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Summary 

The primary objective of this paper was to develop a mathematical description 
for the food chain, 

Soluble Organic - Bacteria - Holozoic 
Nutrients Protozoa 

Because of the interdependence of the elements in this food chain, continuous 
oscillations among the variables are possible. A set of three differential equations 
was obtained to  describe the above system in a continuously fed stirred tank 
reactor. The differential equations obtained were examined to characterize the 
possible types of solutions. A limit cycle solution was obtained for some values 
of the system parameters. 

INTRODUCTION 

The biological community of an efficient wastewater treatment 
plant employing the activated sludge process is extremely diverse. 
Microscopic examination of sludge often reveals bacteria, fungi, 
protozoa, and rotifers. Less numerous organisms which occur are 
crustaceans and nematodes. 

Bacteria are the primary agents responsible for the stabilization of 
dissolved organic material in the activated sludge process. However, 
chemosynthetic Mastigophora and fungi obtain food in a manner 
similar to that of the bacteria, that is, by transport of soluble nutrients 
across the cell membrane. Thus, these organisms compete with 
bacteria for their food. Lackey' studied the distribution of chemo- 
synthetic Mastigophora in activated sludge as well as in other 
biological treatment units. The free-swimming and stalked Ciliata, 
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as well as the rotifers, rely mainly on bacteria as a source of food. 
The Ciliata, their occurrence and importance in activated sludge, 
have been the subjects of research by many workers. It wyas estab- 
lished by Jenkins2 and Lackey' and later by Baines et al.3 that there 
is little correlation between protozoan populations and the degree of 
purification in activated sludge treatment plants. In  a more recent 
work, AlcKinney and Gram4 showed in laboratory studies that many 
free-swimming Ciliata are capable of clearing a cloudy suspension of 
bacteria. Other important contributions concerning the role of 
protozoa in activated sludge include: Cramer15 Reynoldson, and 
Heukelikian and Gurbaxani. 'I 

The microorganism population of activated sludge is dynamic in 
nature. Competition for soluble food occurs among the bacteria, 
the fungi, and the chemosynthetic Mastigophora. Holozoic free- 
swimming and stalked Ciliata and the rotifers are competing while 
preying on the saprobic organisms. An excellent qualitative dis- 
cussion of these ideas was presented by McKinney and Gram.4 The 
present study is concerned with the development of a mathematical 
model to aid in obtaining quantitative information regarding some 
aspects of predator-prey relationships in continuously fed biological 
reactors. 

THE MATHEMATICS OF CONTINUOUS CULTURE OF 
MICROORGANISMS 

It is generally agreed that various species of bacteria are the most 
important microorganisms responsible for the removal of organic 
material in biological waste treatment processes. Thus, as a first 
approximation, many workers have neglected the effects of all 
organisms other than bacteria. The theory associated with this 
model was published by Monod (1942) and later by Herbert et a1.8 
I n  this model, a sterile growth medium is fed continuously into a 
completely mixed culture vessel a t  a constant volumetric flow rate Q. 
The culture vessel has a constant volume V .  The culture vessel 
contains bacterium with a concentration, b (dry weight of bacterium 
per unit volume). The rate of increase of bacterial concentration, 
T b ,  is only a function of the limiting nutrient concentration in the 
growth medium s and the concentration of bacterium b. The units 
of s are weight of limiting nutrient per unit volume. Several investi- 
gators such as Monod (1942), Downing and Wheatland19 Steward and 
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Ludwig,l0 and Rich" have proposed the use of eq. (1) for relating 
r b  and s. 

I n  eq. (1) M is the specific growth rate and has units (time-l), and K 
is a saturation constant which is equal to the limiting nutrient con- 
centration when rb/b = M / 2 .  

Associated with the bacterial concentration increase is a decrease 
in the limiting nutrient concentration. Monod (1942) presented a 
simple relationship between the growth rh, and the substrate utiliza- 
tion rate rat as shown by eq. (2) : 

rh = - Yr, (2)  
where Y is the yield constant defined by eq. (3). 

weight of bacteria formed 
weight of substrate used 

Y =  (3) 

A mass balance for the limiting substrate concentration in the 
culture vessel with an influent concentration of SI gives eq. (4) using 

Rate of increase 
of substrate 

ds 
dt V V Y K + s  

eqs. (11, (21, and (3). 

