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A predator–prey model with disease infection in both populations is proposed to account for the possi-

bility of a contagious disease crossing species barrier from prey to predator. We obtain several threshold

parameters from local analysis of various equilibria of the proposed system as well as coupled conditions

on these threshold parameters which determine the stability of these equilibria. One of the coupled condi-

tions, in the form of an ecological threshold number for the predator–prey ecosystem, always determines

the coexistence of predators and prey. The other condition, in the form of a disease basic reproduction

number, dictates whether the disease will become endemic in the ecosystem. Under one combination of

these coupled conditions, a highly infectious disease could drive the predators to extinction when preda-

tors and prey would have coexisted without the disease. For another combination of the conditions, the

predation of the more vulnerable infected prey could cause the disease to be eradicated in the ecosystem,

in some case even approaching a disease-free periodic solution, when the disease would have otherwise

remained endemic in the prey population in the absence of predation. This indicates that the presence

of disease in both predators and prey could either promote or impair coexistence, and its precise impact

needs to be explored specifically in each particular situation. By considering disease infection in both

populations, our model also yields more complex dynamics, allowing for the possibility of bistability and

periodic oscillation, in either disease-free or endemic states, in the ecosystem for which the conditions

are obtained analytically and with the help of numerical simulations.

Keywords: species barrier; predator–prey coexistence; ecological threshold parameter; disease basic

reproduction number; positive equilibrium; periodic oscillation.

1. Introduction

Infectious diseases have been known to be an important regulating factor for human and animal popu-

lation sizes. In particular, for predator–prey ecosystems, infectious diseases coupled with predator–prey

interaction to produce a complex combined effect as regulators of predator and prey sizes. In many

ecological studies of predator–prey systems with disease, it is reported that the predators take a dispro-

portionately high number of parasite-infected prey (e.g. Van Dobben, 1952; Vaughn & Coble, 1975;

Temple, 1987). Some studies have even shown that parasite could change the external features or

behaviour of the prey so that infected prey are more vulnerable to predation (see, e.g. Mech, 1970;

Holmes & Bethel, 1972; Schaller, 1972; Krebs, 1978; Dobson, 1988; Peterson & Page, 1988; Moore,
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2002). For a concise and lucid discussion on this subject, the readers are referred to Hethcote et al.

(2004).

Previous modelling studies of predator–prey system with infected prey include, among others,

Anderson & May (1986), Hadeler & Freedman (1989), Venturino (1994, 1995), Chattopadhyay & Arino

(1999), Han et al. (2001) and Hethcote et al. (2004). In particular, Hethcote et al. (2004) proposed a

predator–prey model with logistic growth in prey to include a susceptible-infective-susceptible (SIS)

infection with standard incidence in prey population with the infected prey being more vulnerable to

predation. They discovered several interesting cases where the disease infection in prey could promote

coexistence. For example, under certain parameter values, the greater vulnerability of the infected prey

allows the predator population to persist when it would otherwise become extinct. Moreover, there is a

case where predation on the more vulnerable prey can cause the disease to die out when it would remain

endemic without the predators.

Most of these previous studies focussed mainly on parasite infection and in prey only, although some

studies did consider infection of predator through eating prey (e.g. Anderson & May, 1986; Hadeler &

Freedman, 1989; Venturino, 1994) or spread of disease in the predators (Venturino, 2002). Venturino

(2001) also studied the dynamics of two competing species when one of them is subject to a disease,

but the disease cannot cross the species barrier. However, the recent outbreaks of severe acute respi-

ratory syndrome (SARS) and animal-to-human transmission of avian influenza (H5N1) demonstrated

the possibility of infectious disease caused by a microorganism crossing the species barrier between

different species by enlarging its host range (Klempner & Shapiro, 2004), including that of between

prey and predator populations. Klempner & Shapiro (2004) made further distinction between what they

termed as ‘small step to man’ and ‘giant leap to mankind’. The former describes a minor alteration

in the microorganism’s host range resulting in intermittent human infections without human-to-human

transmission as in the 1997 H5N1 avian influenza outbreak that occurred in Hong Kong that results in

six fatal cases including young infants (Meslin et al., 2001), while the latter describes the dreaded sce-

nario of pandemic spread of the disease among humans (e.g. the feared human-to-human transmissible

mutation of H5N1 leading to a global avian influenza pandemic). The recent SARS coronavirus presents

a ‘middle ground’ of the two extremes crossing from animals to human host with limited (or inefficient)

human-to-human transmission. The potential threat of an influenza pandemic also led to recent inter-

est in scientific research to understand how and why some pathogens become capable of crossing host

species barriers (Kuiken et al., 2006).

Hadeler & Freedman (1989) had previously studied a predator–prey model with parasite infection

where the disease is allowed to cross the species barrier. Moreover, assuming that the predators could get

infected by eating prey and the prey could obtain the disease from parasites spread into the environment

by predators, they obtained a threshold condition above which an endemic equilibrium or an endemic

periodic solution could arise in the case where there is coexistence of the predator with the uninfected

prey. Furthermore, they also showed that in the case where the predator cannot survive only on the

prey in a disease-free environment, the parasitization could lead to persistence of the predator since the

predators could only survive on the prey if some of the prey were more easily captured due to being

diseased, provided a certain threshold for disease transmission is surpassed.

In this present work, our aim is to study the scenario where a small step is taken from prey to preda-

tor, to paraphrase Klempner & Shapiro (2004), where the predators can be infected upon contact with or

being in the close vicinity of an infected prey during the process of predation, but the predators cannot

infect each other. To further explore this hypothetical scenario of disease spreading among predators

during the process of predation, we introduce a predator–prey model with logistic growth, SI mass ac-

tion disease incidence in prey and infection of predators from infected prey. The predation is modelled
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by Holling type-II functional response with saturation of the infected predators. A similar idea was also

exploited in Venturino (2006) on disease in interacting species models.

The paper is organized in the following manner. The proposed ‘small-step’ model is given in

Section 2. In Section 3, we briefly discuss the disease-free model, including a case where a unique

globally orbitally stable limit cycle exists. Analysis of the full model will be given in Section 4. Section

5 is devoted to discussion on two disease basic reproduction numbers and three ecological threshold pa-

rameters which we had obtained analytically and on how these threshold parameters combined to give

biologically meaningful conditions for the various ecologically plausible scenarios. Finally in Section

6, we provide numerical simulations to discuss some biologically interesting cases our model is able to

exhibit.

