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Abstract Global bifurcation analysis of a class of general predator–prey models
with a strong Allee effect in prey population is given in details. We show the existence
of a point-to-point heteroclinic orbit loop, consider the Hopf bifurcation, and prove
the existence/uniqueness and the nonexistence of limit cycle for appropriate range of
parameters. For a unique parameter value, a threshold curve separates the overexploita-
tion and coexistence (successful invasion of predator) regions of initial conditions. Our
rigorous results justify some recent ecological observations, and practical ecological
examples are used to demonstrate our theoretical work.

Keywords Predator–prey model · Allee effect · Global bifurcation · Limit cycles ·
Heteroclinic loop

This research is supported by the National Natural Science Foundation of China (No 10771045,
10671049) and Program of Excellent Team in HIT, National Science Foundation of US, and Longjiang
professorship of Department of Education of Heilongjiang Province.

J. Wang · J. Wei (B)
Department of Mathematics, Harbin Institute of Technology,
Harbin, 150001 Heilongjiang, People’s Republic of China
e-mail: weijj@hit.edu.cn

J. Wang · J. Shi
Y.Y. Tseng Functional Analysis Research Center, Harbin Normal University,
Harbin, 150025 Heilongjiang, People’s Republic of China
e-mail: jfwang_math@sohu.com

J. Shi
Department of Mathematics, College of William and Mary,
Williamsburg, VA 23187-8795, USA
e-mail: shij@math.wm.edu

123



292 J. Wang et al.

Mathematics Subject Classification (2000) 34C23 · 34C25 · 92D25

1 Introduction

Predator–prey interaction is one of basic interspecies relations for ecological and social
models, and it is also the base block of more complicated food chain, food web and
biochemical network structure. The first differential equation model of predator–prey
type, called Lotka–Volterra equation, was formulated by Lotka (1925) and Volterra
(1926) in 1920s, when attempts were first made to find ecological laws of nature. Since
then a logistic type growth is usually assumed for the prey species in the models, while
a linear mortality rate is assumed for the predator.

Warder Clyde Allee, an American ecologist, asked the question in 1930s (Allee
1931): what minimal numbers are necessary if a species is to maintain itself in nature?
In his book, Allee discussed the evidence for the effects of crowding on the demo-
graphic and life history traits of populations. Hence the growth rate is not always
positive for small density, and it may not be decreasing as in the logistic model either.
Generally speaking a population is said to have an Allee effect, if the growth rate per
capita is initially an increasing function for the low density. Moreover it is called a
strong Allee effect if the per capita growth rate in the limit of low density is negative,
and a weak Allee effect means that the per capita growth rate is positive at zero density.
A strong Allee effect introduces a population threshold (Courchamp et al. 2008, 1999;
Dennis 1989), and the population must surpass this threshold to grow. In contrast,
a population with a weak Allee effect does not have a threshold (Courchamp et al.
2008; Dennis 1989; Shi and Shivaji 2006; Wang and Kot 2001). More discussion of
definitions can be found in Berec et al. (2007), Courchamp et al. (2008), Gascoigne
and Lipcius (2004), Jiang and Shi (2009), and Stephens et al. (1999).

The Allee effect may arise from a number of source such as difficulties in finding
mates, reproductive facilitation, predation, environment conditioning and inbreeding
depression (Courchamp et al. 2008; Dennis 1989). The Allee effect has been attracting
much attention recently owing to its strong potential impact on population dynamics
(Berec et al. 2007; Courchamp et al. 2008; Owen and Lewis 2001; Petrovskii et al.
2002; Shi and Shivaji 2006; Wang and Kot 2001). It is widely accepted that the Allee
effect may increase the extinction risk of low-density populations (Dennis 1989; Lande
1987). Therefore the population ecology investigation of the Allee effect is important
to conservation biology (Burgman et al. 1993; Courchamp et al. 2008; Stephens and
Sutherland 1999).

A prototypical predator–prey interaction model is of form

{ d X
ds = X Q(X) − c1φ(X)Y,

dY
ds = −d2Y + c2φ(X)Y,

(1.1)

where the prey X has a growth rate per capita Q(X); d2 is the death rate of preda-
tor; c1 and c2 measure the interaction rate of prey and predator, usually c1 = 1 and
c2 < 1 is the conversion efficiency; the function φ(X) is the functional response of
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the predator, which corresponds to the saturation of their appetites and reproductive
capacity. Usually φ(X) satisfies that

φ(0) = 0, φ(X) is increasing, φ(X) → N for some N > 0 as X → ∞.

Some conventional functional response functions satisfying these conditions are: (see
Holling 1959; Ivlev 1955; Kazarinov and van den Driessche 1978; Turchin 2003)

Holling type I : φ(X) = N X/M, 0 ≤ X ≤ M, φ(X) = N , X > M, (M, N >0);
Holling type II : φ(X) = N X

A + X
;

Holling type III : φ(X) = N X p

Ap + X p
, (A, N > 0, p > 1);

Ivlev type : φ(X) = N − e−AX ,

and more can be found in for example (Turchin 2003). When Q(X) is of a logistic
growth, the dynamics of (1.1) has been considered in many articles, see for exam-
ple (Cheng 1981; Hsu 1978; Hsu and Shi 2009; Kuang and Freedman 1988; May
1972; Rosenzweig 1971; Xiao and Zhang 2003), and many more investigations in
recent years. For (1.1) with logistic growth on the prey and Holling II type functional
response (known as Rosenzweig–MacArthur model 1963), a complete dynamical anal-
ysis can be obtained (see Albrecht et al. 1973, 1974; Cheng 1981; Hsu and Shi 2009;
Kuang and Freedman 1988; May 1972; Rosenzweig 1971). When fixing other sys-
tem parameters but change the carrying capacity of the prey from small to large, first
the prey-only equilibrium loses the (global) stability to a globally stable coexistence
equilibrium, then with the carrying capacity going further large, a unique limit cycle
which is globally asymptotically orbital stable arises from a Hopf bifurcation. These
mathematical results provide important information for the ecological studies (May
1972; Rosenzweig 1971; Rosenzweig and MacArthur 1963).

In this paper, we rigorously consider the global dynamics of (1.1) with an increasing
and bounded functional response, and the prey satisfies a strong Allee effect growth.
In fact we study a predator–prey system under very general conditions:

{
du
dt = g(u)( f (u) − v),

dv
dt = v(g(u) − d),

(1.2)

where f, g satisfy: (here R = (0,∞))

(a1) f ∈ C1(R+), f (b) = f (1) = 0, where 0 < b < 1; f (u) is positive for
b < u < 1, and f (u) is negative otherwise; there exists λ̄ ∈ (b, 1) such that
f ′(u) > 0 on [b, λ̄), f ′(u) < 0 on (λ̄, 1];

(a2) g ∈ C1(R+), g(0) = 0; g(u) > 0 for u > 0 and g′(u) > 0 for u > 0, and there
exists λ > 0 such that g(λ) = d.