= Rate of - Rate of - Rate of utilization 
concentration input output by bacterium 

- b (4) 
M s  
-~ s -  - s I -  ~ 

Q Q - - 

A similar equation for the change in Concentration of the bacterium 

Rate of increase of Rate of Rate of 
is eq. (5 ) .  

bacterium concentration = growth - output 
db 
dt 
- 

At steady state, ds/dt = db/dt = 0. The substrate concentration 
at steady state so is obtained from eq. (5 ) .  
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The bacterial concentration 
eq. (4). 

CANALE 

a t  steady state bo is obtained from 

As shown by Koga and Humphrey,12 these values of SO and bo repre- 
sent stable equilibrium points of eqs. (4) and (5)  provided &/V is less 
than M[sr / (K + SI)]. Thus, the simple mathematical model pro- 
posed by Monod predicts that the continuously fed culture vessel 
will have steady state bacterium and nutrient concentrations given 
by so and bo. 

Equations (6) and (7) represent a simple model for bacterial con- 
centration and substrate concentration in a completely mixed reactor. 
Martin and Wa~hington‘~ showed that the effects of cell lysis and 
death are not important in the above mathematical model. Re- 
cently, Wa~hington’~ showed that Y ,  rather than being a constant 
fraction, is actually a function of the dilution rate &/V. Reynolds 
and YangI5 used equations similar to eqs. (4) and ( 5 )  and included 
the effects of sludge recirculation and endogenous respiration. How- 
ever, the solution of such equations with these additional complica- 
tions is also constant steady state values for s and b. 

Cassell et a1.16 investigated the use of Monod’s theory for activated 
sludge processes. The following summarizes the results of their 
findings : 

This study wa8 concerned mainly with the dynamics of mixed cultures as a 
function of flow rate. Laboratory experiments were performed with natural, 
mixed cultures propagated continuously under controlled aerobic conditions. 
Effects of flocculation and sedimentation, although essential to waste treatment 
plants, were eliminated purposely by operating the laboratory units without 
settling and sludge return. Under these circumstances, it  was possible to test 
the usual implicit assumption made in theoretical anslysis of completely mixed 
systems, namely that mixed microbial cultures behave essentially as continuous 
pure cultures reaching a stable equilibrium, or the so-called steady state. The 
experiments revealed that mixed culture systems are very dynamic and that 
phenomena of selection and predomination strongly influence their behavior 
contrary to the assumption of steady state.* 

* E. A. Cassell, F. T. Sulzer, and J. C. Lamb, 111, “Population Dynamics and 
Selection in Continuous Mixed Culture,” Sewage and Zndustiral Wastes, 38, No. 9, 
1398-1409 (1966), p. 1398. 
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Thus, although Monod’s theory proved applicable to systems in- 
volving pure cultures, it does not seem adequate for mixed micro- 
organism systems. The purpose of the present work is to modify 
Monod’s theory to include the effects of predators. This results in 
an equation for the limiting nutrient concentration, an equation for 
the bacterium concentration, as well as an equation for a predator 
population. The solutions of the differential equations will be 
studied for dynamic phenomena. 

CLASSICAL PREDATOR-PREY RELATIONSHIPS 

Volterra” and Lotka18 were the first to introduce mathematical 
models to aid in the understanding of predator-prey relationships. 
Consider a population of host organisms N1 that has an effective 
growth rate of k1. For simplicity, kl is assumed to be constant. 
This implies that the food supply of the host organisms is in excess. 
Next, it is hypothesized that the predator organism Nz decreases the 
number of host organisms. Again, for simplicity, it is assumed that 
the decrease in the number of N1 is proportional to N1 and Nz. This 
leads to eq. (8), which expresses the change in the number of N1 as a 
function of N 1  and N z .  

The growth of the predator depends upon both the number of N1 
available and the number of NZ present. If a simple proportional 
relationship is assumed with a proportionality constant of ka, then 
eq. (9) expresses the change in the number of predators: 

where -lc4Nz represents the death rate of the predators. 
If eq. (8) is divided by eq. (9), 

~- dNi  (h - kzNz) N I  
dNz (k3Ni - kh) Nz 

- 

which integrates to eq. (11) : 

-k4 log N I  + k3N1 - kl log Nz + kzN, = constant 
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Each value of the integration constant gives a closed cycle for the 
relationship between N1 and N2 on the N1 - N2 plane. The equi- 
librium value of N1 is given by k4/k3.  Similarly, the equilibrium 
value of N2 is given by kl/k2. A plot of N1 versus Nz for different 
values of the integration constant gives closed cycles as shown in 
Figure 1. 