2. The model

Let S(t), I (t), P1(t) and P2(t) be the total sizes of susceptible prey population, infected prey popula-

tion, susceptible predator population and infected predator population, respectively, where t is the time

variable. We list the key assumptions of our model as follows:

(A1) The susceptible prey follows logistic growth. Infected prey does not reproduce, but uses re-

sources and so contributes to self-regulation in the predator–prey dynamics.

(A2) The disease is not transmitted horizontally or vertically in predators. The infected prey do not

recover or become immune.

(A3) The incidence of prey is given by simple mass action law.

(A4) The predator functional response obeys the Holling type-II curve.

(A5) Growth rate of predators P1 is proportional to their predation of healthy prey.

(A6) The infection of predators occurs during the process of predation, i.e. either during capturing,

handling, consumption or by simply being in close vicinity of an infected prey, and hence is

proportional to the predation of infected prey.

(A7) ‘No recovery or immunity for infected predators’.

(A8) There is no reward for a predator to handle or catch an infected prey, other than getting infected.

(A9) The infected prey is more likely to be caught than the healthy ones, and the infected predators

are more likely to die than the healthy ones.

For our model, the infected predators P2 do not reproduce. Moreover, they arise only from the

susceptible predator class P1 through infection while in the process of predation that occurs at a rate λ2

proportional to the rate of predation of susceptible predators on infected prey. Thus, infected predators

could conceivably arise even if that subpopulation class P2 was initially zero as it is bound to occur when

a disease initially crosses the species barrier. The form of incidence of infection of predators is the same

as the form of the functional response describing the predation rate since the infection is transmitted

only by contact with infected prey during the process of predation.

Under the above assumptions, we have the following model equations, with the model flow diagram

given in Fig. 1:

S′ = r S

(
1 − S + I

K

)
− λ1 I S − α1S

1 + a1S
(P1 + P2),

I ′ = λ1 I S − α2 I

1 + a2 I
(P1 + P2) − μI,
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FIG. 1. The flow diagram of the model.

P ′
1 = βS

1 + a1S
P1 − γ1 P1 − λ2 I

1 + a2 I
P1,

P ′
2 = λ2 I

1 + a2 I
P1 − γ2 P2. (2.1)

Here,‘ ′ ’ stands for d
dt

, and the model parameters are given as follows: r denotes the growth rate

of the prey, K denotes the carrying capacity, μ denotes the death rate of I , λ1 I S is the incidence of

infection of prey and λ2

(
I

1+a2 I

)
P1 is the incidence of infection of predators, respectively. Moreover, a1

and a2 are the respective half saturation rates of S and I , γ1 and γ2 are the respective death rates of

P1 and P2, α1 and α2 are the respective search rates of the susceptible and infective prey and ‘β/α1 is

the conversion coefficient of P1’. For the sake of simplicity, we have not included a term for natural

death of susceptible prey in the first equation since the death rate of S can be easily incorporated in the

growth rate r of S, with an appropriate adjustment for the definition of carrying capacity K . Note that

all model parameters are positive. Moreover, to be consistent with the biological assumption (A9), we

know α1 6 α2 since the infected prey is more likely to be caught than the healthy ones and γ1 6 γ2

since the infected predators are more likely to die than the healthy ones.

3. The disease-free case

We first consider the disease-free case. That is, we consider system (2.1) with I = P2 = 0 which is

given as follows:

S′ = r S

(
1 − S

K

)
− α1

(
S

1 + a1S

)
P1,

P ′
1 = β

(
S

1 + a1S

)
P1 − γ1 P1. (3.1)

Analytical results for this system are described below, with the proofs given in the appendix. The first

equation is well known (e.g. May, 1973, p. 190). Considered together with the second equation, system

(3.1) has at most three equilibria. We first consider the local stability of each equilibrium. The Jacobian
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matrix of (3.1) is given by

A(S,P1) =




∂ f1

∂S
(S, P1)

∂ f1

∂ P1
(S, P1)

∂ f2

∂S
(S, P1)

∂ f2

∂ P1
(S, P1)


=




(
1 − 2S

K

)
r − α1 P1

(1 + a1S)2
− α1S

1 + a1S

β P1

(1 + a1S)2

βS

1 + a1S
− γ1


 .

The equilibria of the system are discussed below.

(1) Trivial equilibrium: E0 = (0, 0).

Since the eigenvalues of the Jacobian at E0, r and −γ , are both positive, ‘E0 is a saddle point

with stable manifold given by {(0, P1): P1 > 0}’.
(2) Boundary equilibrium: EB = (K , 0).

It is easy to show that if we let R1 = βK
γ1(1+a1 K ) , then EB is locally asymptotically stable if

and only if R1 < 1. We have the following global result regarding the stability of the boundary

equilibrium EB.

LEMMA 3.1

(i) If R1 < 1, then EB is globally asymptotically stable for (3.1).

(ii) If R1 > 1, then EB is unstable for (3.1) and the positive equilibrium E∗ exists.

(iii) If R1 = 1, EB is globally asymptotically stable for (3.1).

(3) Interior equilibrium: E∗ = (S∗, P∗
1 ), with (S∗, P∗

1 ) =
( γ1

β−a1γ1
, r

α1

(
1 − S∗

K

)
(1 + a1S∗)

)
.

We have the following stability result when R1 > 1.

LEMMA 3.2

(i) If 1 < R1 < 1 + β
a1γ1(1+a1 K ) , then E∗ is locally asymptotically stable for (3.1).

(ii) If R1 > 1 + β
a1γ1(1+a1 K ) , then E∗ is unstable for (3.1).

(iii) If R1 = 1 + β
a1γ1(1+a1 K ) , then E∗ may be either a centre or a spiral point for (3.1).

We now give two theorems pertaining to the global stability of the positive interior equilib-

rium E∗.

THEOREM 3.3 If 1 < R1 6 1 + β
a1γ1(1+a1 K ) , then E∗ is globally asymptotically stable for (3.1).

THEOREM 3.4 If R1 > 1 + β
a1γ1(1+a1 K ) , then E∗ is unstable for (3.1) and the system (3.1) has a

unique limit cycle which is globally orbitally stable.

In particular, the case where an orbitally stable limit cycle exists in S P1-plane will be important in

the later discussion of the full model. We summarize our results in Table 1. Note that E0 is unstable for

all cases and hence omitted from Table 1.