Here g(u) is the predator functional response, and g(u) f (u) is the net growth rate of
the prey. The graph of v = f (u) is the prey nullcline on the phase portrait. In the
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absence of the predator, the prey u has a strong Allee effect growth which is reflected
from the assumptions (a1). The carrying capacity of the prey is rescaled into 1 here,
while b is the survival threshold or sparsity constant of the prey. The predator nullcline
is a vertical line u = λ solved from g(λ) = d. The condition (a2) on the functional
responde g(u) includes the commonly used Holling types I, II and III as well as the
linear one (g(u) = u as Lotka–Volterra). The parameter d is the mortality rate of
predator; the number λ can also be thought as a measure of the predator mortality as λ

increases with d, and λ is also the stationary prey population density coexisting with
predator. As pointed out by Bazykin (1998), it is natural to regard λ as a measure of
how well the predator is adapted to the prey. In our analysis λ plays a pivotal role as
the main bifurcation parameter. The equation (1.2) is a non-dimensionalized version
in which the conversion efficiency of prey biomass into predator biomass is rescaled
to 1. This does not limit the applicability of our results as all results can be stated in the
original system parameters. We use the non-dimensionalized equation to simplify our
presentation. On the other hand, we note that non-monotonic functional responses like
Holling type IV or Monod–Haldane function: g(u) = Nu/(u2 + Au + B), B, N > 0
and A ≥ 0, has also been considered in certain situations (Aguirre Pablo et al. 2009;
González-Olivares et al. 2006; Ruan and Xiao 2000/01), and our results here do not
apply to it. Neither we consider here the predator-dependent functional responses
such as ratio-dependent type (Arditi and Ginzburg 1989; Hsu et al. 2001; Kuang and
Beretta 1998; Xiao and Ruan 2001). Also in this paper we always assume the Allee
effect is strong, although some techniques can be used for weak Allee effect case as
well (which we will report in another paper).

Earlier analytic work on special cases of (1.2) appeared in Bazykin (1998)
Sect. 3.5.5 and Conway and Smoller (1986), and they considered the Lotka–Volterra
case g(u) = u. A more recent analysis of (1.2) with g(u) = mu/(a+u) has been done
by Malchow et al. (2008) see Sect. 12.1. The invasion mechanism of scalar reaction-
diffusion model with strong Allee effect was considered in Lewis and Kareiva (1993).
The system (1.2) in the context of reaction-diffusion models was first proposed in
Owen and Lewis (2001), and also Petrovskii et al. (2002). Also the dynamical proper-
ties of some special cases of system (1.2) have been obtained by numerical simulation
in recent studies (Boukal et al. 2007; Lande 1987; Malchow et al. 2008; van Voorn
et al. 2007; Wang and Kot 2001). Our analysis here is rigorous and our assumptions
on the model appear to be general enough to cover most of previous investigations.
Our results depend neither on the specific algebraic forms of the growth rates and
functional response, nor on specific parameterizations. We provide theoretical anal-
ysis by utilizing planar portrait analysis, performing Hopf bifurcation analysis, and
transforming the system into a nonlinear Liénard equation. The results include the
existence/uniqueness and nonexistence of limit cycle, and the existence/uniqueness of
point-to-point heteroclinic orbit, which coincide with the simulation results (Malchow
et al. 2008; van Voorn et al. 2007) and provide vital information for some ecological
phenomena (Boukal et al. 2007), especially the explanation of Allee threshold.

The rest of the paper is structured in the following way. In Sect. 2, we carry out
the phase plane analysis of (1.2). From stability analysis and properties of the sta-
ble manifold and unstable manifold of equilibrium points, we show the existence and
uniqueness of a point-to-point heteroclinic orbit loop. In Sect. 3, Hopf bifurcation from
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the coexistence equilibrium point is analyzed, and in Sect. 4 we prove the uniqueness
and nonexistence of the limit cycle by translating (1.2) into a Liénard equation. Appli-
cations to specific predator–prey models and related biological discussions are given in
Sect. 5. Some concluding remarks are given in Sect. 6. In Appendix section, technical
details of Hopf bifurcation analysis is given.

2 Phase portrait

For (1.2), the positive quadrant of the phase plane {(u, v) : u > 0, v > 0} is invariant.
The following lemma guarantees that the system (1.2) is dissipative.

Lemma 2.1 Suppose that f, g satisfy (a1)–(a2). Then any solution of (1.2) with pos-
itive initial value is positive and bounded.

Proof The first quadrant is an invariant region for (1.2) since {(u, v) : u = 0} and
{(u, v) : v = 0} are invariant manifolds of (1.2). Therefore the solutions of (1.2)
with the initial values u(0) > 0 and v(0) > 0 are positive. For any u(0) > 1, then
u′ = g(u)( f (u)− v) < 0 as long as u > 1; along u = 1, u′ = −g(1)v < 0; and there
is no any equilibrium point in the region {(u, v) : u > 1, v ≥ 0}. Hence any positive
solution satisfies u(t) ≤ max {u(0), 1} for t ≥ 0. Adding the two equations in (1.2),
we obtain that (u +v)′ = g(u) f (u)− dv. Let η = maxt≥0 (g(u(t)) f (u(t)) + du(t)).
Then we have (u + v)′ ≤ η − d(u + v). From Gronwall’s inequality, we obtain that

u(t) + v(t) ≤ (u(0) + v(0)) e−dt + η

d
(1 − e−dt ).

Hence v(t) is also bounded. �	
There are four possible equilibrium points:

O = (0, 0), A = (1, 0), B = (b, 0), C = (λ, vλ) = (λ, f (λ)),

where λ is defined in (a2) (since g(u) is strictly increasing, then λ is apparently
unique). C is the intersection of the prey nullcline v = f (u) and the predator nullcline
g(u) = d (or u = λ), and it is a positive equilibrium only when b < λ < 1 (see
Fig. 1). Otherwise there are only three equilibrium points in the positive quadrant or
on the boundary. We point out that when 0 < λ ≤ b, the dynamics is trivial that the
extinction equilibrium point O = (0, 0) is globally asymptotically stable for all initial
value (u0, v0) with u0 > 0 and v0 > 0; and when λ ≥ 1, the attraction basins of two
locally stable equilibrium points O = (0, 0) and A = (1, 0) split the first quadrant.
See Theorem 2.6 for details. Hence we concentrate on the case of b < λ < 1 below.

The Jacobian matrix of (1.2) is

J =
(

g′(u)( f (u) − v) + g(u) f ′(u) −g(u)

g′(u)v g(u) − d

)
.

Assume b < λ < 1 (hence the positive equilibrium O = (λ, vλ) exists), then for the
three boundary equilibrium points, we have the following information:
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Fig. 1 Basic phase portrait of (1.2) with a coexistence equilibrium point (b < λ < 1). The horizontal
axis is the prey population u, and the vertical axis is the predator population v. The dashed curve is the
u-nullcline v = f (u), and the dashed-dotted vertical line is the v-nullcline g(u) = d or u = λ

1. At (0, 0), the eigenvalues of the Jacobian are μ1 = f (0)g′(0) < 0 and μ2 =
−d < 0, thus (0, 0) is a stable node;

2. At (b, 0), the eigenvalues of the Jacobian are μ1 = g(b) f ′(b) > 0 and μ2 =
g(b) − d < 0, so (b, 0) is a saddle with its unstable manifold along the u axis
and its stable manifold (denoted by �s

λ) entering from the region above the prey
nullcline v = f (u);

3. At (1, 0), the eigenvalues of the Jacobian are μ1 = g(1) f ′(1) < 0 and μ2 =
g(1) − d > 0, hence (1, 0) is a saddle with its stable manifold along the u axis
and its unstable manifold (denoted by �u

λ) entering the region v > f (u).

At the positive equilibrium point (λ, vλ), the eigenvalues of the Jacobian satisfy
μ2 − μT + D = 0, where

T := T r J = g(λ) f ′(λ), (2.1)

D := det J = g(λ)g′(λ) f (λ). (2.2)

From (a1), λ̄ is the unique positive root of T (λ) = 0. When b < λ < λ̄, T > 0 and
D > 0, then (λ, vλ) is unstable; When λ̄ < λ < 1, T < 0 and D > 0, then (λ, vλ) is
locally stable. We shall use λ as a bifurcation parameter to consider the change of the
dynamics of (1.2).

