey that are within one 

reaction distance of the antennae or the telson. There- 

fore, clearance rate p = 2Rd U, where d is the sum of the 

telson length and the span of the antennae (-1.5 mm). 

Feeding on motile prey. Oithona similis feeds on a 

variety of protists, but apparently mainly on motile 

species (Sabatini & Ki~rrboe 1995). Nakamura & Turner 

(1997) measured clearance rates of 0. sirnilis fed vari- 

ous motile flagellates and ciliates. They found that 2 to 

8 pm sized flagellates were not cleared significantly, 

and that the clearance of larger prey increased with 

prey size (Fig. 6). A lower threshold of the size spec- 

trum is consistent with our model, since swimming 

velocity increases with size in protists (Hansen et  al. 

1997) and because prey with swimming velocities <U' 

will not be perceived. 

Nakamura & Turner (1997) found that the smallest 

prey that were cleared significantly had a cell volume 

of 4.2 X 102 pm3 (c = 4.6 ].lm) Hansen et al. (1997) com- 

piled swimming velocities of flagellates and ciliates 

and applying their generalized size-swimming velocity 

equation implies that U '  < 0.013 cm SS'. Clearance 

rates predicted by assuming U' = 0.004 cm S-' and prey 

swimming velocities according to Hansen et al. (1997) 

correspond with those observed (Fig. 6), and the model 

quite accurately predicts the observed size depen- 

dency of clearance rates. 

The model suggests that Oithona similis should be 

incapable of feeding on non-motile phytoplankters, 

except on very large species that sink at velocities 

exceeding U'. If we assume phytoplankton sinking 

velocity to depend on cell size as U = 2 . 5 ~ '  l7  (Jackson 

1990), then the minimum size of immobile phytoplank- 

ters that can be perceived is ( ~ . / 2 . 5 ) ' . ~ ~  = 0.0042 cm for 

-- Predicted. front 

Observed I 
f I 

Prey equivalent spherical radius, cm 

Fig. 6. Oithona similis clearance rates of different flagellates 
and ciliates as a function of their size. Data from Nakamura & 

Turner (1997). The dotted lines show predicted clearance 
rates assuming U' = 0.004 cm S-' and that the prey is per- 
ceived from its front and its side, respectively. Log(swimming 

speed, pm S-') = 1.61 + 0.1951og(cell volume, 

U' = 0.004 cm S-'. Thus, according to the model, 0. 

similis can only feed on immobile phytoplankters with 

a diameter exceeding about 80 pm, consistent with the 

apparent lack of feeding on small immobile diatoms. 

Flux feeding. Oithona similis feeds intensively on 

copepod faecal pellets and Gonzales & Smetacek 

(1994) suggested that 0. sirnilis could be quantitatively 

important in retarding the vertical flux of sinking pel- 

lets and, hence, cause retention of organic material in 

the euphotic zone that would otherwise be 'lost'. In the 

following we examine 0. sirnilis flux feeding be means 

of the model. 

The density of calanoid fecal pellets is about 1.15 g 

cm-3 (Butler & Dam 1994). Assuming (for simplicity) 

spherical shape, the settling velocity (cm S-') is there- 

fore 4300c2 (Stokes' law). Combining this expression 

of settling velocity with the equations for reaction dis- 

tance (Eqs. 24 & 25) and clearance (P = 2 R d U ) ,  and 

assuming U' = 0.004 cm S-' as estimated above, yields 

a predicted relation between clearance rate and fecal 

pellet size (Fig. 7). Pellets with sinking velocities less 

than U' will not be perceived, and the critical pellet 

size for detection, CCR = ( ~ ' / 4 3 0 0 ) ~ ~  = 0.00096 cm = 

9.6 pm. Above that size predicted clearance rate on 

pellets increases dramatically with size, from about 

15 m1 d-' for an Acartia sized pellet (c = 0.0025 cm) to 

about 1000 m1 d-' for a Calanus sized pellet (c = 

0.006 cm) (Fig. 7). The magnitude and size-depen- 

dency of the scarce observations of fecal pellet clear- 

ance rates accord well with this prediction, both for 

experimentally determined clearance rates (based on 

data in Gonzales & Smetacek (1994) and from Svensen 

& Halvorsen unpubl.) and for those that can be derived 

from field observations (based on data in Gonzales & 

Smetacek 1994) (Fig. 7). Such high clearance rates of 

copepod fecal pellets would imply that typical densi- 

ties of Oithona sirnibs in temperate and subarctic 

oceans (104 to 106 m-2 (Hay et al. 1991, Hopkins et al. 