4. The model with disease

We now proceed to consider the full 4D model in system (2.1), which has as many as five equilibria,

depending on the parameter values. We can divide these five equilibria into three types: trivial, boundary

and positive interior equilibria. First, we consider the local stability of the trivial equilibrium and the
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TABLE 1 Asymptotic states for disease-free predator–prey model

Case EB = (K , 0) E∗ = (S∗, P∗
1 )

R1 6 1 GAS —
1 < R1 6 1 + β/a1γ1(1 + a1 K ) unstable GAS
R1 > 1 + β/a1γ1(1 + a1 K ) unstable unstable (♯)

Note: ‘GAS’ denotes that equilibrium is globally asymptotically stable; ‘—’ denotes

that equilibrium does not exist and ‘(♯)’ denotes that there is a unique limit cycle that is

globally orbitally stable.

boundary equilibria. Note that all equilibria in the 4D system are boldfaced to distinguish them from the

equilibria of 2D disease-free model. The Jacobian matrix of (2.1) is given by

A(S,I,P1,P2) =




r
(
1 − 2S+I

K

)
− λ1 I − α1(P1+P2)

(1+a1 S)2 −
(

r
K

+ λ1

)
S − α1 S

1+a1 S
− α1 S

1+a1 S

λ1 I λ1S − α2(P1+P2)

(1+a2 I )2 − μ − α2 I
1+a2 I

− α2 I
1+a2 I

β P1

(1+a1 S)2 − λ2 P1

(1+a2 I )2

βS
1+a1 S

− γ1 − λ2 I
1+a2 I

0

0 λ2 P1

(1+a2 I )2
λ2 I

1+a2 I
−γ2




.

We then have the following results on the equilibria of system (2.1):

(1) Trivial equilibrium: E0 = (0, 0, 0, 0).

It is trivial to show that E0 = (0, 0, 0, 0) always exists but is unstable for (2.1).

(2) Three boundary equilibria.

Subcase (i) EB = (K , 0, 0, 0) is the axial equilibrium on S-axis with healthy prey only, which

always exists.

LEMMA 4.1 Let R0 = Kλ1
μ .

(i) If R0 < 1 and R1 < 1, then EB is locally asymptotically stable for (2.1).

(ii) If R0 > 1 or R1 > 1, then EB is unstable for (2.1).

(iii) In all other situation, we need to investigate further.

Subcase (ii) EB = (S, I , 0, 0) is the boundary equilibrium on SI -plane with endemic prey pop-

ulation only.

LEMMA 4.2 Let R0 > 1 and R1 = βS

γ1(1+a1 S)
.

(i) If R1 < 1 + λ2 I

γ1(1+a2 I )
, then EB is locally asymptotically stable for (2.1).

(ii) If R1 > 1 + λ2 I

γ1(1+a2 I )
, then EB is unstable for (2.1).

(iii) In all other cases, we need to investigate further.

Subcase (iii) E∗
B = (S∗, 0, P∗

1 , 0) is the boundary equilibrium on S P1-plane with disease-free

coexistence of predators and prey. S∗ and P∗
1 are as defined in Section 3.
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LEMMA 4.3 Let R∗
0 = λ1 S∗

α2 P∗
1 +μ

.

(i) If R∗
0 < 1 and 1 < R1 < 1 + β

a1γ1(1+a1 K ) , then E∗
B is locally asymptotically stable for

(2.1).

(ii) If R∗
0 > 1 or R1 > 1 + β

a1γ1(1+a1 K ) , then E∗
B is unstable for (2.1).

(iii) In all other situations, we need to investigate further.

The proofs of Lemmas 4.1–4.3 are given in the appendix.

(3) Positive interior equilibrium Ẽ = (S̃, Ĩ , P̃1, P̃2) with endemic coexistence.

We have the following result on the existence of Ẽ, also proved in the appendix.

LEMMA 4.4 Let R̃1 = β S̃

γ1(1+a1 S̃)
. If S̃ satisfies S < S̃ and S̃ + Ĩ < K and if 1 < R̃1 < 1 + λ2

a2γ1
,

Ẽ = (S̃, Ĩ , P̃1, P̃2) exists and is a positive equilibrium of (2.1) with Ĩ = S̃(β−a1γ1)−γ1

λ2(1+a1 S̃)−a2 [̃S(β−a1γ1)−γ1]
,

P̃1 = 1
α2

(λ1 S̃ − μ)(1 + a2 Ĩ )
[
1 + λ2

γ2

(
Ĩ

1+a2 Ĩ

)]−1
and P̃2 = λ2

γ2

(
Ĩ

1+a2 Ĩ

)
P̃1.

Note that when (β −a1γ1)−λ2 = 0, the positive equilibrium is unique, otherwise the uniqueness

of Ẽ is determined by the sign of b2 − 4ac which is difficult to determine. Moreover, the stability

of Ẽ , when it exists, is difficult to analyse. We will make use of numerical simulations to discuss

the possible cases.

5. Ecological and disease threshold parameters

We first discuss the biological significance of the five threshold parameters obtained, each of which has

clear and distinct biological meaning.

(a) R1 = βK
γ1(1+a1 K ) determines the local stability of EB = (K , 0), the axial equilibrium on S-axis,

in the disease-free system (3.1). Here,
βK

1+a1 K
is the birth rate of predator at EB and 1

γ1
is the

mean lifespan of a predator. Subsequently, their product gives the mean number of newborn

predators by a predator, which can be interpreted as the ‘ecological’ basic reproduction number

of a predator–prey system without disease. We note also that this term, first formulated and

explained by Pielou (1969), is the average number of prey converted to predator biomass in a

course of the predator’s life span (Hethcote et al., 2004).

(b) R0 = Kλ1
μ , together with R1, determines the local stability of EB = (K , 0, 0, 0), the axial

equilibrium on S-axis, in the 4D system (2.1). Here, Kλ1 is the infection rate of a new infective

prey appearing in a totally susceptible prey population and 1
μ is the duration of infectivity of an

infective prey, the product of which is the disease basic reproduction number of disease in the

prey population. R1 < 1 implies that the predators will become extinct, while R0 < 1 implies

that the disease will be eradicated in the prey population. Hence, the combination of these two

conditions results in EB being locally asymptotically stable for system (2.1).

(c) R1 = βS

γ1(1+a1 S)
, together with R0, determines the local stability of EB = (S, I , 0, 0), the

boundary equilibrium at which disease persists in the prey population while the predator pop-

ulation becomes extinct. Here,
βS

1+a1 S
is the growth rate of a newborn predator at EB and γ1 is

the removal rate of predators without disease, hence R1 gives the ecological basic reproduction

number of the predator population when disease is endemic in the prey population. Moreover,
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R1 < 1 + λ2 I

γ1(1+a2 I )
implies that the predators will become extinct in an environment when dis-

ease is prevalent in the prey population which, together with R0 > 1 guaranteeing the endemicity

of disease in prey, gives the condition for the locally asymptotic stability of EB. Note also that

since f (x) = βx
1+a1x

is an increasing function and S < K , it follows that R1 < R1.