When b < λ < 1, the separatrices �s
λ and �u

λ are the keys to understand the
dynamical behavior of (1.2) (See Fig. 1). First we prove a general property of �s

λ

and �u
λ :

Proposition 2.2 Suppose that b < λ < 1. Let �s
λ and �u

λ be the stable manifold of
(b, 0) and the unstable manifold of (1, 0) respectively. Then

123



Predator–prey system with strong Allee effect in prey 297

1. The orbit �s
λ meets the nullcline u = λ at a point (λ, S(λ)), where S(λ) ≥ vλ :=

f (λ), and S(λ) is a strictly increasing continuous function for λ ∈ (b, 1).
2. The orbit �u

λ meets the nullcline u = λ at a point (λ, U (λ)), where U (λ) ≥ vλ :=
f (λ), and U (λ) is a strictly decreasing continuous function for λ ∈ (b, 1).

Proof The eigenvalues of the Jacobian matrix of (1.2) at B are μ1 = g(b) f ′(b) > 0
and μ2 = g(b) − d < 0, and the corresponding eigenvector of μ2 is(

g(b)
g(b) f ′(b)−g(b)+d , 1

)T
. Hence the tangential direction of �s

λ at B is

k1 = g(b) f ′(b) − g(b) + d

g(b)
= −g(b) + d

g(b)
+ f ′(b),

while the tangential direction of the nullcline v = f (u) at B is k2 = f ′(b). Since
d = g(λ) > g(b), then k1 > k2. Therefore �s

λ is above the nullcline v = f (u), that is
�s

λ approaches B from the region {(u, v) : v > f (u)}. Moreover from the direction of
the vector field in (1.2) on the nullcline v = f (u), �s

λ always remains above v = f (u)

for u < λ.
Hence to show that �s

λ meets the line u = λ, we need only to show that it remains
bounded for u > b. Indeed for u > b, �s

λ is the graph of a function v(u), and v(u)

satisfies

dv(u)

du
= v′

u′ = v(g(λ) − g(u))

g(u)(v − f (u))
. (2.3)

If v(u) → ∞ as u → λ−
a for some λa < λ, then v − f (u) is bounded from below for

b +ε ≤ u ≤ λa and any ε > 0, since �s
λ is above v = f (u). Thus for b +ε ≤ u ≤ λa ,

dv

du
≤ cv (2.4)

for some positive constant c. But (2.4) would imply that v(u) is bounded as u → λ−
a ,

that is a contradiction. Thus v(u) cannot blow up before it is extended to u = λ.
Therefore S(λ) exists for all λ ∈ (b, 1) and S(λ) ≥ vλ. It is also clear that S(λ) is a
continuous function if S(λ) 
= vλ.

Note that S(λ) = vλ only when �s
λ → C as t → −∞, so in that case, C must be

an unstable equilibrium point with real eigenvalues. When λ > λ̄, C is locally stable,
thus S(λ) > vλ if λ > λ̄. When λ ≤ λ̄ and λ is near λ̄, C is an unstable spiral. Thus
the set � = {λ ∈ (b, 1) : S(λ) > vλ} is a nonempty open subset containing (λ̄ − ε, 1)

for some ε > 0.
We show that S(λ) is strictly increasing on any component of �. Let λ1 < λ2 be

two points in a connected component of �. The stable manifolds at B for λ1 and λ2 are
graphs of functions v1(u) and v2(u) defined for u > b respectively. The eigenvectors
at B are respectively

x1 =
(

g(b)

g(b) f ′(b) − g(b) + g(λ1)
, 1

)T

, x2 =
(

g(b)

g(b) f ′(b) − g(b) + g(λ2)
, 1

)T

.

123



298 J. Wang et al.

Hence from comparison arguments, v2(u) > v1(u) for u sufficiently near b. Suppose
that v1(u) = v2(u) for some u with b < u ≤ λ1. Let ū be the smallest such value.
Then we must have

0 ≤ v′
2(ū) ≤ v′

1(ū).

But from (2.3) we would have

v2(ū)(g(λ2) − g(ū))

g(ū)(v2(ū) − f (ū))
≤ v1(ū)(g(λ1) − g(ū))

g(ū)(v1(ū) − f (ū))
. (2.5)

However, since v2(ū) = v1(ū), we see that λ2 ≤ λ1, which is a contradiction. Thus
v2(λ1) > v1(λ1) = S(λ1), and S(λ2) > S(λ1) as claimed. Notice that the argument
above indeed shows that if λ1 ∈ � and S(λ1) > vλ, then any λ ∈ (λ1, 1) also belongs
to � and S(λ) > S(λ1).

Hence � = (λb, 1) for some λb ∈ (b, λ̄). For λ ∈ (b, λb], S(λ) = vλ, and for
λ ∈ (λb, 1), S(λ) > vλ. For both cases, S(λ) is increasing since vλ is increasing for
λ < λ̄. This completes the proof of part 1. The proof of part 2 is similar. �	

The monotonicity of S(λ) and U (λ) naturally implies the following result:

Proposition 2.3 There exists a unique λ� ∈ (b, 1), such that �s
λ� = �u

λ� .

Proof Notice that

lim
λ→b+[S(λ) − U (λ)] < 0, and lim

λ→1−[S(λ) − U (λ)] > 0.

Therefore, from the monotonicity of U and S, there is a unique λ� such that S(λ) =
U (λ). Furthermore, for this λ� we have two distinct saddle-saddle connections, which
forms a heteroclinic cycle between A to B (see Fig. 3b). �	

λ = λ� is clearly a threshold value for the dynamics of (1.2)–it is the only parame-
ter value so that (1.2) possesses a loop of heteroclinic orbits between A and B. Since
all solutions are bounded from Lemma 2.1, from the celebrated Poincaré–Bendixson
Theorem (see Wiggins (1990) Theorem 1.1.19), only when λ = λ�, the ω-limit set
of a positive orbit of (1.2) can be a loop of heteroclinic orbits, and for λ 
= λ�, the
ω-limit set of a positive orbit must be either an equilibrium point or a periodic orbit.
A rough picture of the dynamics can be stated as follows:

Proposition 2.4 Let (u(t), v(t)) be the solution of (1.2) with positive initial value
(u0, v0).

1. When b < λ < λ�, S(λ) < U (λ), and �u
λ can be expressed as {(u, vu(u)) : 0 <

u < 1} with limu→0+ vu(u) = 0. If u0 ≥ 1 or 0 < u0 < 1 and v0 ≥ vu(u0), then
(u(t), v(t)) → (0, 0) as t → ∞; if 0 < u0 < 1 and 0 < v0 < vu(u0), then either
(u(t), v(t)) → (λ, vλ), (0, 0) or a periodic orbit as t → ∞;
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2. When λ� < λ < 1, S(λ) > U (λ), and �s
λ can be expressed as {(u, vs(u)) : b <

u < ∞} with limu→∞ vs(u) = 0. If u0 ≤ b or u0 > b and v0 > vu(u0), then
(u(t), v(t)) → (0, 0) as t → ∞; if u0 > b and 0 < v0 < vs(u0), then either
(u(t), v(t)) → (λ, vλ) or a periodic orbit as t → ∞.