Biologists as well as mathematicians have shown considerable 
interest in Lotka’s theory since it was proposed in 1924. Gause19 
was the first to show the actual existence of cyclic variation between 
host and predator organisms. Lesliez0 and Bartlett21 discussed the 
validity of the theory and introduced the use of stochastic population 
models for predator-prey relationships. Saltz2 discussed in great 
detail predation in a protozoan population. Cyclic population data 
were obtained for a case where Paramecium aurelia served as a host 
organism for Woodrujia metabolica. However, experimental observa- 
tion of cyclic variations among predators and their prey has been 
rare. To this writer’s knowledge, no attempts have been made to 
observe the phenomenon in a system where free-swimming holozoic 
protozoa prey on bacteria. The demonstration of cyclic variations 
between such organisms will be of considerable interest to those 
concerned with biological waste treatment problems. 

... 

I b 
‘ 4 1  k3 NI (Prey) 

Fig. 1. Closed cycle relationship between predator and prey from classical theory. 
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Equation (9) shows that the growth of the predator is proportional 
to  the number of host and predator organisms. When the host 
organisms are very high, a corresponding high growth rate is proposed 
for the predator without a saturation effect. This is probably the 
weakest point in the mathematical formulation of Lotka. Later 
analysis points out how this shortcoming can easily be overcome. 

MATHEMATICAL DEVELOPMENT OF PREDATOR-PREY 
RELATIONSHIPS IN A CONTINUOUS FLOW STIRRED 

TANK BIOLOGICAL REACTOR 

Derivation of Equations 

Equations to describe the variations in the mass of bacterium and 
the number of protozoan, and consequently, the concentration of the 
limiting nutrient, can be developed using some of the principles 
presented earlier. However, some of the simplifying assumptions 
made previously have been eliminated in the present work. These 
considerations demonstrate phenomena as yet unrevealed by other 
investigators. 

A sterile growth 
medium, which contains a limiting nutrient at, concentration SI, is 
continuously pumped into the tank with a volumetric flow rate Q. 
The reactor contains a pure culture of bacterium utilizing the nutrient, 
medium as a source of food, and a pure culture of holozoic, free- 
swimming ciliated protozoan. The concentration of bacterium is 
represented by b and the protozoan concentration by p .  A mass 
balance on the limiting nutrient, assuming that environmental 
factors such as temperature, pH, and toxicity are constant, is ex- 
pressed as eq. (12), which is identical to eq. (4) : 

Rate of change of 
limiting nutrient = Rate of - Rate of - consumption by 

Consider a stirred tank reactor with volume V .  

Rate of 

concentration input output bacteria 

A material balance on the mass concentration of the bacterium, 
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neglecting death and endogenous respiration rates, gives eq. (13) : 

Rate of change of Rate of 
concentration of = Rate of - Rate of - consumption by 

bacterium growth output protozoan 

The rate of bacterium consumption by the protozoan is given by 
some unknown function, f(b,p). A material balance on the number 
concentration of protozoan, neglecting death rate, gives eq. (14) : 

Rate of change 
of protozoan 
concentration 

= Rate of growth - Rate of output 

The rate of protozoan growth is described by an unknown function, 

It is seen that further progress is impossible without some experi- 
mental work to describe the functions f(b,p) and g(b,p). However, 
Proper and G a r ~ e r , ~ 3  working with a monoxenic culiure of Colpoda 
steinii and Escherichia coli, have shown that protozoan growth can be 
described by Michaelis-Menten kinetics considering the bacterium 
concentration as the limiting nutrient. Further, these workers have 
shown that the protozoan yield W is proportional to  the amount of 
bacterium initially present, where : 

g(b,p). 