(d) R∗
0 = λ1 S∗

α2 P∗
1 +μ

, together with R1, determines the local stability of E∗
B = (S∗, 0, P∗

1 , 0), the bound-

ary equilibrium at which the predator and prey populations coexist with no disease. Here, λ1S∗

is the infection rate of an infective prey at E∗
B and α2 P∗ + μ is the removal rate of infective prey

at E∗
B, subsequently R∗

0 is the disease basic reproduction number of an infected prey when enter-

ing a disease-free environment where predators and prey coexist. It follows that R1 determines

the (disease-free) coexistence of predator–prey populations, while R∗
0 < 1 ensures low level of

infection from infected prey to predators, combining the two yields the local asymptotic stability

of E∗
B. When R∗

0 > 1, clearly the disease will become endemic. However, when R∗
0 < 1, the

situation is more complicated. We have shown that if 1 < R1 < 1+ β
a1γ1(1+a1 K ) , E∗

B is asymptot-

ically stable. Moreover, if R1 > 1 + β
a1γ1(1+a1 K ) , E∗

B is unstable. Numerical simulations showed

that in this case there is a unique periodic solution in SP1-plane, the disease-free region, which is

orbitally stable, although we have no formal proof for this to hold. Note that if R1 > 1, E∗
B exists

and K > S∗, which implies that R0 > R∗
0 . That is, the condition for endemicity at coexistence

(R∗
0 > 1) is stronger than the endemicity condition for prey population alone (R0 > 1).

(e) R̃1 = β S̃

γ1(1+a1 S̃)
, together with R∗

0 , determines the existence of Ẽ = (S̃, Ĩ , P̃1, P̃2), the endemic

positive equilibrium at which predators and prey coexist. Here, again R̃1 is the ecological basic

reproduction number of the predator–prey system at Ẽ when both populations coexist and with

disease being endemic. 1 < R̃1 < 1 + λ2
a2γ1

implies the coexistence of predator–prey system

near Ẽ, while R∗
0 > 1 ensures the disease becoming endemic, together of the two yields the

local asymptotic stability of Ẽ. Moreover, it is easy to see that R1 < R̃1 < R1. Biologically, the

inequality indicates that the persistence condition for prey population at endemic state (R1 > 1)

is stronger than that of the coexistence at endemic state (R̃1 > 1), which in turn is stronger than

that of disease-free coexistence (R1 > 1).

Note that case (d) above with the disease-free periodic solution in S P1-plane is interesting biolog-

ically. When R∗
0 < 1 and R0 > 1, the populations could sustain but without maintaining an endemic

steady state (Ẽ either does not exist or is unstable). That is, if the reproduction level of the prey is high

enough
(
i.e. R1 > 1+ β

a1γ1(1+a1 K )

)
, the infective populations could persist, albeit fluctuating and appro-

aching an orbitally stable limit cycle. Moreover, R1 > 1 by itself no longer guarantees the coexistence

of prey and predator when in the presence of disease. More precisely, the basic reproduction number

of prey population must be sufficiently larger than 1 to insure persistence of predators. Similarly for

(e), where R̃1 > 1 does not guarantee the coexistence of prey and predator at the positive (endemic)

equilibrium Ẽ, requiring the stronger condition of R̃1 >1 + λ2
a2γ1

.

Of the five parameters, R0 and R∗
0 are disease basic reproduction numbers which determine the local

stability of the two disease-free equilibria EB and E∗
B, respectively; while R1, R1 and R̃1 are the average

numbers of prey converted to predator biomass in a course of the predator’s life span. Note that if we

define a function R1(S) = βS
γ1(1+a1 S) , then it follows that R1 = R1(K ), R1 = R1(S) and R̃1 = R1(S̃),

which are the respective threshold parameters or ecological basic reproduction numbers for the predator–

prey system at EB, EB and Ẽ that determine the coexistence of prey and predators at these equilibria.
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It is interesting to note that in all cases involving the 4D system (2.1), i.e. cases (b)–(e), coupled

conditions are needed for the local stability of the equilibria under consideration. One of the condition

always determine the coexistence of the predator–prey system, the other condition dictates whether the

disease will be eradicated. This phenomenon of dual threshold parameters has previously been observed

in Han et al. (2001) and Hethcote et al. (2004).

6. Numerical examples and discussions

Due to the difficulty in fully analysing the stability of the equilibria for the full 4D system (2.1), we

discuss the possible cases with the aid of the threshold parameters and numerical examples. We first

note that, from Section 4, the trivial equilibrium E0 always exists and is unstable, and hence need not

be considered here. The boundary equilibrium EB always exists and if it is asymptotically stable (i.e.

R0 < 1 and R1 < 1), then EB and E∗
B will not exist. Moreover, when EB or E∗

B do not exist (i.e.

R0 6 1 or R1 6 1), there is no positive interior equilibrium. When EB and E∗
B exist, EB is unstable.

Furthermore, if EB exists with R1 > 1 + λ2 I

γ1(1+a2 I )
since R1 < R1, we have that R1 > 1 and E∗

B exist.

On the other hand, if E∗
B does exist with R∗

0 > 1, we have that R0 > 1 and EB exist. In Table 2, we list

the conditions for nine cases.

We now give 3D figures of simulated examples in SI P1-space for some of the more interesting cases.

For all examples, P2 is omitted since its value at all equilibria is 0 except at the positive equilibrium

TABLE 2 Asymptotic states for the full model

Case (simulation figure) EB EB E∗
B Ẽ

1 R0 < 1, R1 < 1 AS — — —
2 R0 > 1, R1 6 1 unstable AS — —

3 R0 6 1, 1 < R1 < 1 + β
a1γ1(1+a1 K ) unstable — AS —

4 R∗
0 < R0 6 1, R1 > 1 + β

a1γ1(1+a1 K ) (Fig. 2) unstable — unstable (♯) —

5 R0 > R∗
0 > 1, R1 < 1 + λ2 I

γ1(1+a2 I )
, unstable AS unstable —

1 < R1 < 1 + β
a1γ1(1+a1 K ) (Fig. 3)

6 1 + β
a1γ1(1+a1 K ) > R1 > R1 > 1 + λ2 I

γ1(1+a2 I )
, unstable unstable AS —

R0 > 1 > R∗
0 (Fig. 4)

7 R0 > 1 > R∗
0 , R1 > 1 + λ2 I

γ1(1+a2 I )
, unstable unstable unstable (♯) —

R1 > 1 + β
a1γ1(1+a1 K ) (Fig. 5)