1993, Gonzales & Smetacek 1994, Ki~rboe & Nielsen 

1994), may efficiently block the flux of-in particu- 

lar-large fecal pellets in the ocean. Given the almost 

ubiquitous presence of Oithona sp. in the ocean, this 

prediction is consistent with the frequent observation 

that only a small fraction of copepod fecal pellets reach 

the sea floor (e.g. Smetacek 1980, Bathmann et al. 

1987, Gonzales et al. 1994). Also, contrary to intuition, 

the testable prediction is that even though large pellets 

flux faster than smaller ones, the material contained in 

large pellets is retained within the euphotic zone with 

higher efficiency than that contained in smaller pellets 

due to this mechanism. This is different from the effect 

of passive flux feeders, such as pteropods (cf. Jackson 

1993), that retain particles of different sizes with 

almost equal efficiency. These important processes 

obviously need further study. 
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Fig. 7 O~thona similis. Predicted and observed clearance rates of copepod 
faecal pellets as a function of their size. The prediction assumes that U' = 

0.004 cm S-', U= 4300c2 ( c =  faecal pellet equivalent spherical radius), and 
that the sinking faecal pellet is perceived from its front and its side, 
respectively. The 2 laboratory observations of unsaturated clearance rates 
of calanoid faecal pellets are based on Gonzales & Smetacek (1994) and 
Svensen & Halvorsen (unpubl.). These estimates were derived from 
observed concentrations (C,) of calanoid faecal pellet after 24 h incuba- 
ti.ons of calanoid copepods (large calanoids and Acartia tonsa, respec- 
tively) with and w~thout 0. sirnll~s females, by assuming that calanoid fae- 
cal pellet production rate (f, per unit volume and time) was constant over 
time and that pellets remained suspended in the incubation chambers; 
C, = f/a(l-e-"l), where W. is the fractional clearance rate due to all Ojthona 
present in the incubation bottle and t is the incubation time. The field esti- 
mate of clearance rate is based on station-averaged observations of 
calanoid faecal pellet production rate (A), faecal pellet concentration (B), 
fractional pellet flux rate (C), and concentration of 0. similis (D); clearance 
= [ N B -  C] /D.  These data were from chlorophyll-rich stations In the 

Barents Sea (Gonzales & Smetacek 1994) 

Thus, this simple model can accommodate the 3- 

orders of magnitude variation in clearance rate 

observed in Oithona similis feeding on both motile 

prey and sinking fecal pellets (1 to 1000 m1 d-l), it 

explains essential features of Oithona feeding biology, 

and it has implications to our understanding of vertical 

particle fluxes in the ocean. 

Summary and conclusions 

This work has proposed that prey and predator per- 

ception in small planktonic copepods depend on differ- 

ent characteristics of the fluid disturbance generated 

by prey and predator, respectively. While prey percep- 

tion rely on the magnitude of the fluid velocity, preda- 

tor perception depends on one or several characteris- 

tics related to velocity gradients (maximum deform- 

ation rate, vorticity and/or acceleration). All these com- 

ponents cause quantifiable signals to the copepod in 

the form of velocity differences. 

