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1  | INTRODUC TION

Predation risk is one of the main factors that shape grouping behav-
ior in ungulates (Jarman, 1974; Kie, 1999; Moll, Killion, Montgomery, 
Tambling, & Hayward, 2016). Results from previous studies suggest 
that prey develop dynamic and complex grouping behaviors as an-
tipredator strategies (Caro, Graham, Stoner, & Vargas, 2004; Creel, 

Schuette, & Christianson, 2014; Moll et al., 2017; Périquet et al., 
2017). Grouping behavior can respond to the presence of predators 
(risky places according to Moll et al., 2016, 2017; Table 1) or to con-
ditions related to habitat structure, conspecific density, and group 
size that influence perceived risk (Laundré, Hernández, & Altendorf, 
2001; Table 1). Living in groups has additional demonstrable benefits, 
such as improved predator detection (Kie, 1999; Lima, 1995; Pulliam, 
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Abstract
Grouping behavior of social ungulates may depend on both predator occurrence and 
perceived predation risk associated with habitat structure, reproductive state, and 
density of conspecifics. Over 3 years, we studied grouping behavior of guanaco 
(Lama guanicoe) families in Chilean Patagonia during the birthing season and deter-
mined their response to variation in predator occurrence and perceived predation 
risk (habitat structure, calf/adult rate, and density of conspecifics). We considered 
the effect of two predators, puma (Puma concolor) and culpeo fox (Lycalopex cul-
paeus). We measured two common (family group size and vigilance) and one novel 
(family group cohesion) behavioral responses of guanaco. Our results show that gua-
naco family groups adapted their grouping behavior to both predator occurrence and 
perceived predation risk. Larger family groups were found in open habitats and areas 
with high puma occurrence, while guanacos stayed in small family groups in areas 
with high shrub cover or low visibility. Group cohesion increased in areas with higher 
occurrence of pumas and culpeo foxes, and also increased in smaller family groups 
and in areas with low guanaco density. Vigilance (number of vigilant adults) was 
mainly related to group size and visibility, increasing in areas with low visibility, while 
residual vigilance (vigilance after removing the group-size effect) did not vary with 
the explanatory variables examined. Our results suggest that a mix of predator oc-
currence and perceived predation risk influences guanaco grouping behavior and 
highlights the importance of evaluating different antipredator responses together 
and considering all predator species in studies aimed at understanding ungulate 
behavior.
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1973), reduced probability of being predated once detected (dilution 
and confusion effects; Lehtonen & Jaatinen, 2016), and less individ-
ual time allocated to vigilance (collective vigilance; Lima & Dill, 1990; 
Childress & Lung, 2003; Creel et al., 2014). Habitat structure can 
shape predator–prey interactions through changes in visibility and 
the presence of either cover refuges or escape impediments (Eccard, 
Meißner, & Heurich, 2017; Jarman, 1974; Ripple & Beschta, 2003). In 
this sense, habitat openness will set the maximum group size, while 
predation risk will limit the minimum size (Jarman, 1974). Finally, Moll 
et al. (2017) suggested that prey behavior and assessment of risk are 
modulated by the prevailing conditions (e.g., resource distribution, 
which also influences group size through intraspecific competition 
among group members for food; Jarman, 1974; Marino, 2010) and 
prey characteristics (e.g., presence of offspring, as calves usually are 
more vulnerable and the preferred prey for predators; Bank, Sarno, 
Campbell, & Franklin, 2002; Childress & Lung, 2003; Creel & Winnie, 
2005; Tambling et al., 2012; Table 1).

Guanacos (Lama guanicoe) are monomorphic ungulates native 
to South America. Guanacos have a polygynous resource–defense 
mating system, and their social organization varies over the course 
of a year (Franklin, 1982; González, Palma, Zapata, & Marín, 2006). 
During the birthing season in late austral spring and early summer, 
the most common social unit is the family group. Family groups 
typically consist of a territorial male and several females with their 
offspring. While the social organization of guanacos has been the 
focus of much research (e.g., Acebes, Malo, & Traba, 2013; Franklin, 
1982; Ortega & Franklin, 1995; Schroeder et al., 2014), uncertainty 
remains regarding the influence of predation risk on group forma-
tion and the factors that determine composition of family groups. 
This is because previous studies regarding the effects of predation 
risk on grouping behavior in guanacos have either been conducted in 
areas with strongly contrasting predation risk (presence/absence of 
predators; Marino, 2010; Marino & Baldi, 2008) or using humans as 

surrogates of predation risk (Taraborelli, Gregorio, Moreno, Novaro, 
& Carmanchahi, 2012; Taraborelli et al., 2014). No studies have eval-
uated antipredator responses of guanacos to gradual variation in 
predator occurrence and perceived predation risk.