8 R0 > 1 > R∗
0 , R1 < 1 + λ2 I

γ1(1+a2 I )
, unstable AS AS (*)

1 < R1 < 1 + β
a1γ1(1+a1 K ) (Fig. 6)

9 R0 > 1 > R∗
0 , R1 < 1 + λ2 I

γ1(1+a2 I )
, unstable AS unstable (♯) (*)

R1 > 1 + β
a1γ1(1+a1 K ) (Fig. 7)

Note: ‘AS’ denotes that the equilibrium is asymptotically stable; ‘—’ denotes that the equilibrium does not exist; ‘(♯)’

denotes that numerical simulation showed that in this case there is a unique periodic solution in S P1-plane which is

orbitally stable and ‘(*)’denotes that numerical simulations showed that in this case the unique positive interior

equilibrium is unstable.
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(cases 7 and 8), where all elements are positive. Case 1 in Table 2 is straightforward with the disease-

free boundary equilibrium EB (globally) asymptotically stable, and EB, E∗
B and Ẽ do not exist. Here,

the predators become extinct and the prey goes to K , its disease-free carrying capacity, and hence we do

not provide the simulation result. Case 2, with the predators becoming extinct and the prey population

becoming endemic with population size below its carrying capacity K , and case 3, with all solutions

starting in S going to the disease-free coexistence of predators and prey E∗
B, are also straightforward

and hence no simulations are given.

For the numerical simulations, for which we used the Phaser 2.1 scientific software for simulating

dynamical systems, the following parameters values in Table 2 are the same for all simulations: r = 2,

λ2 = 0.1, a1 = 0.01, β = 0.015, γ1 = 1, γ2 = 0.5 and α1 = 0.1. There are three trajectories

symbolized by blue, green and grey in these figures and starting at SI -plane, S P1-plane, I P1-plane and

the interior region S = {(S, I, P1) ∈ R3|S > 0, I > 0, P1 > 0}, respectively. We are able to disregard

the variable P1 in our figures because P1 goes to 0 if the variable I goes to 0, hence we only need to

make a distinction when I does not go to 0. Note also that the equilibrium at the origin E0 always exists

but is unstable with a stable region of the I -axis. Moreover, the ranges on the axes were omitted from

each figure for the sake of brevity.

For case 4 (see Fig. 2), we let K = 600, μ = 0.9, λ1 = 0.0014, a2 = 0.5 and α2 = 0.5. EB and E∗
B

are unstable. EB and Ẽ do not exist. The blue trajectory approaches EB. The green and grey trajectories

approach the unique and orbitally stable limit cycle. Similar to case 3, all solutions starting in S go to

disease-free coexistence of predators and prey, but in an oscillatory manner.

For case 5 (see Fig. 3), we let K = 490, μ = 0.9, λ1 = 0.002, a2 = 0.5 and α2 = 0.01. EB and E∗
B

are unstable, Ẽ does not exist and EB is asymptotically stable. The blue and grey trajectories approach

EB. The green trajectory approaches E∗
B. Here, unless the trajectory starts from the disease-free region

S P1-plane, the predators become extinct and the prey population goes to endemic steady state. This case

indicates the important role which a highly infectious disease (R0 > R∗
0 > 1) can play in driving the

predators to extinction when the predators and prey would have coexisted without the disease (R1 > 1).

It is interesting that this seems to be the exact opposite of case 3 in Hethcote et al. (2004), where the

greater vulnerability of infected prey allows the predators to persist when they would have become

extinct without the disease.

For case 6 (see Fig. 4), we let K = 490, μ = 0.9, λ1 = 0.002, a2 = 0.5 and α2 = 0.5. EB and EB are

unstable, E∗
B is asymptotically stable and Ẽ does not exist. The blue trajectory approaches EB. The green

FIG. 2. Simulation for case 4 of Table 2. The dashed (-) trajectory approaches EB. The crossed (x) and boxed trajectories approach

the unique and orbitally stable limit cycle.
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FIG. 3. Simulation for case 5 of Table 2. The dashed (-) and boxed trajectories approach EB. The crossed (x) trajectory approaches

E∗
B.

FIG. 4. Simulation for case 6 of Table 2. The dashed (-) trajectory approaches EB. The crossed (x) and boxed trajectories approach

E∗
B.

and grey trajectories approach E∗
B. That is, all solutions starting in S go to disease-free coexistence of

predators and prey. This interesting case is similar to case 5 in Hethcote et al. (2004), where the predation

of the more vulnerable infected prey causes the disease to be eradicated in the ecosystem (R∗
0 < 1) when

it would have remained endemic in prey in the absence of predation (R0 > 1).

For case 7 (see Fig. 5), we let K = 600, μ = 0.9, λ1 = 0.002, a2 = 0.5 and α2 = 0.5. EB, EB

and E∗
B are all unstable and Ẽ does not exist. The blue trajectory approaches EB. The green and grey

trajectories approach the unique limit cycle which is orbitally stable. Here again, the predation of the

more vulnerable infected prey causes the disease to be eradicated in the ecosystem (R∗
0 < 1), albeit in an

oscillatory manner, when it would have remained endemic in prey in the absence of predation (R0 > 1).

For case 8 (see Fig. 6), we let K = 490, μ = 0.4, λ1 = 0.002, a2 = 0.402 and α2 = 0.5. EB is

unstable, EB and E∗
B are asymptotically stable and we have bistability. Note also that there is a unique

positive interior equilibrium Ẽ which is unstable from our simulations. Thus, we have another purple

trajectory which starts near the positive interior equilibrium. The blue trajectory approaches EB and the

green, grey and purple trajectories approach E∗
B. The bistability means that there is a stable manifold

of Ẽ which separates the regions of stability for EB and E∗
B. Biologically, it indicates that trajectories

starting in different regions will approach either the disease-free coexistence or the endemic steady

state of prey alone. Note also that this case differs from case 6 only in smaller R1, the ecological basic

reproduction number for prey population at endemic state.
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FIG. 5. Simulation for case 7 of Table 2. The dashed (-) trajectory approaches EB. The crossed (x) and boxed trajectories approach

the unique limit cycle which is orbitally stable.

FIG. 6. Simulation for case 8 of Table 2. There is another vertical dashed trajectory that starts near the positive interior equilibrium.

The dashed (-) trajectory approaches EB, and the crossed (x), boxed and vertical dashed trajectories approach E∗
B.