We have demonstrated that prey perception and,  

hence, prey encounter rates are  strongly biased 

towards larger prey particles. We have considered 

copepod feeding on sinking faecal pellets, but similar 

considerations may apply to how the numerous zoo- 

plankters (including copepods) that colonise marine 

snow particles actually locate these. Colonisation and 

remineralisation rates of large sinking particles are 

quantitatively important (Kisrboe 1998) and have obvi- 

ous implications for the vertical particle flux in the 

ocean, but the mechanisms involved are poorly under- 

stood. The results of this study may provide a starting 

point for further exploration of this important issue. We 

have also demonstrated that velocities of moving prey 

not only influence prey encounter rates directly, but 

also indirectly, by increasing prey perception dis- 

tances. This latter effect may be  the more important 

one, but it has largely been ignored in previous work 

(see Tiselius e t  al. 1997, however). 

Hydromechanical perception of predators depend 

on the intensity of velocity gradients and,  therefore, 

also on the size of the prey. The implication of this size- 

dependency requires future attention. While w e  have 

identified the components of velocity gradients that 

may be perceived by a copepod and quantified signal 

strengths, it is unclear from the present (and earlier) 

work which component of the velocity gradient pro- 

vides the signal that actually triggers the escape 

response. Fluid shear is often assumed to constitute the 

triggering signal (cf. Fields & Yen 1996, 1997) but it is 

only relevant in very special situations and should not 

be applied generally. Signal strengths due  to vorticity 

and deformation rate are much larger than those due 

to acceleration in small copepods. Undisturbed prey 

swimming and sinking behaviour cause velocity differ- 

ences between the copepod and the ambient fluid 

which may be difficult or impossible to distinguish 

from the signals related to vorticity and acceleration. 

Ockham's razor would therefore suggest that deforma- 

tion rate is generally the most significant component. 

However, experiments and observations are required 

to elucidate this. In a subsequent paper we report on 

such observations (Kiorboe et al. 1999). 
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Appendix 1. Relatlve motion near a polnt 

Deformation and rotatlon are aspects of the relative motion 

of fluid elements in a small region of space. Speclflcally, the ed  0 

relatlve velocity Fu, of 2 fluid elements can be written as a e t  e e S 0 = 0 (A51 

linear function of their separation Sr: 0 0 eoo - F,, , 

6u = e . F r + w x F r  
where det represents the determinant of the matrix (e.g. 

( e  g .  Batchelor 1967, Acheson 1990). The 3 X 3 matrix e ,  rep- Hohn 1973). That is, 

resents the rate of strain of the fluid flow (e  g. Pedley 1997). P 

This is also called the rate of deformation The diagonal = 4 {(err + etirl) + \/(err - e,, l2 + 4ed2 ) (A61 

components of this matrix represent the deformation rate in 
83 = e, 

the co-ordinate directions. This is most easily envisages as 
(A71 

how a spherical volume is deformed into an  elllpsold. The In this work, we define the maximum deformation rate as 

off-diagonal components can be interpreted similarly, and 
A = MAX(IFII, 1F21, 16,) 

represent the deformation rate in the transverse directions. 
(A81 

A co-ordinate rotation can always be  performed to reallgn i.e. the maximum of the absolute value of the 3 pnncipal 

these transverse components with some transformed CO- components of the rate of strain. 

ordinates. That is, the matrix e can be diagonallsed. When in Other general expressions of interest for axially symmetric 

diagonal form, the elements along the diagonal are the prin- flow can be deduced from equations given in Batchelor 

cipal components of the rate of strain. 1967, p. 601. Specifically, w e  can write vortlcity 

The 3-vector o in Eq. ( A l )  is the vorticity of the fluid and is 

deflned in the usual way as o - V X U. That feature of the 
- 1  a(ru,) a u  

0 = v x u  = IQw, = ~ ; { 7 - $ 1  (A91 flow field represented in the rate of strain tensor is solely 

responsible for the motion of fluid elements relative to each and advective acceleration 

other. The vorticity contribution represents solid body rota- a = vU 
tion, and thus, no relative motion of fluid elements. Note that 

a solid body, rotating about the x3 axis at  a rate R,  has a vor- - ; U + Ue aur Ue + 6 + U@ due + ( ~ 1 0 )  
ticity component along o3 along thls axls equal to twice the p ( . &  r 30 r '1 { . d r  r a0 r 

rotation rate That is w3 = 2 R  
I 

Creeping flow around a sphere 

Axial symmetric flow and spherical co-ordinates 
At low Reynolds number (1 e .  negligible inertia), the flow of 