In the Chilean Patagonia, guanacos have two native preda-
tors: pumas (Puma concolor), the main predators, and culpeo foxes 
(Lycalopex culpaeus). While pumas prey on both young and adult 
guanacos (Bank et al., 2002; Elbroch & Wittmer, 2012; Franklin, 
Johnson, Sarno, & Iriarte, 1999), culpeo foxes are opportunistic 
predators of chulengos (guanaco calves up to 1 year in age; Novaro, 
Moraga, Briceño, Funes, & Marino, 2009). Responses in social or-
ganization and group formation in guanacos should thus depend on 
predator species. In carnivore–ungulate systems, behavioral studies 
simultaneously considering the effect of more than one predator 
species are rare (Creel et al., 2017; Moll et al., 2017; Thaker, Vanak, 
Owen, Ogden, & Slotow, 2010).

We evaluated the grouping behavior of guanaco family groups 
to predator occurrence and perceived predation risk during the 
birthing season in an area encompassing both a protected and a 
non-protected area. The birthing season is considered the most crit-
ical period due to the high predation risk experienced by chulengos 
(Bank et al., 2002). The management of the protected and unpro-
tected area is different. First, wildlife is protected and livestock is 
excluded, while the surrounding non-protected area is dedicated to 
extensive livestock and wildlife is often persecuted. Antipredator 
behavior is a complex and multidimensional process. Univariate anal-
yses may thus lead to contradictory results, and the simultaneous 
use of different behavioral indicators may help develop a compre-
hensive understanding of this behavior (Cappa, Campos, Giannoni, 
& Andino, 2017; Creel et al., 2014; Lehtonen & Jaatinen, 2016; Moll 
et al., 2017). For that reason, we quantified several antipredator 
grouping responses in order to provide a more accurate understand-
ing of how guanacos respond to predation risk: group size, group 

TABLE  1 Description of guanaco family group response variables and predictor variables

Response variables

Group size Number of animals in a family group

Group cohesion Density of guanacos within a group (number of guanacos/group area)

Vigilance Number of vigilant adults (with heads up above the shoulder level)

Predictor variables

Predator occurrence

Puma occurrence Relative occurrence of puma derived from MaxEnt probability of presence models

Culpeo fox occurrence Relative occurrence of culpeo fox derived from MaxEnt probability of presence models

Perceived predation risk

Zone Location of the family group within/outside Torres del Paine National Park

Shrub cover Percentage of shrub cover within a 50 m radius around the centroid of the group

Visibility Terrain roughness, presence of rocks, or other visual obstacles within a 50 m radius around the 
centroid of the group

Conspecific density Guanaco probability of presence according to MaxEnt model around each family group within a 500 m 
radius

Chulengo/adult ratio Number of calves regarding adults in a family group
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vigilance, and group cohesion, the last being a novel and easy-to-
measure antipredator behavior (Table 1). Group cohesion is consid-
ered a measure of risk assessment (Peacor, 2003). In the presence of 
predators, groups of social species become more compact, probably 
due to the advantages of group defense and avoidance of predators 
(Lima & Dill, 1990). Increasing group cohesion may improve early de-
tection of an approaching predator and thus provide guanacos with 
longer response time (Taraborelli et al., 2012).