Proof We prove the case of b < λ < λ�, and the other case is similar. S(λ) < U (λ) is
from Propositions 2.2 and 2.3. From the proof of Propositions 2.2, the portion of �u

λ

from (1, 0) to (λ, U (λ)) and the portion of �u
λ from (λ, U (λ)) to (b, 0) are both above

the nullcline v = f (u), then both portions are monotone curves. In particular the
portion of �u

λ from (1, 0) to (λ, U (λ)) can be expressed as {(u, vu(u)) : λ ≤ u < 1}.
Now the portion of �u

λ on the left of (λ, U (λ)) must be above the portion of �u
λ from

(λ, U (λ)) to (b, 0), thus it is also above the nullcline v = f (u). Hence as an invariant
solution curve, �u

λ can be parameterized by u for b < u < 1. Also since S(λ) < U (λ),
then the invariant solution curve on �u

λ cannot tend to (b, 0), then �u
λ must extend to

u < b thus the solution curve on �u
λ can be extended to (0, 0). The remaining state-

ments follow easily from comparison argument and Poincaré–Bendixson Theorem.
�	

Proposition 2.4 shows that, to completely determine the global dynamics of (1.2),
one has to have more information on the existence, nonexistence, uniqueness and
bifurcation of periodic orbits, which we will discuss in the next two sections. Here we
show nonexistence of periodic orbits when λ is near b or 1.

Proposition 2.5 For λ > b but near b, (1.2) has no periodic orbit, and �s
λ is a het-

eroclinic orbit connecting B = (b, 0) and C = (λ, vλ). Similarly for λ < 1 but near
1, (1.2) has no periodic orbit, and �u

λ is a heteroclinic orbit connecting A = (1, 0)

to C.

Proof We recall from Proposition 2.2, S(λ) ≥ f (λ) for λ ∈ (b, 1). For λ > b and
near b, if S(λ) = f (λ), then �s

λ is a heteroclinic orbit connecting B and C , and it is
impossible to have a periodic orbit which is around C .

So we consider the case of S(λ) > f (λ). Let R1 be the region with vertices B,
Q1 = (λ, S(λ)), Q2 = (u1, f (u1)), where u1 > λ satisfies S(λ) = f (u1), and
Q3 = (u1, 0). Between B and Q1, the boundary of R1 is �s

λ, and all other parts of the
boundary of R1 are the line segments between Q1, Q2 and Q3, and back to B. Notice
that Q2 is well-defined when λ is close to b since S(λ) < f (λ̄).

Examining the vector field defined in (1.2), one can easily see that R1 is negatively
invariant. Since C is the unique equilibrium point in the positive quadrant, any periodic
orbit must encircle it and must lie wholly in R1. The divergence of the vector field
(1.2) is

T r J = g′(u) f (u) − g′(u)v + g(u) f ′(u) + g(u) − g(λ),

and the value of T r J in R1 converges uniformly to T r J (B) when λ → b+. But
T r J (B) is g(b) f ′(b) + g(b) − g(λ), which is positive for λ near b from (a1). Hence
T r J (u, v) > 0 for any (u, v) ∈ R1. Then there is no periodic orbit in R1 from Bendix-
son–Dulac’s Criterion (see Hsu (2006) Theorem 6.1.2). From the Poincaré–Bendixson
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Fig. 2 Phase portraits of (1.2) with f (u) = (a + u)(1 − u)(u − b)/(bm) and g(u) = mu/(a + u) where
a, m > 0 and 0 < b < 1. The horizontal axis is the prey population u, and the vertical axis is the predator
population v. The dashed curve is the u-nullcline v = f (u), and the dashed-dotted vertical line is the
v-nullcline g(u) = d or u = λ. Parameters used are given in Sect. 5.1 and Table 1

Theorem and the negative invariance of R1, C is the α-limit set of �s
λ. The result about

λ near 1 can be proved similarly. �	
To end this section we summarize discussions in this section to give a complete

description of the dynamics for λ in some ranges:

Theorem 2.6 Assume that f, g satisfy (a1)–(a2). Let (u(t), v(t)) be the unique solu-
tion of (1.2) with initial value (u0, v0) (u0, v0 > 0). We follow the notations in
Proposition 2.4.

1. For 0 < λ ≤ b, then (0, 0) is globally asymptotically stable (see Fig. 2a);
2. For λ > b but near b, if u0 ≥ 1 or 0 < u0 < 1 and v0 ≥ vu(u0), then

(u(t), v(t)) → (0, 0) as t → ∞; if 0 < u0 < 1 and 0 < v0 < vu(u0), then
(u(t), v(t)) → (0, 0) as t → ∞, hence (0, 0) is globally asymptotically stable
(see Fig. 2b);

3. For λ < 1 but near 1, if u0 ≤ b or u0 > b and v0 > vu(u0), then (u(t), v(t)) →
(0, 0) as t → ∞; if u0 > b and 0 < v0 < vs(u0), then (u(t), v(t)) → (λ, vλ) as
t → ∞ (see Fig. 2c);
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4. For λ ≥ 1, if u0 ≤ b or u0 > b and v0 > vu(u0), then (u(t), v(t)) → (0, 0) as
t → ∞; if u0 > b and 0 < v0 < vs(u0), then (u(t), v(t)) → (1, 0) as t → ∞
(see Fig. 2d).

Proof For part 1 or part 4, there is no interior equilibrium point, thus there is no
periodic orbit in the positive quadrant. From the observation of phase portraits, there
is no loop of heteroclinic orbits in either case. So every orbit converges to a bound-
ary equilibrium. Then the conclusions follow from similar arguments in the proof of
Proposition 2.4. The results for part 2 or part 3 clearly follow from Propositions 2.4
and 2.5. �	

In this section, we rigorously establish the existence of the heteroclinic loop for a
unique λ = λ�. For the Lotka–Volterra case, this was proved in Conway and Smoller
(1986) and was also observed in Bazykin (1998). As pointed out in Bazykin (1998), the
critical parameter λ� is a threshold between the oscillatory dynamics and the extinction
dynamics. This will also be confirmed rigorously in Sects. 4 and 5.

3 Hopf bifurcation

In this section, we analyze the Hopf bifurcation occurring at (λ̄, vλ̄) when taking λ as
the bifurcation parameter. In addition to (a1)–(a2), we assume that

(a3) f (u) and g(u) are C3 near λ = λ̄ and f ′′(λ̄) < 0.

Recall from Sect. 2 that the Jacobian matrix of the system (1.2) at (λ, vλ) is

J =
(

A(λ) B(λ)

C(λ) 0

)
,

where

A(λ) = g(λ) f ′(λ), B(λ) = −g(λ), C(λ) = f (λ)g′(λ).

The characteristic equation is given by μ2 − μT + D = 0, where

T := tr J = A(λ); D := det J = −B(λ)C(λ).

From (a1), when b < λ < λ̄, T > 0 and D > 0, so (λ, vλ) is locally unstable;
when λ̄ < λ < 1, T < 0 and D > 0, (λ, vλ) is locally stable; T (λ̄) = 0 and the
Jacobian matrix J (λ̄) has a pair of imaginary eigenvalues μ = ±i

√
−B(λ̄)C(λ̄). Let

μ = β(λ) ± iω(λ) be the roots of μ2 − μT + D = 0 when λ is near λ̄, then

β(λ) = A(λ)

2
, ω(λ) = 1

2

√
−4B(λ)C(λ) − A(λ)2, (3.1)

and

β ′(λ) = 1

2
[g(λ) f ′(λ)]′ = 1

2
[g′(λ) f ′(λ) + g(λ) f ′′(λ)]. (3.2)
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Thus from (a3),

β ′(λ)

∣∣∣
λ=λ̄

= 1

2
g(λ̄) f ′′(λ̄) < 0,

From the Poincaré–Andronov–Hopf Bifurcation Theorem (for example, Theorem
3.1.3 in Wiggins (1990)), we know that the system (1.2) undergoes a Hopf bifurcation
at (λ̄, vλ̄) when λ = λ̄. By further analysis of the normal form near the equilibrium
(see Appendix), the direction of the Hopf bifurcation and the stability of bifurcating
periodic orbits are determined by the first Lyapunov coefficient

a(λ̄) = f ′′′(λ̄)g(λ̄)g′(λ̄) + 2 f ′′(λ̄)[g′(λ̄)]2 − f ′′(λ̄)g(λ̄)g′′(λ̄)

16g′(λ̄)
. (3.3)

The computation of a(λ̄) is technical and we give the details in the Appendix. The
derivation of the first Lyapunov coefficient follows a standard way. Our formula here
follows Wiggins (1990), and other derivations like the ones in Hassard et al. (1981),
Kuznetsov (2004) are similar but may differ by a positive constant multiple.