FIG. 7. Simulation for case 9 of Table 2. The vertical dashed trajectory starts near the positive interior equilibrium. The dashed (-)

trajectory approaches EB. The crossed (x), boxed and vertical dashed trajectories approach the limit cycle.
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For case 9 (see Fig. 7), we let K = 600, μ = 0.4, λ1 = 0.002, a2 = 0.402 and α2 = 0.5. EB and

E∗
B are unstable and EB is asymptotically stable. The system has a unique positive interior equilibrium Ẽ

which is again unstable from the simulations we made. Moreover, there is a unique limit cycle in S P1-

plane which is orbitally stable. Again, we have a purple trajectory which starts near the positive interior

equilibrium. The blue trajectory approaches EB. The green, grey and purple trajectories approach the

orbitally stable limit cycle. Interestingly, this is the only case we could find where, asymptotically, the

predators and prey coexist in endemic state, albeit in an oscillatory manner.

Comparing to the model of Hethcote et al. (2004) with disease in prey only, the absence of the

case where the vulnerability of infected prey allows the predators to persist when they would not have

survived otherwise without the disease clearly exhibits the importance of a disease which could also

infect the predators that leads to changes in the basic dynamics of the system. On the contrary, the

present model includes the possibility (case 5) of a highly infectious disease (R0 > R∗
0 > 1) driving the

predators to extinction when the predators and prey would have coexisted without the disease (R1 > 1),

which further highlights the possibly damaging role played by a disease that infects both predators and

prey. On the other hand, under a different range of parameters (as demonstrated by cases 6 and 7), the

predation of more vulnerable infected prey could cause the disease to be eradicated in the ecosystem

(R∗
0 < 1), albeit perhaps in an oscillatory manner, when it would have remained endemic in prey in

the absence of predation (R0 > 1). Hence, the presence of disease in both predators and prey could

be either promote or impair coexistence, and needs to be explored further in each particular relevant

situation.

Our model with disease in both predator and prey populations provides complex dynamics, allowing

for the possibility of bistability and periodic oscillation in the ecosystem. The existence of an interior

equilibrium with predators and prey coexisting and both endemic is also interesting biologically, al-

though we are not able to fully analyse it, and hence is an appealing open problem for future studies.

Moreover, the analysis on interior equilibrium in Section 4 indicates that, under a complicated set of

conditions, it is possible theoretically for multiple interior equilibria to exist. However, we have not

been able to find a numerical example for this case.

The parameters relating to P2, namely λ2 and γ2, does not appear in any of the threshold parame-

ters we obtained in Section 5. However, λ2 does appear in the range of values for R̄1 in cases 5–9. For

example, by comparing cases 7 (Fig. 5) and 9 (Fig. 7), we note that λ2 plays a role in determining

whether trajectories starting in the SI -plane approach ĒB (as in Fig. 7) or the limit cycle. Hence,

P2 plays only a minor and indirect role in the spread of disease when compared to the other subpopula-

tions mainly due to the assumption that the infected predators are unable to infect other members of the

population.

A problem of modelling interest is when one assumes that once the predators are infected, they can

infect other predators—a current issue of interest considering the speculation regarding the potential

threat of H5N1 mutating to human-to-human transmissible strain. There has been some documentation

of the possible human-to-human infection of H5N1 (Ungchusak et al., 2005). Mathematically, it would

further complicate the dynamics by adding at least one more boundary equilibrium, ÊB = (Ŝ, 0, P̂1, P̂2),

where disease-free prey coexists with endemic predator population yielding a corresponding additional

disease basic reproduction number for this scenario. For our present study, we have not included ei-

ther infection between predators or even infection by a third migratory population (e.g. wild migratory

waterfowl).

Furthermore, we had assumed no vertical transmission. However, a recent report on pathology of

SARS indicates that there is some evidence of viral replication in the circulating mononuclear cells of

the fetus, which supports the possibility of vertical transmission for SARS (Ng & To, 2007). In order
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to account for this remote possibility of vertical transmission of disease in either predators or prey,

however, major modification in our model would be required to include the growth in infected prey (I )

due to birth as well as the growth in infected predators (P2) due to predation of (susceptible and sick)

prey by infected predators, and hence is not pursued in this work.

Another related issue is that of disease control to eliminate disease in either prey or predator pop-

ulation. For control of avian influenza epidemic in birds, vaccination has been suggested as an option

for the prevention of bird infections (Lee & Suarez, 2005) and is being used by some countries like

China on a historically massive scale in an attempt to prevent a potentially massive influenza pandemic

(Cyranoski, 2005). However, the present difficulty in implementation, risks and delays involved in a

massive bird vaccination program made it considerably less efficient and effective as an option for pre-

vention (Normile, 2004). It has even been suggested that a possible source of the continuing H5N1

pandemic threat may be that the pathogenicity of H5N1 viruses is masked by bad agricultural vaccines

(Webster et al., 2006). Vaccination and culling had both been modelled in recent years for the control

of foot-and-mouth disease (FMD) epidemics (e.g. Woolhouse et al., 1996; Woolhouse, 2003; Chowell

et al., 2006; Hutber et al., 2006). Culling has traditionally been used in the prevention of animal disease

outbreaks, sometimes in combination with other measures and mixed success (Courtenay et al., 2002).

Many of the above-mentioned studies on impact of control measures for FMD include culling as a ma-

jor component, which has been found to be especially effective and remains to be the method of choice

for disease control of FMD. Interestingly, Hadeler & Freedman (1989) showed, under their modelling

assumptions, culling the predator to lead to extinction of both predator and prey populations, perhaps

indicating the complexity involved in modelling control measures in a predator–prey system.

These features could conceivably be added to the model in subsequent studies, given the possibility

that these events may indeed occur in the future. However, we note that modelling transmission of

H5N1, which might include both animal-to-human and possibly human-to-human infections, essentially

amounts to modelling a ‘giant leap to mankind’ (as described by Klempner & Shapiro, 2004) which

can be very difficult to quantify. Moreover, this interaction between humans and birds might not be

best represented as a predator–prey interaction with Holling type-II functional response, which would

require substantial modification in our model that is beyond the scope of this study.
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Appendix

Proof of Lemma 3.1. For (i), if R1 < 1, then EB is asymptotically stable for (3.1). Moreover, since

EB is the unique asymptotically stable equilibrium of (3.1) and on the boundary of the first quadrant

which is the feasible region for (3.1), EB must be globally asymptotically stable for (3.1). Part (ii) of the

lemma follows trivially from Jacobian of EB.