We considered responses to both predator occurrence (pumas 
and culpeo foxes) and perceived predation risk (habitat structure, 
protected vs. unprotected area, conspecific density and propor-
tion of chulengos in each group). If guanacos respond to predator 
occurrence, we would expect larger, more cohesive groups as well 
as higher vigilance in areas with higher probability of encounter 
with a predator (Table 2). On the other hand, if guanacos respond 
to perceived predation risk, which is mainly determined by habitat 
structure, we would expect smaller, more cohesive groups as well 
as higher vigilance rates in areas with higher shrub cover and low 
visibility, because these will be perceived as riskier habitats indepen-
dent of predator occurrence (Table 2). Due to the large abundance of 
wildlife within the protected area, we expected larger, more cohesive 
and more vigilant groups within it than in the non-protected area 
(Table 2). A higher chulengos/adult ratio potentially increases the 
perceived risk because chulengos are the preferred predator’s prey 
(Franklin et al., 1999). Thus, we expected an increase in group cohe-
sion and vigilance with increasing proportion of chulengos (Table 2). 
Finally, it has been suggested that conspecific density relaxes per-
ception of risk through intraspecific communication and risk detec-
tion at large distances (Creel et al., 2017; Donadio & Buskirk, 2016). 
We thus also expected an increase in group cohesion and vigilance 
in areas with lower conspecific density (Table 2).

2  | MATERIAL AND METHODS

2.1 | Study area

We conducted our study in the Comuna Torres del Paine (51°3′S; 
72°55′W) in the Última Esperanza Province, Region of Magallanes, 
Chile. Study area covered approximately 1090 km2; 284 km2 were 
located within Torres del Paine National Park (TPNP), and 806 km2 
were outside the protected area, corresponding to several private 
ranches (Figure 1). Annual rainfall in the area varies between 300 
and 1000 mm, and mean temperature ranges from 2.0°C in winter 
to 10.8°C in summer (Vidal & Reif, 2011). Vegetation is dominated by 
steppe-like grasslands and shrublands (Pisano, 1974). TPNP is sepa-
rated from surrounding ranches by a 1.2-m-high wire fence, which 
restricts livestock movements from ranches into the National Park 
but allows wildlife movements, although guanacos occasionally die 
entangled in it (Rey, Novaro, & Guichón, 2012).

Guanacos are the most abundant large-bodied native herbivore 
in the study area. Estimated guanaco densities currently vary from 
36.6 (within TPNP) to 8.8 (outside TPNP) individuals/km2 (Iranzo 
et al., 2017). Other medium- to large-bodied native herbivores found TA
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in our study area are lesser rhea (Pterocnemia pennata) and upland 
geese (Chloephaga picta), both of which occur at low densities com-
pared to guanacos. Introduced European hares (Lepus europaeus) are 
present throughout the study area and are locally abundant. Pumas 
and culpeo foxes occur at variable densities throughout the study 
area. Reported puma densities within TPNP are high compared to 
density estimates from other areas of their distribution (Franklin 
et al., 1999; but see Rinehart, Elbroch, & Wittmer, 2014) and decline 
toward surrounding areas (own unpublished data). Culpeo foxes 
within TPNP occur at an estimated density of 1.2 individuals/km² 
(Lucherini, 2016) and at a similar density in the surrounding areas 
(own unpublished data).

2.2 | Data collection

We conducted surveys during the birthing season in December (i.e., 
during late Austral spring) of 3 consecutive years (2009, 2010, and 
2011) to determine size, cohesion, and vigilance of guanaco family 
groups. Two survey teams equipped with binoculars carried out ve-
hicle and foot-based surveys along the existing network of paths and 
roads in the study area (total transect length surveyed = 336.4 km/
year) and recorded all guanacos (individuals and groups) they en-
countered. Researchers were trained to determine visual estimation 
criteria in a consistent way. In addition, to reduce possible bias, the 
members of teams were rotated daily. A detailed description of sur-
vey methodology is provided in Iranzo et al. (2013, 2017), and Traba, 
Iranzo, Carmona, and Malo (2017).

We recorded the GPS position for every family group detected 
and determined its size, composition (sex, and age classified as adult, 
juvenile, or chulengo) and location (within or outside protected area). 
To evaluate group cohesion (a measure of packing or animal density 
per family group), we visually estimated the occupation area (max-
imum length and width). Using instantaneous scan sampling, we 

quantified the number of adults with heads up (above the shoulder 
level) at the time of our first observation, avoiding any kind of distur-
bance by the observers, and used this number as an approximation 
of group vigilance (Childress & Lung, 2003). To assess perceived pre-
dation risk, we visually estimated shrub cover and visibility within a 
50 m radius around the centroid of the group. Visibility was assessed 
based on terrain roughness and the presence of rocks or other visual 
obstacles, and classified into three categories: high (no visual restric-
tion in any direction), medium (reduced visibility in some direction), 
and low (low visibility in all directions). During surveys, we also re-
corded the location and size of bachelor groups, female groups, and 
solitary guanacos to estimate total guanaco density (Iranzo et al., 
2017).