Now from Poincaré–Andronov–Hopf Bifurcation Theorem, we have:

Theorem 3.1 Assume that f, g satisfy (a1)–(a3). Then the system (1.2) undergoes
a Hopf bifurcation at (λ̄, vλ̄); the Hopf bifurcation is supercritical and backward
(respectively, subcritical and forward) if a(λ̄) < 0 (a(λ̄) > 0), where a(λ̄) is defined
in (3.3). In particular, the bifurcation is supercritical and backward if f and g also
satisfy

(a4) f ′′′(λ̄) ≤ 0, and g′′(λ̄) ≤ 0.

Note that here we say a Hopf bifurcation with respect to parameter λ at λ = λ̄ is
backward (respectively, forward) if there is a small amplitude periodic orbit for each
λ ∈ (λ̄ − ε, λ̄) (respectively, λ ∈ (λ̄, λ̄ + ε)) where ε > 0 is a small constant; and we
say a Hopf bifurcation is supercritical (respectively, subcritical) if the bifurcating peri-
odic solutions are orbitally asymptotically stable (respectively, unstable) (Kuznetsov
2004; Wiggins 1990). We apply Theorem 3.1 to several special cases of functional
response g(u).

1. Conway and Smoller (1986) considered the linear functional response g(u) = u.
We notice that in this case, (3.3) is reduced to

a(λ̄) = λ̄ f ′′′(λ̄) + 2 f ′′(λ̄)

16
= λ̄ f ′′(λ̄)

16

(
f ′′′(λ̄)

f ′′(λ̄)
+ 2

λ̄

)
, (3.4)

hence the Hopf bifurcation is supercritical and backward when f ′′′(λ̄) < 0, which
agrees with the result in Proposition 6 and equation (7) in Conway and Smoller
(1986).

2. For Holling type II functional response g(u) = u/(a + u), (3.3) is reduced to

a(λ̄) = λ̄ f ′′(λ̄)

16(a + λ̄)

(
f ′′′(λ̄)

f ′′(λ̄)
+ 2

λ̄

)
, (3.5)
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thus again the Hopf bifurcation is supercritical and backward when f ′′′(λ̄) ≤ 0.
This also follows from (a4), as the type II response is concave.

3. For Holling type III functional response g(u) = u p/(a p +u p) (recall that p > 1),
(3.3) is reduced to

a(λ̄) = λ̄p f ′′(λ̄)

16(a p + λ̄p)

(
f ′′′(λ̄)

f ′′(λ̄)
+ p + 1

λ̄

)
, (3.6)

thus the Hopf bifurcation is also supercritical and backward when f ′′(λ̄) < 0 and
f ′′′(λ̄) ≤ 0, even though g(u) is not concave.

We notice that the Hopf bifurcation point λ = λ̄ is at where the predator nullcline
u = λ intersects the prey nullcline v = f (u) on the “top of the hump”, the unique
local maximum point of v = f (u) in (b, 1). Hence the condition f ′′(λ̄) < 0 in (a3)
is natural since λ̄ is a local maximum. The requirement of C3 smoothness in (a3)
and the sign conditions of f ′′′(λ̄) and g′′(λ̄) in (a4) are needed for the calculation
of the first Lyapunov coefficient. As shown in examples above, these conditions are
usually not restrictive in applications. On the other hand, (a3) only is sufficient to
produce a Hopf bifurcation, while (a4) guarantees a supercritical Hopf bifurcation.
Without (a4), a subcritical Hopf bifurcation is possible for (1.2), see Sects. 5.3–5.4 for
examples.

The fact that the Hopf bifurcation is at the “top of the hump” is not particular for the
system with strong Allee effect. For systems with logistic or weak Allee effect growth
rate on the prey, the coexistence equilibrium is also stable when the vertical predator
nullcline intersects with the “falling part” ( f ′(u) < 0) of the prey nullcline; and it is
unstable if the intersection is on the “rising part” ( f ′(u) > 0) of the prey nullcline
(see Hsu 1978; Rosenzweig 1969; Rosenzweig and MacArthur 1963). Hence the Hopf
bifurcation occurs when the stability changes at the top of the hump.

We need to be cautious here and later that when g(u) is not Lotka–Volterra type (lin-
ear), then f (u) is not the growth rate per capita. For example for the type II response
g(u) and cubic f (u), the system is in a form of

u′ = mu

a + u

[
(1 − u)(u − b)

mb
− v

]
, v′ = v

(
mu

a + u
− d

)
. (3.7)

Hence the growth rate per capita in this system is f (u)g(u)/u = b−1(1 − u)(u −
b)/(a + u). For nonlinear functional responses, the biological meaning of f (u) is not
straightforward in our model: f (u)g(u) is the growth rate while g(u) is the functional
response. f (u) can be thought as a growth rate per capita factored by the functional
response, and when g(u) is linear then f (u) is the growth rate per capita up to a mul-
tiplicative constant. In that sense, the Hopf bifurcation point is at the maximum value
of this factored growth rate per capita. The non-monotonicity of f (u) is an essential
character of the Allee effect.
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4 The uniqueness of limit cycle

The uniqueness and multiplicity of the limit cycles of planar systems is an important
mathematical question related to the Hilbert 16th problem, and it is also practically
useful in explaining the mechanical and natural oscillatory phenomena. The impor-
tance of limit cycles in predator–prey systems has been recognized by ecologists since
the observation of Rosenzweig (1971) and May (1972), and the work of Albrecht
et al. (1973, 1974) showed that the question is mathematically non-trivial but rather
delicate. Since then many work on the existence (nonexistence) and uniqueness of
limit cycles are carried out in, for example (Cheng 1981; Kuang and Freedman 1988;
Xiao and Zhang 2003, 2008; Zeng et al. 1994; Zhang 1986). One of the main ideas is
to translate a planar system into a Liénard system, which we also follow here. Let

τ =
t∫

0

g(u(t))dt, u = λ − x, v = vλey, (4.1)

then (1.2) becomes a Liénard system

⎧⎨
⎩

dx
dτ

= vλey − f (λ − x),

dy
dτ

= 1 − d
g(λ−x)

.
(4.2)

We recall some general existence/nonexistence and uniqueness of limit cycle results
about the Liénard system (we follow the formulation in Xiao and Zhang (2003)):
consider

{
dx
dτ

= φ(y) − F(x),

dy
dτ

= −h(x),
(4.3)

where h(x) is continuous on an open interval (a1, b1), the functions F(x) and φ(y)

are continuously differentiable on open intervals (a1, b1) and (a2, b2), respectively.
Here −∞ ≤ ai < 0 < bi ≤ ∞, i = 1, 2. Assume that the functions in (4.3) satisfy
the following hypotheses:

(H1) h(0) = 0 and xh(x) > 0 for x 
= 0;
(H2) φ(0) = 0 and φ′(y) > 0 for a2 < y < b2;
(H3) the curve φ(y) = F(x) is well defined on all x ∈ (a1, b1).