For (iii), we proceed to show that EB is globally asymptotically stable for (3.1) as follows. First,

suppose that (φ1(t), φ2(t)) is a solution of the system (3.1) which starts at a point x = (x1, x2) with

K < x1 < ∞, 0 < x2 < ∞. Also

dφ2

dφ1
=

(φ1(β − a1γ1) − γ1

1 + a1φ1

)
φ2

rφ1(K − φ1)
K

− α1φ1φ2
1+a1φ1

−→ 0 as φ1 −→ K .

Thus, the solution cannot become infinite between x and the line L: S = K , and must cross L at

a point y = (K , y2) with x2 < y2 < ∞. Now, let U be the region bounded by P1 = y2, P1 = 0,

S = x1 and S > 0 and the line segment xy. From the analysis of flow direction on the boundary of U ,

we can see that U is an invariant set with respect to the system (3.1). Since there is no positive interior

equilibrium, the system has no any periodic solutions. Thus for any solution starting in U , its positive

limit set is EB. Furthermore, since the region U is arbitrary, it follows from Brauer & Nohel (1969)

(Lemma 5.4, p. 212) that EB is globally asymptotically stable for (3.1). �
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Proof of Lemma 3.2. First, we have P ′
1 = 0 ⇒ S∗ = γ1

β−a1γ1
provided β − a1γ1 > 0, which is satisfied

as long as R1 > 0. Also from S′ = 0, one obtains P∗
1 = r

α1

(
1 − γ1

K (β−a1γ1)

)(
1 + a1γ1

β−a1γ1

)
provided

0 < S∗ = γ1

β−a1γ1
< K . Thus, (S∗, P∗

1 ) =
( γ1

β−a1γ1
, r

α1

(
1 − γ1

K (β−a1γ1)

)(
1 + a1γ1

β−a1γ1

))
is the unique

positive interior equilibrium of (3.1). Note that E∗ exists if and only if R1 > 1. Now, we have the

Jacobian at E∗:

AE∗ =




a1[K (β − a1γ1) − γ1] − β

Kβ(β − a1γ1)
γ1r −α1γ1

β

K (β − a1γ1) − γ1

Kα1
r 0


 .

Since

det(AE∗ − λI2) = λ2 −
(

a1[K (β − a1γ1) − γ1] − β

Kβ(β − a1γ1)
γ1r

)
λ +

(
K (β − a1γ1) − γ1

Kβ
γ1r

)
= 0,

if we let c1 = − a1[K (β−a1γ1)−γ1]−β
Kβ(β−a1γ1)

γ1r and c2 = K (β−a1γ1)−γ1

Kβ γ1r , it follows that S∗ = γ1

β−a1γ1
< K

implies that K (β − a1γ1) − γ1 > 0, and hence c2 > 0. Now, we consider the local stability property of

E∗ for (3.1) using Routh–Hurwitz criterion and yield D1 = c1 and D2 = c1c2. Since β − a1γ1 > 0 and

K (β − a1γ1) − γ1 > 0, then

c1 > 0 ⇔ a1[K (β − a1γ1) − γ1] − β < 0 ⇔ R1 < 1 + β

a1γ1(1 + a1 K )
,

c1 < 0 ⇔ a1[K (β − a1γ1) − γ1] − β > 0 ⇔ R1 > 1 + β

a1γ1(1 + a1 K )
,

c1 = 0 ⇔ a1[K (β − a1γ1) − γ1] − β = 0 ⇔ R1 = 1 + β

a1γ1(1 + a1 K )
.

Part (iii) follows from a theorem in Coddington & Levinson (1955, p. 382). �

Proof of Theorem 3.3. The proof basically follows from Lemma 4.4 of Hsu et al. (1978). First, let

f1(S, P1) = r S

(
1 − S

K

)
− α1

(
S

1 + a1S

)
P1,

f2(S, P1) = β

(
S

1 + a1S

)
P1 − γ1 P1,

h(S, P1) =
(

1 + a1S

S

)A

P B
1 ,

where A, B ∈ R will be selected below. Now,

∂( f1h)

∂S
+ ∂( f2h)

∂ P1
= [−α1 P B+1

1 S A(1 + a1S)−(A+2)](A + 1) + [r P B
1 S A(1 + a1S)−(A+1)]G A,C (S),

where C = B+1
r

and

G A,C (S) = −
(

2a1

K

)
S2 +

[
(β − a1γ1)C +

(
a1 − A + 2

K

)]
S + [(A + 1) − Cγ1].
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We look for A > −1 and C such that G A,C (S) 6 0 for all S. To do this, we first consider the discriminant

DA(C) of G A,C (S) and the discriminant D(A) of DA(C) which are given by

DA(C) = (β − a1γ1)
2C2 + 2

[
(β − a1γ1)

(
a1 − A + 2

K

)
− 4a1γ1

K

]
C

+
(

a1 − A + 2

K

)2

+ 8a1(A + 1)

K
,

D(A) = 32a1

K 2
{(β − a1γ1)[γ1 − K (β − a1γ1)]A + β[2γ1 − K (β − a1γ1)]}.

Now we take A = −1, then

D(−1) = −32a1γ1

K 2
{a1[K (β − a1γ1) − γ1] − β}.

Since R1 6 1 + β
a1γ1(1+a1 K ) implies that D(−1) > 0, the polynomial D−1(C) = 0 has two real roots

C1 and C2 with C1 6 C2. Thus, we can take a C∗ with C1 6 C∗ 6 C2 such that D−1(C
∗) 6 0 implies

that G−1,C∗(S) 6 0. Hence, the expression
∂( f1h)

∂S
+ ∂( f2h)

∂ P1
does not change sign. By Dulac criterion

(Hahn, 1967, p. 67), system (3.1) has no periodic orbit in the first quadrant and thus E∗ is globally

asymptotically stable for (3.1). �

Proof of Theorem 3.4. The uniqueness of a limit cycle for a predator–prey system is proved first by

Cheng (1981). The rest of proof follows from Theorem 4.2 in Kuang & Freedman (1988). First, let

g(S) = r

(
1 − S

K

)
, p(S) = α1S

1 + a1S
, q(S) = βS

1 + a1S
.