To determine the influence of both predators on guanaco behav-
ior, we estimated their relative occurrences in the study area using 
two complementary methods. First, we conducted snow track sur-
veys during austral winters of 2011 and 2012. Surveys were con-
ducted by two observers walking 200-m linear transects, 5 m width, 
every 5 km along the same set of roads and paths used to survey 
guanacos (year 2011: n = 40 transects covering 8 km; year 2012: 
n = 54 transects covering 10.8 km). During surveys, we recorded all 
signs (i.e., feces, tracks) of puma and culpeo fox presence. Despite 
the mismatch between sampling periods, pumas and culpeo foxes 
occupy distinct home ranges and are relatively long-lived; we thus 
did not expect large differences in either space use or occurrence 
among years. Moreover, no noticeable changes in the state or man-
agement of the area were observed in the area along the sampling 
years. Home ranges of pumas in the study area vary between 19 and 
84.5 km2 (Barrera, Soto, Cabello, & Antúnez, 2010; see also Franklin 
et al., 1999) and remain in their home ranges year-round (Franklin 
et al., 1999). We thus considered winter surveys as a valid proxy of 
puma relative occurrence during summer. Culpeo fox home ranges 
in the area vary between 4.5 and 9.8 km2 (Johnson & Franklin, 1994) 

F IGURE  1 Study area and the road 
network at the surveyed area in the 
Comuna Torres del Paine (Magallanes 
Region, Chile)

Road network
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and are also territorial species. Hence, the same assumption for rel-
ative occurrence was applied. We also deployed remote cameras to 
record predators along the road network used for guanaco surveys. 
Specifically, we installed scent stations (Long et al., 2003) every 
5 km (n = 40); each scent station was formed by three scent points 
separated each other by 500 m. We used a small synthetic sponge 
(0.05 m above the ground) soaked with bobcat urine as a lure. We 
also used footprint traps around scent points. In addition, at the 
central scent point of each scent station, we placed a Cuddeback® 
Capture IR Digital camera (Cuddeback® Digital, Non Typical Inc., Park 
Falls, WI, USA) with the pyroelectric infrared (PIR) motion detection 
sensor focused to the center of the scent station, where the attrac-
tant was located. Each scent station was active 24 hr; this implies 
40 camera-trapping nights (plus the corresponding 80 scent points). 
We combined both sampling methods to increase sampling size, fi-
nally reaching 49 detections for pumas and 66 for culpeo foxes. We 
then converted predator records from both surveys into estimates 
of probability of presence as a proxy of relative occurrence and 
predator encounter probability. We used MaxEnt software (Phillips, 
Anderson, & Schapire, 2006; see below) to build models of probabil-
ity of presence as this software provides a good fit with our type of 
data (sure presences coming from a combination of snow tracking 
and camera trapping obtained from an uneven sampling protocol).

2.3 | Statistical analysis

We used generalized linear mixed models (GLMM) to evaluate the 
responses of guanaco family groups to variation in both relative 
predator occurrence and perceived predation risk. We used group 
size, group cohesion, and vigilance as response variables. Group 
cohesion was calculated as the density of guanacos within a group 
(number of guanacos/group occupation area, where group occupa-
tion area is the area of the rectangle that contained the group in ha.). 
For group vigilance, we considered the number of vigilant adults in 
a group. We excluded the number of chulengos as they do not con-
tribute to predator detection. Due to the potential effect of group 
size on vigilance, we evaluated the role of predator occurrence and 
perceived predation risk on residual vigilance (vigilance after remov-
ing the group-size effect; Data S1).

We evaluated each response variable as a function of the follow-
ing set of explanatory variables related to perceived predation risk: 
percentage of shrub cover, visibility, conspecific density, and rela-
tive puma and culpeo fox occurrences. We analyzed the location of 
the groups to account for potential differences in guanaco behavior 
related to the protected area (within/outside it). In addition, we in-
cluded the chulengo/adult ratio as an explanatory variable for group 
cohesion and vigilance analyses, group size for the group cohesion 
analysis, and group size and its quadratic term for vigilance analysis. 
Finally, we included year as a (intercept) random effect. Because of 
the limited number of groups recorded in areas with low visibility, we 
grouped medium and low visibility levels for our analysis.