We also define H(x) = ∫ x
0 h(y)dy, and F ′(x) = r(x). Then the following result is

due to Zhang (1986) (see Theorem 2.1 of Xiao and Zhang (2003)).

Theorem 4.1 Suppose (H1)–(H3) are satisfied, the function r(x)/h(x) is nondecreas-
ing on (a1, 0) ∪ (0, b1) and is not constant in any small neighborhood of x = 0. Then
(4.3) has at most one periodic orbit in the region {(x, y) : a1 < x < b1} and it is
stable if it exists.
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On the other hand, the following theorem is given in Zeng et al. (1994) (see
Theorem 2.5 in Xiao and Zhang (2003)) and it is a simple way to determine the
nonexistence of periodic orbits for (4.3).

Theorem 4.2 Suppose (H1)–(H3) are satisfied, and for any (u,x) satisfying H(x) =
H(u) with a1 < u < 0 and 0 < x < b1,

r(u)

h(u)
≥ r(x)

h(x)

(
or

r(u)

h(u)
≤ r(x)

h(x)

)

holds. Then (4.3) has no periodic orbits.

We apply the above general results to the special Liénard system (4.2) (and conse-
quently the original system (1.2)). Note that for (1.2), we only need to consider the
case of b + ε < λ < 1 − ε from Theorem 2.6. For λ in this range, it is easy to see that
any periodic orbit must be contained in the region


1 = {(u, v) : b < u < 1, 0 < v < ∞}.

The transformation in (4.1) maps the region 
1 to


2 = {(x, y) : λ − 1 < x < λ − b, −∞ < y < ∞},

and the Liénard system (4.2) is the type in (4.3) with

φ(y) = vλ(e
y − 1), F(x) = f (λ − x) − f (λ), and h(x) = d

g(λ − x)
− 1.

Then it is easy to check that h(x) is continuous on (a1, b1), F(x) and φ(y) are contin-
uously differentiable on (a1, b1) and (a2, b2), respectively; the conditions (H1)–(H3)
hold for (a1, b1) = (λ − 1, λ − b) and (a2, b2) = (−∞,∞); and the dynamics of the
system (4.2) in 
2 is equivalent to that of (1.2) in 
1 (see Lemma 3.2 of Xiao and
Zhang (2003)). Now Theorems 4.1 and 4.2 become

Theorem 4.3 Suppose that f, g satisfy (a1)–(a2), and we define

h1(u) = f ′(u)g(u)

g(u) − g(λ)
. (4.4)

1. If h1(u) is nonincreasing in (b, λ)∪ (λ, 1), then there is at most one periodic orbit
of (1.2) in the region 
1 = {(u, v) : b < u < 1, 0 < v < ∞};

2. If for any u1, u2 satisfying

λ∫
u1

g(λ) − g(s)

g(s)
ds =

u2∫
λ

g(s) − g(λ)

g(s)
ds
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with b < u1 < λ and λ < u2 < 1,

h1(u1) ≥ h1(u2) (or h1(u1) ≤ h1(u2)) (4.5)

holds, then (1.2) has no periodic orbits in 
1.

Now we are ready to state a complete classification of phase portraits of (1.2) when
λ ∈ (b, λ̄):

Theorem 4.4 Suppose that f, g satisfies (a1)–(a4), and

(a5) h1(u) = f ′(u)g(u)
g(u)−g(λ)

is nonincreasing in (b, λ) ∪ (λ, 1) for each λ ∈ (b, λ̄).

Then in addition to the results in Theorem 2.6, we also have

b < λ� < λ̄. (4.6)

Moreover let (u(t), v(t)) be the solution of (1.2) with positive initial value (u0, v0),
then

1. For b < λ < λ�, (u(t), v(t)) → (0, 0) as t → ∞ and (0, 0) is globally asymp-
totically stable (see Fig. 3a);

2. For λ = λ�, there exists a loop of heteroclinic orbits connecting two equilibrium
points B = (b, 0) and A = (1, 0); if (u0, v0) is in the interior of the loop, then
(u(t), v(t)) converges to the heteroclinic loop as t → ∞, and if (u0, v0) is outside
of the loop, then (u(t), v(t)) → (0, 0) as t → ∞ (see Fig. 3b);

3. For λ� < λ < λ̄, there exists a unique limit cycle such that if (u0, v0) is below
the stable manifold of B, then (u(t), v(t)) converges to the limit cycle as t → ∞,
and if (u0, v0) is above the stable manifold of B, then (u(t), v(t)) → (0, 0) as
t → ∞ (see Fig. 3c, d).

Proof Here we apply the global bifurcation theorem for the periodic orbits, see for
example Alexander and Yorke (1978) (Theorem A), see also Chow and Mallet-Paret
(1978), Wu (1998). The global bifurcation theorem asserts that the small amplitude
periodic orbits near the Hopf bifurcation point λ = λ̄ belong to a connected sub-
set S0 of S

⋃{(λ̄, T̄ , (λ̄, vλ̄))}, where T̄ = 2π/ω(λ̄) and S = {(λ, T, (u0, v0)) ∈
(b, 1) × R

+ × (R+)2 : (u(t), v(t)) is periodic}. The periodic solution here has a
minimal positive period which excludes equilibrium ones. Here T denotes the min-
imal period of the orbit, thus S catalogues the parameter, minimal period and initial
condition of all non-stationary periodic solutions of (1.2). Moreover S0 is either not
compact, or S0\S0 contains another equilibrium point (λ, T, (u, v)). In the latter case,
Hopf bifurcation must occur at (λ, T, (u, v)) with limiting minimal period T . But
from our prior analysis, (λ̄, (λ̄, vλ̄)) is the only possible Hopf bifurcation point for
(1.2), hence the latter alternative is not possible. Therefore S0 is unbounded.

From Proposition 2.5, there are no periodic orbits for λ near λ = b or λ = 1, and
from Lemma 2.1, all periodic orbits are uniformly bounded for all λ ∈ (b, 1). Hence
S0 possesses of periodic orbits with arbitrarily large period T . Since f and g satisfy
(a1)–(a4), then the Hopf bifurcation is supercritical. From the condition (a5) and the
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Fig. 3 Phase portraits of (1.2) with f (u) = (a + u)(1 − u)(u − b)/(bm) and g(u) = mu/(a + u) where
a, m > 0 and 0 < b < 1 (continued). The horizontal axis is the prey population u, and the vertical axis
is the predator population v. The dashed curve is the u-nullcline v = f (u), and the dashed-dotted vertical
line is the v-nullcline g(u) = d or u = λ. Parameters used are given in Sect. 5.1 and Table 1

uniqueness proved in Theorem 4.3, the periodic orbit with λ ∈ (b, λ̄) is stable and
unique. Also there is no periodic orbits when λ ∈ (b, b + ε). Hence there exists a
λ∗ ∈ (b, λ̄) such that (1.2) has a unique limit cycle Lλ when λ ∈ (λ∗, λ̄). All these
limit cycles belong to S0, and the period tends to infinity as λ → (λ∗)+.

Clearly the positive equilibrium (λ, vλ) must be in the interior of Lλ. We fix a
(u∗, v∗) near (λ∗, vλ∗) which is in the interior of Lλ for all λ ∈ (λ∗, λ∗ +ε) with some
small ε > 0. Let L∗ be the ω-limit set of (u∗, v∗) when λ = λ∗. Then the Poincaré–
Bendixson Theorem implies that L∗ is one of the following three: an equilibrium point,
a periodic orbit, or a loop of heteroclinic orbits.