number of protozoan produced 
mass of bacterium consumed 

W =  

Thus, eqs. (16) and (17) can be used to describef(b,p) and g(b,p): 

where N is the specific growth rate for the protozoan and has units 
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of time-', and L is a saturation constant, and is the concentration 
of bacterium when g(b ,p) /p  = N/2. Combining eqs. (12), (13), and 
(14) and eqs. (16) and (17)) and introducing the dimensionless 
variables : 

x = S/SI 

z = p/slYW 

y = b/slY 

e = Qt/V 

gives eqs. (18): 

where a = K / s I ,  d = L/slY,  A = MV/Q, and B = NV/Q. Equa- 
tions (18) are similar to models suggested by Bungay and Bungay24 
and Drake et al.25 

Solution of Equations 

In general, given an initial condition, the solution of eqs. (18) will 
trace a curve in the X-y-z space. Figure 2 shows a typical variation 
of x,y, and z obtained from an numerical solution of eqs. (18) with 
A = 7.5, B = 2.4, a = .19, and d = .20. However, it can be shown 
that for any given initial condition, the sum (x + y + z )  always 
approaches unity. Let s' = x + y + z, and add eqs. (18) to obtain: 

ds'/dO = 1 - s' (19) 

the solution of which is: s' = 1 - (1 - K') e-B, where K' is the initial 
value of the sum s'. All the solution trajectories in three-dimensional 
space approach the plane x + y + z = 1 at 0 approaches infinity. 
Further, if s' = x + y + z = 1 to start with, then as' /& equals zero, 
and the solution trajectories remain on the plane x + y + z = 1. 
Thus, the characteristics of the solutions of the three-variable 
problem represented by eq. (18) can be studied as a two-variable 
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2. - .2 

k t -  
-.* / : \  '-,. / :\ 

- .:. '4 .: \ P.. 
.:* ' \ -  / * * . , y  (Bacteria). , - , .., ...* ....... .. -.. .... **.. *.- 

Fig. 2. Variation of predator, prey, and nutrients with 0 according to eqs. (18). 

problem on the plane x + y + z = 1. 
x + y + z = 1, eqs. (18) can be reduced to  eqs. (20) : 

Assuming the initial condition 

dY A(1 - Y - 2) Y - ", BY2 _ -  
a + l - y -  z ' d + y  

dz Byz 
d0 d + y  

- 

The singular points of eqs. (20) are obtained by setting (dy/dO) = 
(dz/d0) = 0. There are three singular points in the system. 

d 
yo = __ B - 1  

xo = -+(Aye + a - 1) + 4 l / (Ayo  + a - 1)2 3- 4a Point AA 
Singular I 20 = 1 - 20 - yo 

( Y o  = 0 
Singular x o  = 
Point BB I 

(xo = 1 

20 = 0 

A - a - 1  
Singular Yo = 
Point CC 1 A - 1  

To study the nature of each of these singular points, use it as an 
BIOTECHNOLOGY AND BIOENGINEERING, VOL. XI, ISSUE 5 
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origin and define a new pair of variables, u = y - yo and v = z - ZO. 

With u and v as dependent variables, eqs. (20) become: 

t i =  - - - y o  
A ( l  - u - v - yo - zo)(u + yo) 

a +  1 - u - 2, - yo - 20 

(21) 
- B(u + YO)(V + 20) 

d + u + y o  

- v - z o  B(u + YO)(V + 20) 

d + u + y o  
i , =  

In the region of yo and zo, u and v are always small and the nature of 
the solutions of eqs. (21) can be investigated with linear approximat- 
ing equations near the singular points making use of well known 
theorems from nonlinear analysis. Near the singular point AA, the 
linear approximation becomes (where ti and i, represent first deriva- 
tives with respect to 0) : 

1 - X O  - Ayo + Ax0 ~ o ( l  - B)  1 - xo - Ayo a + x o  0 -I[:] =I 
(22) 

d + YO - I +  
a + 20 

[:I 
- Z o ( l  - B )  

d + yn 

Near the singular point BB, the linear equation becomes: 

Near the singular point CC, the linear equation becomes: 

[: 1 0 
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The elements of the coe6cient matrices in eqs. (22), (23), and (24) 
depend on the four parameters; A ,  €3, a, and d.  Therefore, the 
numberical values of A ,  B ,  a, and d determine the nature of the 
solution of eqs. (20). By selecting A = 30, a = .02, and d = .1 
and varying the numerical value of B, it is possible to demonstrate 
three types of solutions. 