To assess actual predation risk, we built a model aimed at estimat-
ing relative occurrence of pumas and culpeo foxes using data from 

our predator surveys. We built a model for each species using MaxEnt 
(Phillips et al., 2006). We used the presence of either predator as the 
response variable and a set of climatic and topographic variables as 
explanatory variables (Data S2 and Table S2). Climatic variables 
were obtained from WorldClim database and topographic variables 
from Digital Terrain Model ASTER GDEM (METI & NASA). We used 
boosted regression trees to reduce the initial number of explanatory 
variables (Elith, Leathwick, & Hastie, 2008) prior to building MaxEnt 
models (Data S2 and Table S3). Similarly, we used all guanaco observa-
tions to build a model of relative occurrence of guanacos as a proxy of 
conspecific density to determine how it affected perceived predation 
risk (Tables 1 and 2). We assigned conspecific density in a buffer of 
500 m radius around each family group, as guanacos can reliable de-
tect conspecific signals and calls of animals belonging to other groups 
within this distance (Donadio & Buskirk, 2016).

We standardized explanatory variables prior to conducting 
GLMM. We used GLMM with a Poisson distribution and log link 
function for group size and vigilance, and LMM with a normal dis-
tribution for analysis of group cohesion. We used model averaging 
(Burnham & Anderson, 2002) to estimate contributions of variables 
across the range of plausible models. We first built the complete 
set of possible models and we ranked them according to their AIC 
values. Then, we selected the plausible ones as those whose AIC 
weights were included in a 95% confidence interval set of mod-
els (for a similar approach, see Whittingham, Swetnam, Wilson, 
Chamberlain, & Freckleton, 2005). We then applied model averag-
ing over the selected set of models, obtaining for each predictor the 
weighted value of its estimators, the unconditional standard error 
based on Burnham and Anderson (2004) revised formula, and its z 
and p-values to identify significant effects. We performed our analy-
ses using R packages lme4 (Bates, Maechler, Bolker, & Walker, 2011), 
MuMIn (Barton, 2012), and MASS (Venables & Ripley, 2002).

3  | RESULTS

We observed 314 families of guanacos over the 3 years of 
study. Family group size ranged from 2 to 60 individuals (mean ± 
SE = 14.6 ± 0.6 individuals), with a mean of 11 ± 0.5 adults, 0.5 ± 0.1 
juveniles, and 3.1 ± 0.2 chulengos.

Variation in group size was explained by an averaged model in-
cluding one variable significantly associated with occurrence of pred-
ators and two to perceived predation risk (Table 3, see also Data S3 
and Table S4). According to the model, observed groups were larger 
at locations with high occurrence of pumas and smaller at locations 
with low visibility and with a higher proportion of shrub cover.

Mean group cohesion was 261.8 ± 866 animals/ha. Group cohe-
sion was explained by an averaged model including two variables sig-
nificantly associated with occurrence of predators and other two to 
perceived risk (Table 3, see also Data S3, and Table S5). According to 
the model, group cohesion significantly increased with relative oc-
currence of both pumas and culpeo foxes and decreased with group 
size and guanaco conspecific density.
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Overall, mean group vigilance (of the total number of groups) was 
10.20 ± 0.01% of adults and juveniles, which corresponds to an av-
erage of 0.95 ± 0.10 vigilant animals per group (min = 0, max = 13). 
In addition, 56.4% of groups were not vigilant upon first encounter 
while 43.6% of the groups contained at least one vigilant individual.

Observed differences in vigilance were explained by a model 
that included one variable associated with perceived predation risk 
(visibility), group size and its quadratic term, and guanaco conspecific 
density at a marginally significant level (Table 3, see also Data S3 and 
Table S6). According to the model, vigilance increased in areas of low 
visibility and with group size and decreased with the quadratic term 
of group size and guanaco conspecific density. Residual vigilance 
was only marginally affected by visibility (Data S1 and Table S1).