We show that the first two alternatives are not possible. If L∗ is a periodic orbit,
then the stability of L∗ implies the existence of a periodic orbit for each λ near λ∗ with
period near the one at L∗. But on the other hand there is a periodic orbit for λ > λ∗
such that the period tends to infinity as λ → (λ∗)+. That is a contradiction to the
uniqueness of the limit cycle. If L∗ is an equilibrium point, then L∗ must be one of
(0, 0), (b, 0) or (1, 0). But
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1. Since (1, 0) is a saddle with the stable manifold being the u-axis, then L∗ cannot
be (1, 0).

2. If L∗ is (0, 0), then from the continuous dependence of the solutions on the param-
eter λ, there exists a T > 0 such that u(λ, T ) < b/2 for λ ∈ (λ∗−ε, λ∗+ε), where
(u(λ, t), v(λ, t)) is the solution with the parameter λ and initial value (u∗, v∗).
But on the other hand, u(λ, t) ≥ b for λ ∈ (λ∗, λ∗ + ε) since it tends to a limit
cycle whose u-value is less than b. That is a contradiction, thus L∗ cannot be
(0, 0).

3. If L∗ is (b, 0), then the orbit starting from (u∗, v∗) is the stable manifold of (b, 0).
We can choose another (u∗∗, v∗∗) near (u∗, v∗) so that it is also in the interior
of Lλ for all λ ∈ (λ∗, λ∗ + ε), and v∗∗(T ∗∗) > v∗(T ∗) where (ui (t), vi (t)) is
the solution of (1.2) with initial value (ui , vi ), and T i is the last time so that
ui (T i ) = λ, i = ∗, ∗∗. Then from Proposition 2.4, (u∗∗(t), v∗∗(t)) → (0, 0) as
t → ∞. Arguing the same way as the case of L∗ = (0, 0), we reach a contradic-
tion with (u∗∗, v∗∗) is in the interior of Lλ for all λ ∈ (λ∗, λ∗ +ε). So L∗ = (b, 0)

is also not possible.

Therefore L∗ must be a loop of heteroclinic orbits, which can only occur at λ = λ�.
Hence λ∗ = λ� which implies that b < λ� < λ̄.

If there exists a limit cycle for some λ̃ ∈ (b, λ�), then the stability again shows
the limit cycle exists for λ in an open interval, and the period tends to infinity when
λ approaches the endpoints. Arguments above show that a loop of heteroclinic loop
exists for the endpoint λ values. But that is not possible from the uniqueness of λ� in
Proposition 2.3. Hence for λ ∈ (b, λ�), (1.2) has no limit cycle or heteroclinic loop,
and the ω-limit set of any solution is a single boundary equilibrium point (0, 0) since
(λ, vλ) is unstable. �	

The assumption (a5) is mathematical rather than biological. But it can be easily
verified for typical cases. Again we test our examples in previous section for the
assumption (a5):

1. For g(u) = u,

h1(u) = f ′(u)u

u − λ
, and h′

1(u) = f ′′(u)u2 − λ[ f ′(u) + u f ′′(u)]
(u − λ)2 . (4.7)

If f (u) = b−1(1 − u)(u − b) for which λ̄ = (1 + b)/2, then

h1(u) = −2(u − λ̄)u

b(u − λ)
, and h′

1(u) = −2[(u − λ)2 + λ(λ̄ − λ)]
b(u − λ)2 . (4.8)

Hence for any λ < λ̄, h′
1(u) ≤ 0 when u ∈ (b, λ) ∪ (λ, 1) hence (a5) and the

results in Theorem 4.4 hold.
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2. For Holling type II functional response g(u) = mu/(a + u),

h1(u) = (a+λ)u f ′(u)

a(u−λ)
, and

h′
1(u) = (a+λ)[(u−λ)(u f ′′(u) + f ′(u))−u f ′(u)]

a(u−λ)2 . (4.9)

Notice that the function h1(u) in (4.9) is only a rescaling of the one in (4.7), then
(a5) also holds for f (u) = b−1(1 − u)(u − b) and g(u) = mu/(a + u), which is
(3.7).

3. For Holling type III functional response g(u) = u p/(a p + u p),

h1(u) = (a p+λp)u p f ′(u)

a p(u p−λp)
, and

h′
1(u) = (a p+λp)[ f ′′(u)u p(u p−λp)− f ′(u)pu p−1λp]

a p(u p−λp)2 .

In the case of f (u) = b−1(1 − u)(u − b),

h′
1(u) = −2(a p + λp)[(u p − (1 + p)λp/2)2 + λp(pλ̄u p−1 − (1 + p)2λp/4)]

a pb(u p − λp)2

<
−2(a p + λp)[(u p − (1 + p)λp/2)2 + λp(pλ̄bp−1 − (1 + p)2λp/4)]

a pb(u p − λp)2 .

Hence for any pλ̄bp−1 > (1 + p)2λp/4, h′
1(u) ≤ 0 when u ∈ (b, λ) ∪ (λ, 1).

In fact, for g(u) = u or g(u) = mu/(a + u), a more general condition on f (u) can
be derived for (a5). Define

G(λ, u) = (u − λ)[u f ′′(u) + f ′(u)] − u f ′(u), (4.10)

where (λ, u) ∈ [b, λ̄] × [b, 1]. Then (a5) holds if G(λ, u) ≤ 0 for all (λ, u) ∈
[b, λ̄]× [b, 1]. It is easy to verify that G(λ, λ) = −λ f ′(λ) ≤ 0 for all λ ∈ [b, λ̄]. Also

∂G

∂u
(λ, u) = (u − λ)[u f ′′′(u) + 2 f ′′(u)]. (4.11)

Hence if f (u) satisfies

(a6) u f ′′′(u) + 2 f ′′(u) ≤ 0 for all u ∈ (b, 1),

then Gu ≥ 0 for u ∈ (b, λ) and Gu ≤ 0 for u ∈ (λ, 1), hence G(λ, u) ≤ 0 for
all (λ, u) ∈ [b, λ̄] × [b, 1]. Therefore for the special cases of g(u) = u and g(u) =
mu/(a + u), (a6) implies (a5).

Part 2 of Theorem 4.3 could lead to an estimate of the lower bound of λ� if (a5) is
satisfied:
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Proposition 4.5 Suppose that f, g satisfies (a1)–(a5), and λ∗ is the unique root of the
equation

g(λ) = g(1)g(b)[ f ′(b) − f ′(1)]
f ′(b)g(b) − f ′(1)g(1)

. (4.12)

Then for b < λ < λ∗, there is no periodic orbit for (1.2). In particular, λ� ≥ λ∗.

Proof We apply the second part of Theorem 4.3. Since (a5) is satisfied, then h1(u1) ≤
h1(u2) for any u1 ∈ (b, λ) and u2 ∈ (λ, 1) if h1(b) ≤ h1(1), which is equivalent to

[ f ′(b)g(b) − f ′(1)g(1)]g(λ) ≤ g(1)g(b)[ f ′(b) − f ′(1)], for λ < λ∗. (4.13)

Notice that from the definition of λ∗, we do have g(b) < g(λ∗), and it follows that
b < λ∗ from the monotonicity of g(u). �	

For g(u) = u and g(u) = mu/(a + u), (4.12) becomes

λ∗ = b[ f ′(b) − f ′(1)]
b f ′(b) − f ′(1)

.