If A = 30, a = .02, d = .l, and B = 2, both eigenvalues of eq. (22) 
are real and negative. The eigenvalues of eqs. (23) and (24) are real 
but are of opposite sign. Therefore, the singular point a t  AA is a 
stable node, while the singular points a t  BB and CC are saddle 
points. Figure 3c (not to scale) shows a sketch of the solution 
trajectories for this case on the x + y + z = 1 plane. 

On the x-y plane, where z = 0 for all 0, eqs. (18) reduce to  eqs. (25). 

(25) 
X y = A -  

a + x Y - ’  

The singular points of eqs. (25) are obtained by setting 1 = y = 0. 
This system has two singular points. 

Singular Y O  = 0 
Point aa xo = 1 { 

Again introduce the small variables u and v, and expand eqs. (25). 
The eigenvalues of the resulting linear approximations show that 

Fig. 3. Solution trajectories for stable node a t  singular point AA. 
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singular point aa is a saddle point and that singular point bb is a 
stable node provided that A / ( a  + 1) is greater than 1. Figure 3a 
(not to  scale) shows a sketch of the solution trajectories on the x-y 
plane. 

On the 2-2 plane, where y = 0 for all 8, eqs. (18) reduce to  eqs. (26). 

5 = 1 - x  

= - 2  

The solutions of eqs. (26) are a series of straight lines: 

where z (0 )  = z and s(0) = 2. Figure 3b shows a sketch of these 
lines on the x-z plane. 

The singular point AA is a stable node if A = 30, a = .02, d = .l, 
and B = 2. By setting A = 30, a = .02, d = .l, and B = 3, a 
different type of solution is obtained. The eigenvalues of eqs. (22) 
become complex conjugates with negative real parts, while the 
eigenvalues of eqs. (23) and (24) are real but of opposite sign. Thus, 
singular point AA becomes a stable focal point. The singular 
points BB and CC remain saddle points. Figure 4 (not to scale) 
shows a sketch of the solution trajectories for this situation on the 
2 + y + z = 1 plane. 

Examination of eqs. (22), (23), and (24) when A = 30, a = .02, 
d = .I, and B = 4, shows that the eigenvalues of eq. (22) are complex 
conjugates with positive real parts, while the eigenvalues of eqs. (23) 
and (24) are real but of opposite sign. Singular point AA becomes 
an unstable focal point. Singular points BB and CC are saddle 
points. Figure 5 (not to scale) shows a sketch of the solution 
trajectories when singular point AA si an unstable focal point. 

When singular point AA is an unstable focal point, the solution 
trajectories of eq. (18) eventually approach a closed curve on the 
x + y + x = 1 plane. This closed curve is a periodic solution of eq. 
(18) and is called a limit cycle. The shape and frequency of the 
waves of this solution are independent of the initial conditions and 
depend only on the values of A ,  B, a, and d. 

Qualitative information of the effects of bacterium and protozoan 
growth rates, as well as the effects of the saturation constants, can be 
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t 

Fig. 4. Solution trajectories for stable focal point a t  AA. 

obtained by examining eqs. (20). Figures 6 through 9 are phase- 
plane sketches of y versus z obtained from numerical solutions of 
eqs. (20) by varying each of the constants A ,  B ,  a, and d, while 
fixing the other three. 

Figure 6 shows that increasing the bacterial growth rate increases 
the average population of protozoan, while decreasing the concentra- 
tion of the limiting nutrient. Systems with very high bacterial 
growth rates may be subject to high frequency, low amplitude 
oscillations. 

Figure 7 shows that increasing the saturation constant determining 
bacterial growth increases the period of the oscillations. Lower 
average populations of protozoan are possible, while limiting nutrient 
concentrations are higher. 

BIOTECHNOLOGY AND BIOENGINEERING, VOL. XI, ISSUE 5 
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Figure 8 shows the effect of varying the protozoan maximum 
growth rates. For low maximum protozoan growth rates, it is 
possible for the oscillations to degenerate into either stable focal or 
stable nodal points. At these points, the average protozoan popula- 
tion will be extremely high, while the bacterium and limiting nutrient 
concentrations will be low. Increasing the maximum growth rate 
pushes the system into a low frequency, high amplitude oscillation. 