4  | DISCUSSION

Our results suggest that both predator occurrence and perceived 
predation risk affect grouping behavior of family groups. Thus, group 
size was influenced by occurrence of predators and by perceived 
predation risk associated with habitat structure. Group cohesion 
was related to both predator occurrence and perceived predation 
risk related to conspecifics, while vigilance was affected by visibility 
and group size.

As expected, predator occurrence affected group size and cohe-
sion in guanacos, but contrarily to our predictions, it did not affect 
group vigilance. Specifically, guanaco family group size was positively 
associated with areas with greater relative puma occurrence, where 
guanacos may reduce individual predation risk through increases in 
group size (dilution and confusion effects; Hamilton, 1971; Lehtonen 
& Jaatinen, 2016). Predator occurrence may be interpreted as a proxy 
of predator abundance and probability of encounter with a predator 
because abundance and occurrence are frequently related in car-
nivores (Linden, Fuller, Royle, & Hare, 2017), although this entails 
some uncertainty. Aggregation and changes in prey group size as a 
response to risk have previously been reported in many herbivores 

(e.g., Banks, 2001; Creel et al., 2014; Moll et al., 2016, 2017). In the 
case of guanaco, Marino and Baldi (2014) reported larger families in 
populations coexisting with pumas than in predator-free reserves. 
Contrarily, the relative occurrence of culpeo fox, an occasional and 
opportunistic predator, had no effect on guanaco group size. Hence, 
these results point to a stronger influence of the main predator 
(puma) on guanaco grouping behavior. Moll et al. (2016) reported 
similar results for African ungulates and suggested that differences 
were likely related to the lethality and hunting efficacy of each pred-
ator. In addition, guanacos exhibited increased group cohesion as 
a response to an increased occurrence of both pumas and culpeo 
foxes. Increasing group cohesion may improve early detection of 
an approaching predator and thus provide guanacos with longer re-
sponse time (Taraborelli et al., 2012). Thus, guanacos likely benefit 
from forming large and cohesive groups with increased detection of 
predators (collective vigilance hypothesis; Pulliam, 1973; Pulliam & 
Caraco, 1984; Taraborelli et al., 2012).

Perceived predation risk partially affected guanaco group size, 
cohesion, and vigilance. As expected, group size of guanacos was 
larger in open habitats with high visibility. This is related to resource 
distribution (Jarman, 1974) and to increased conspecific detection 
in open areas (Gerard & Loisel, 1995; Pays, Benhamou, Helder, & 
Gerard, 2007). Moll et al. (2016) found similar effect sizes of habi-
tat openness and predation risk in African ungulates, pointing to the 
important contribution of perceived risk on ungulate behavior (Moll 
et al., 2017). Acebes et al. (2013) also reported a similar pattern in 
the Argentinean Monte Desert, where food resources are extremely 
scarce. There, family groups of guanacos selected open low-risk, less 
productive areas during the breeding season. These results point to 
an evolutionary fixed pattern in the species: prioritization of reduc-
ing predation risk in the birthing period over the selection of areas 
with abundant food resources.

Group cohesion increased with a decrease in both group size and 
conspecific density, suggesting a “safer-feeling effect” on guanaco 
behavior: An increased perception of predation risk when group 
members are sparsely distributed and/or groups is isolated (Peacor, 

TABLE  3 Variables (averaged) influencing guanaco family group size, cohesion, and vigilance

Group size Group cohesion Group vigilance

Estimate Adjusted SE p-value Estimate Adjusted SE p-value Estimate Adjusted SE p-value