Much of the formulation within this work is facilitated with an  incompressible, viscous fluid around a stationary sphere 

the use of spherical co-ordinates (r, 0, (I), where r is the dls- of radius c i s  given by the stream 

tance from the origin, 0 the polar angle,  and (I is the 

azimuthal about the axis 0 = 0. Each of the co-ordinated has w i r e )  = -iUr's"20Jl-3C +ill 
1 2r  1 (A1 1) 

an  associated unit vector i, 6, 4). If we think of the earth,  then 

these would be in the up, south and east directions respec- (e.g.  Acheson 1990, P. 225) where Uis the well 

tively. away from the sphere. These streamlines are depicted in 

In spherical CO-ordinates, vector operators have a somewhat Fig. 2a. The are given as 

different form than they do in the more commonly used 
1 aw 3c 

Cartesian co-ordinates. Within thls work we consider only U. = U i = -- = -Ucose I--+<] (A121 
r2  sin0 30 

flow fields with no component and no variation in the IQ co- 
2, 2r  

ordmate, i.e. a flow that is axially symmetlic about the axis 0 3c c3  1 
= 0 In this case, we can write the velocity vector U as u e = u O = - -  -I 'v = usinOll-P-- 

r s in0  30 1 4r 4r3 1 (A131 

u(r,  0) = iu ,  + eu, (A2) For this case, from Eq. (AS), vorticity is given as 

The general expressions for the components of the rate of 

strain matrix, i .e.  
3c 

m, = Usin0- 
2r2 

(A141 

ere er.? 

e =  [%P I:) (A3) 
and,  from Eq (A4), the rate of strain matrix as 

2 ( r 2  - c2)cose  c2 sin0 0 

are  then given by. e = U -  c2s in0  ( r2 -c2 )cos0  

0 

0 
4r4 

au, i au, o ( r2  - C ~ ) C O S ~  err = - e,, = --+L e, = 5 + 3 c o t 0  
a r  r de r r r 

1 
(A151 

r a U, + l au, We note that directly in front of the sphere (0 = O ) ,  the maxi- 
er. = --(-) 

2 a r  r 2r  20 
em = eeo = 0 (A41 mum deformation rate A is le,,l, corresponding to the top left 

element in the matrix in Eq (A15). Thus, from Eq. (A4), we 

(e.g.  Batchelor 1967, p. 601, Acheson 1990, p 355) The prin- have A(O = 0)  = ISu,/Srl. 

cipal components of the rate of straln, F, (n  = 1 ,2 ,3 ) ,  are Substituting Eq (A12) & (A13) into Eq. (A10) and after some 

given by manipulation, the acceleration can be written as 

(Append~x cont~nued overleaf) 
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Appendix 1 (continued) 

A translating sphere: feeding current analogy 

A physical problem related to the creeping flow around a 
sphere is that of a translating sphere at low Reynolds num- 
ber. The solution to this problem is the stream function 

describes the situation where the sphere is stationary and 
fluid flows through it at a velocity -U. This is analogous to a 
low Reynolds number feeding current. 
I t  turns out that the dlfference between vorticity and rate of 
strain for this case, and that for the flow around the sphere, 
is a change of sign. The only significant difference appears 
in the acceleration term, which for this case becomes 

?U2 L c ( r 2  - c2){-4(3r2 - c2)cos2 8 + (3r2 + c2)sin2 8) 
1 6r7 

3 + 0U2 -c2(3r4 + 6c2r2 -c4)sin8cos0 
16r 

(A201 

Speclfic evaluations are: 

Formally, this means that the sphere is moving with a veloc- All formulae were checked using ~ a t h e m a t i c a ~  v2.2 (1993) 

ity U in an otherwise still fluid. The same solution also from Wolfram Research Inc. 
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