Figure 9 shows the effect of varying the saturation constant for 
protozoan growth. For cases with high saturation constants, the 
system may reduce to a stable nodal point with a high equilibrium 
concentration of protozoan, and correspondingly low equilibrium 
concentrations for the bacterium and limiting nutrient. Decreasing 
the saturation constant leads to oscillations with extremely high 
amplitude and very low frequencies. 

Fig. 5. Solution trajectories for unstable focal point AA. 
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Fig. 6. Theoretical effect of varying bacterium maximum growth rate according 
to eqs. (18). y-a plane. B = 4.0, a = .02, and b = .l. 

SUMMARY AND CONCLUSIONS 

The primary objective of this research is to obtain a quantitative 
approach to aid in understanding the food chain, 

Soluble Organic - Bacteria __$ Holozoic 
Nutrients Protozoa 

The interdependence of the elements in this food chain give rise to  
dynamic phenomena. Lotka and Volterra were the first investi- 
gators to use mathematics as a tool to analyze these dynamic phe- 
nomena. These workers introduced eqs. (8) and (9) as an explanation 
of observed periodic oscillations in numbers of host and predator 
organisms : 

(8) - -  - kiN1 - kZN1N2 dNi  
dt 

RIOTECHNOLOGY AND BIOENGINEERING, VOL. XI, ISSUE 5 
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The solutions of these differential equations can be represented as a 
set of closed curves on the N1, N 1  plane. The amplitude and fre- 
quency of the oscillations depends on the initial conditions. How- 
ever, Gause (1935) discussed the fact that when periodic oscillations 
arise, the amplitude and frequency are independent of the initial 
conditions and seem to depend on the nature of the system. Equa- 
tion 8 assumes that the source of food for the host organisms is 
unlimited. Equation 9 assumes that the growth of the predator is 
strictly proportional to the number of hosts without any saturation 
effect. 

The present investigation led to a set of three differential equations 
to describe the interrelationships among soluble organic nutrients, 
saprophytic prey (bacterium), and holozoic predators (protozoan) 
in a continuously fed, stirred tank biological reactor. The differential 
equations do not neglect the food source of the prey. Saturation of 
the growth rate of the predator is also considered. The final form of 

Fig. 7. Theoretical effect of varying saturation constant determining bacterium 
growth rate according to eqs. (18). y-z plane. A = 30, B = 4, and b = 0.1. 
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Fig. 8. Theoretical effect of varying protozoan maximum growth rate according 
to  eqs. (18). y-z plane. A = 30, a = 0.02, and b = 0.1. 

the proposed differential equations is given by eqs. (18) : 

X - = l - x - A -  dx 
dt? a + x y  

This model has also incorporated several simplifying assumptions 
and therefore should be regarded as one of several plausible alterna- 
tives. The need for experimental evidence is apparent. 

The characteristics of any 
solution of such equations depend on the magnitude of the parameters 

Equations (18) are highly nonlinear. 

RIOTECHNOLOGY AND BIOENGINEERING, VOL. XI. ISSUE 5 
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.6 

.4 

.2 

0 

Fig. 9. Theoretical effect of varying saturation constant determining protozoan 
growth rate according to eqs. (18). y-z plane. A = 30, a = 0.02, and B = 4. 

in the system. As shown by singular point analysis and numerical 
integration, the solution of these equations may be of three possible 
types: (1 )  a stable limit cycle variation among x, y ,  and z where the 
amplitude and period depend of the parameters A ,  B ,  a, and d and not 
on the initial conditions; (2)  a damped oscillation variation among 
x, y ,  and z which eventually decays to some nonzero values; (3) a non- 
oscillatory variation among x, y ,  and z which asymptotically ap- 
proaches constant values. 

An experimental program designed to test the validity of eqs. (18) 
is being conducted. Tetrahymena pyriformis W is serving as a 
predator on Aerobacter aerogenes in a buffered cerophyl-glucose 
solution. A report of these findings will be presented at  a later date. 
Experimental verification of the proposed predator-prey models 
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developed in this paper will be of extreme value to those interested 
in the dynamics of the activated sludge system. 

The author is indebted to the staff of the Department of Civil Engineering at 
Syracuse University for their support of this research. Particular thanks are 
extended to Dr. Paul A. Brennan (Department Chairman), Dr. Wen-Hsiung Li, 
and Dr. M. C. Rand for their individual contributions. 
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