Then, the assumptions (H1)–(H8) of Theorem 4.2 in Kuang & Freedman (1988) are satisfied. To apply

that theorem, we require the following:

d

dS


 Sg′(S) + g(S) − Sg(S)

p′(S)
p(S)

−γ1 + q(S)




= d

dS

(
r

K
∙ −2a1S2 + (a1 K − 1)S

(β − a1γ1)S − γ1

)
6 0 for 0 6 S < S∗, S∗ < S 6 K

⇔ d

dS

(
2a1S2 + (a1 K − 1)S

S − S∗

)

= 2a1S2 − 4a1S∗S + (a1 K − 1)S∗

(S − S∗)2
> 0 for 0 6 S < S∗, S∗ < S 6 K

⇔ D(S) = 2a1S2 − 4a1S∗S + (a1 K − 1)S∗
> 0 for 0 6 S < S∗, S∗ < S 6 K .
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Now, note that D′(S) = 4a1(S − S∗) implies that D(S∗) is the local minimum of D(S). Also R1 >

1 + β
a1γ1(1+a1 K ) implies that a1 K − 1 − 2a1S∗ > 0, hence

D(0) = (a1 K − 1)S∗ > 0,

D(S∗) = (a1 K − 1 − 2a1S∗)S∗ > 0.

Subsequently, we have D(S) > 0 for 0 6 S < S∗, S∗ < S 6 K . Under the above assumptions, this

implies that the system (3.1) has a unique limit cycle that is globally asymptotically orbitally stable. �

Proof of Lemma 4.1. From

AE0
=




r −(r + Kλ1) − α1 K
1+a1 K

− α1 K
1+a1 K

0 Kλ1 − μ 0 0

0 0
βK

1+a1 K
− γ1 0

0 0 0 −γ2




,

it follows that if we let R0 = Kλ1
μ , the disease basic reproduction number of the prey, we have the

stability result for EB. �

Proof of Lemma 4.2. When R0 > 1, (S, I , 0, 0) =
( μ

λ1
, r(Kλ1−μ)

λ1(r+Kλ1)
, 0, 0

)
exists. It is easy to show that

S + I < K when R0 > 1. We have

AEB
=




− rμ
Kλ1

−
(

rμ
Kλ1

+ μ
)

− α1μ
λ1+a1μ

− α1μ
λ1+a1μ

r(Kλ1−μ)
r+λ1 K

0 − α2r(Kλ1−μ)
λ1(r+Kλ1)+a2r(Kλ1−μ) − α2r(Kλ1−μ)

λ1(r+Kλ1)+a2r(Kλ1−μ)

0 0 M 0

0 0
λ2r(Kλ1−μ)

λ1(r+Kλ1)+a2r(Kλ1−μ) −γ2




,

where M = βS

1+a1 S
− λ2 I

1+a2 I
−γ1. Since det(AEB

−λI4) = (M −λ)(−γ2 −λ)
[
λ2 +

(
rμ

Kλ1

)
λ+ r(Kλ1−μ)

(r+λ1 K ) ∙
αμ

λ1+a1μ

]
= 0 and M < 0 is equivalent to R1 < 1 + λ2 I

γ1(1+a2 I )
, where R1 = βS

γ1(1+a1 S)
, we have the

stability result for EB. �

Proof of Lemma 4.3. When R1 > 1, (S∗, 0, P∗
1 , 0) =

( γ1

β−a1γ1
, 0, r

α1

(
1 − γ1

K (β−a1γ1)

)(
1 + a1γ1

β−a1γ1

)
, 0
)

exists.

AE∗
B

=




a1[K (β−a1γ1)−γ1]−β
Kβ(β−a1γ1)

γ1r −
(

r
K

+ λ1

) γ1

β−a1γ1
−α1γ1

β −α1γ1

β

0 N 0 0

K (β−a1γ1)−γ1

Kα1
r − rλ2

α1

(
1 − γ1

K (β−a1γ1)

)(
1 + a1γ1

β−a1γ1

)−1
0 0

0 rλ2
α1

(
1 − γ1

K (β−a1γ1)

)(
1 + a1γ1

β−a1γ1

)
0 −γ2




,
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where N = λ1S∗ − α2 P∗
1 − μ. From det

(
AE∗

B
− λI4

)
= (N − λ)(−γ2 − λ) ∙ det

(
AE∗

B
− λI2

)
and

R∗
0 = λ1 S∗

α2 P∗
1 +μ

, we have the stability result for E∗
B. �

Proof of Lemma 4.4. To show the existence of Ẽ, we know

P ′
1 = 0 =⇒ βS

1 + a1S
− γ1 − λ2 I

1 + a2 I
= 0

=⇒ Ĩ = S̃(β − a1γ1) − γ1

λ2(1 + a1 S̃) − a2[S̃(β − a1γ1) − γ1]
,

provided that S̃(β − a1γ1) − γ1 > 0 and λ2(1 + a1 S̃) − a2[S̃(β − a1γ1) − γ1] > 0. Note that 1 < R̃1 <

1 + λ2
a2γ1

is equivalent to S̃(β − a1γ1) − γ1 > 0 and λ2(1 + a1 S̃) − a2[S̃(β − a1γ1) − γ1] > 0. From

P ′
2 = 0, obtain P̃2 = λ2

γ2

(
Ĩ

1+a2 Ĩ

)
P̃1. Also

I ′ = 0 =⇒ λ1S − α2

1 + a2 I
(P1 + P2) − μ = 0 =⇒ P1 + P2 = 1

α2
(λ1S − μ)(1 + a2 I )

=⇒ P̃1 = 1

α2
(λ1 S̃ − μ)(1 + a2 Ĩ )

[
1 + λ2

γ2

(
Ĩ

1 + a2 Ĩ

)]−1

, if S̃ >
μ

λ1
.

From S′ = 0, we obtain

r

K
(K − S − I ) − λ1 I − α1

α2
∙ 1

1 + a1S
(λ1S − μ)(1 + a2 I ) = 0

=⇒ a1α2r [(β − a1γ1) − λ2]S2 + {K{a1α2r [λ2 − (β − a1γ1)]

− α2λ1(β − a1γ1) − α1λ1λ2} − α2r [(β − a1γ1) + λ2 + a2γ1]}S

+{K{α2r + [λ2 + a2γ1] + α2λ1γ1 + α1λ2μ} + α2γ1r} = 0

=⇒ S̃ =





−b ±
√

b2 − 4ac

2a
, if (β − a1γ1) − λ2 6= 0 and b2 − 4ac > 0,

K [α2(βr + λ1γ1) + α1λ2μ] + α2γ1r

Kλ1λ2(α1 + α2) + α2r(2λ1 + a2γ1)
, if (β − a1γ1) − λ2 = 0,

where

a = a1α2r [(β − a1γ1) − λ2],

b = {K{a1α2r [λ2 − (β − a1γ1)] − α2λ1(β − a1γ1) − α1λ1λ2} − α2r [(β − a1γ1) + λ2 + a2γ1]},

c = {K{α2r + [λ2 + a2γ1] + α2λ1γ1 + α1λ2μ} + α2γ1r}.

Thus we have the desired result. �
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