Intercept 2.718 0.061 <.001 −5.086 0.138 <.001 −0.278 0.202 .170

Puma occurrence 0.143 0.020 <.001 0.426 0.100 <.001 −0.012 0.077 .874

Culpeo occurrence 0.029 0.018 .102 0.248 0.096 .010 0.144 0.084 .086

Zone −0.018 0.053 .730 −0.053 0.353 .880 0.044 0.159 .782

Shrub cover −0.085 0.015 <.001 0.095 0.081 .240 −0.051 0.061 .404

Visibility 0.187 0.033 <.001 0.045 0.172 .794 −0.391 0.124 .002

Conspecific density −0.001 0.020 .942 −0.468 0.106 <.001 −0.145 0.076 .057

Group size - - - −0.372 0.081 <.001 0.466 0.106 <.001

Group size2 - - - - - - −0.081 0.041 .045

C/A ratio - - - −0.113 0.080 .159 0.009 0.060 .884

C/A ratio, chulengo/adult ratio. Model estimates, adjusted standard errors, and p-values are presented. Significant p-values are marked in bold.
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2003). Contrary to our expectations, shrub cover and visibility did 
not increase group cohesion. In this case, intragroup competition for 
resources (interference competition) could constrain family group 
size and distance among individuals, thus preventing the forma-
tion of large and cohesive groups in these habitats (Jarman, 1974; 
Marino, 2010). Thus, habitat structure and forage quality and avail-
ability may have influenced grouping behavior in guanacos together 
with perceived predation risk (Creel et al., 2014; Moll et al., 2016; 
Ripple & Beschta, 2003).

The number of vigilant individuals was primarily affected by group 
size but also increased in areas with lower visibility. Neither predator 
occurrence nor the chulengo/adult ratio were included in top mod-
els explaining the number of vigilant individuals within groups. The 
strong influence of group size on vigilance points to the effect of 
“collective vigilance,” one of the classical hypothesized benefits of 
living in groups (Pulliam, 1973; Pulliam & Caraco, 1984; Taraborelli 
et al., 2012). According to the collective vigilance hypothesis, individ-
uals can reduce the time spent in vigilance (and feed more), because 
in groups, vigilance is equivalent to or greater than a lone individual 
could afford to engage in. The inclusion of the quadratic term with 
negative estimator thus points to this release of vigilance allotment 
by individuals in larger groups. In this sense, the relationship between 
group size and number of vigilant adults was expected. The lack of 
relevant predictors explaining variation in residual vigilance (vari-
ation in vigilance unaccounted by variation in group size; Data S1) 
could suggest that vigilance in guanaco is a variable directly shaped 
by group size. However, we found different responses for group size 
and vigilance. We were thus unable to clarify whether residual vigi-
lance was just “noise” or responded to other ecological factors, such 
as social monitoring, not included in the study. Contrary to our pre-
dictions, group cohesion and vigilance were not affected by the chu-
lengo/adult ratio, despite chulengos being the preferred prey. These 
results could be related to the low time allocated to vigilance by fe-
males in family groups, in which the male is the main vigilant (Barri 
& Fernández, 2011; Marino & Baldi, 2008). Finally, we did not detect 
differences in guanaco grouping behavior associated with their loca-
tion within or outside Torres del Paine National Park.

Interestingly, group cohesion has been sometimes included as 
an independent predictor for vigilance and antipredator response 
analyses (Marino & Baldi, 2008; Taraborelli et al., 2012). However, 
to our knowledge, there are no studies including group cohesion as 
an antipredator response variable for carnivore–ungulate systems 
(see Lima & Dill, 1990 or Peacor, 2003 for other study systems). Our 
findings suggest that understanding changes in group cohesion may 
complement traditional studies only looking at changes in group size 
as antipredator response and point to the importance of evaluating 
multiple responses in order to know species-specific antipredator 
behavior. Specifically, the response of group cohesion to predator 
occurrence, conspecific density, and group size suggests that guana-
cos are risk-sensitive and may adapt their individual distance to other 
group members according to actual and perceived predation risk.

In conclusion, our results suggest that grouping behavior is af-
fected by multiple variables including response to predation risk and 

support previous suggestions that no single factor drives ungulate 
antipredator behavior. Predator occurrence, considered to reflect 
the predator abundance or probability of encounter with a preda-
tor, shaped guanaco grouping behavior and was approximately 10 
times more important than shrub cover, which we considered to re-
flect the perceived predation risk (Laundré et al., 2001; Moll et al., 
2017). However, it did not describe antipredator responses alone, 
showing the importance of the perceived predation risk as an an-
tipredator behavior driver for ungulates, as reported by Creel et al. 
(2017). Responses to predation risk were also linked to the occur-
rence of different predator species, highlighting the importance of 
considering all predator species in studies aimed at understanding 
antipredator behavior of ungulates. The evaluation of several re-
sponse variables contributed to a better understanding of ungulate 
antipredator grouping behavior. Finally, the observed responses 
were limited to family groups during the breeding season, and fur-
ther research is necessary to confirm whether the observed patterns 
apply to other situations.
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