For f (u) = b−1(1 − u)(u − b), then λ∗ = 2b/(1 + b), and for f (u) = (bm)−1(1 −
u)(u − b)(a + u),

λ∗ = b(2a + b + 1)

b2 + ab + a + 1
.

5 Examples and discussion

In this section we apply our results to several examples which have been proposed in
earlier investigations.

5.1 Cubic model with Holling II functional response

A prototypical model

{ dU
ds = b1U (1 − U )

(U
b − 1

) − NU V
1+AU ,

dV
ds = −d2V + NU V

1+AU ,
(5.1)

was proposed by Owen and Lewis (2001), and also Petrovskii et al. (2002) (see also
Morozov et al. 2004, 2006; Petrovskii et al. 2005). First we make a change of variables

t = b1s, u = U, v = V,
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to obtain the dimensionless equation:

{ du
dt = u(1 − u)

( u
b − 1

) − muv
a+u ,

dv
dt = −dv + muv

a+u ,
(5.2)

where a = 1
A , m = N

Ab1
, d = d2

b1
, and 0 < b < 1. Let

f (u) = (a + u)(1 − u)(u − b)

bm
, and g(u) = mu

a + u
. (5.3)

Then (5.2) is in form of (1.2). Clearly f (u) and g(u) satisfy (a1) and (a2) if 0 < d < m,
which we always assume. Hence the results in Theorem 2.6 hold. The equilibrium
points are

(0, 0), (b, 0), (1, 0), (λ, vλ) =
(

λ,
(a + λ)(1 − λ)(λ − b)

mb

)
,

where λ = ad
m−d . The critical point λ̄ of f (u) in (b, λ) (which is also the Hopf bifur-

cation point) has the form:

λ̄ = b + 1 − a + √
(b + 1 − a)2 + 3(ab + a − b)

3

which is the larger root of f ′(λ) = 0. At λ = λ̄,

f ′′(λ̄) = 2(−3λ̄ + b + 1 − a)

bm
< 0, f ′′′(λ̄) = −6

bm
< 0, g′′(λ̄) = −2ma

(a + λ̄)3
< 0.

Hence (a3) and (a4) are also satisfied. Thus the Hopf bifurcation at λ = λ̄ is supercrit-
ical and backward and the bifurcating periodic solutions are orbitally asymptotically
stable from Theorem 3.1.

Now we consider the uniqueness of limit cycle along the line of Theorem 4.4. We
need to verify the condition (a5). In fact we can use the condition (a6) by calculating
that

u f ′′′(u) + 2 f ′′(u) = −18u + 4(a − 1 − b)

bm
. (5.4)

Hence u f ′′′(u) + f ′′(u) ≤ 0 for u ∈ (b, 1) if 7b + 2a − 2 ≥ 0, and the results in
Theorem 4.4 hold if (a, b) satisfies 7b + 2a − 2 ≥ 0.

For the nonexistence of periodic orbits, we have a more specific result for (5.2):

Theorem 5.1 (5.2) has no periodic orbits in the interior of the first quadrant if one
of the following conditions is satisfied:
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1. 0 < a < 1, 0 < b <
2(1−a)

7 and b < λ < λ∗∗ = 2(b+1−a)
9 ; or

2. λ̄ < λ < 1.

Proof From the transformation in Sect. 4, (5.2) can be rewritten as the form of (4.2).
And with f, g given in (5.3), it is in the form of (4.3) with

φ(y) = vλ(e
y − 1), h(x) = (m − d)x

m(λ − x)
,

F(x) = x

bm
[3λ2 − 2(b + 1 − a)λ + b − (b + 1)a + (b + 1 − a − 3λ)x + x2],

where a1 = λ − 1 < x < λ − b = b1 and a2 = −∞ < y < +∞ = b2. One can
easily verify that the hypotheses (H1)–(H3) hold for this set of φ(y), F(x) and h(x).

We apply Theorem 4.2 directly. Then

r(u) = F ′(u) = 1

bm
(3u2 − 2(3λ − S1)u + S2 − 2S1λ + 3λ2),

where S1, S2 are defined by

S1 = b + 1 − a, S2 = b − (b + 1)a;

and also

H(u) =
u∫

0

h(s)ds = ad

m

(
ln

∣∣∣∣ λ

λ − u

∣∣∣∣ − u

λ

)
.

If H(u) = H(x) for λ − 1 < u < 0 and 0 < x < λ − b, then

u − x + λ ln

∣∣∣∣λ − u

λ − x

∣∣∣∣ = 0,

which implies that u + x < 0 since h(u) is convex on (λ − 1, λ − b). From straight-
forward calculation, we obtain that for λ − 1 < u < 0 and 0 < x < λ − b,

r(u)

h(u)
− r(x)

h(x)
= u − x

b(m − d)ux

(
ux[3(u + x) + 9λ − 2S1] − (S2 − 2S1λ + 3λ2)λ

)
.

We notice that S2−2S1λ+3λ2 = −mbf ′(λ) < 0 for λ ∈ [b, λ̄) and S2−2S1λ+3λ2 >

0 for λ ∈ (λ̄, 1].
Now if λ ∈ [b, λ̄) and 9λ+2(a −1−b) = 9λ−2S1 ≤ 0, then by using u −x < 0,

u + x < 0, ux < 0, we obtain that

r(u)

h(u)
− r(x)

h(x)
>

u − x

b(m − d)
(9λ − 2S1) ≥ 0,
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for all λ − 1 < u < 0 and 0 < x < λ − b. Hence from Theorem 4.2, (5.2) has no
periodic orbits in the first quadrant.

On the other hand, if λ̄ < λ < 1 and λ̄ > 5+2b−2a
12 , then by using similar arguments

above, also u + x < λ − 1 and S2 − 2S1λ + 3λ2 > 0, we have

r(u)

h(u)
− r(x)

h(x)
<

u − x

b(m − d)
(12λ + 2a − 2b − 5) < 0,

for all λ− 1 < u < 0 and 0 < x < λ− b. It is easy to verify that for all a, b > 0, then
12λ̄ + 2a − 2b − 5 > 0 holds. Hence again from Theorem 4.2, there is no periodic
orbits in the first quadrant as long as λ̄ < λ < 1. �	

Theorems 2.6 and 3.1, the second part of Theorems 5.1 and 4.4 (which holds when
7b + 2a ≥ 2) gives a complete rigorous global bifurcation diagram for the system
(5.2) if (a, b) satisfies

a > 0, 1 > b > 0, and 7b + 2a − 2 > 0. (5.5)

That is, there exist two bifurcation points

λ̄ = b + 1 − a + √
(b + 1 − a)2 + 3(ab + a − b)

3
, λ� >

b(2a + b + 1)

b2 + ab + a + 1
;

with b < λ� < λ̄ < 1 such that

(i) When 0 < λ ≤ b, there is no periodic orbits and (0, 0) is globally asymptoti-
cally stable from Theorem 2.6. (Fig. 2a)

(ii) When b < λ < λ�, there is no periodic orbits and (0, 0) is globally asymptoti-
cally stable from Theorem 4.4. (Figs. 2b, 3a)

(iii) When λ = λ�, there is no periodic orbits and there is a loop of heteroclinic
orbits from A to B then back to A (Theorem 4.4), and the loop separates the
basins of attraction of (0, 0) and the loop itself (attracting all initial values in
the interior of the loop). (Fig. 3b)

(iv) When λ� < λ < λ̄, there is a unique limit cycle, the stable manifold of
B = (b, 0) separates the basins of attraction of (0, 0) and the limit cycle
(Theorem 4.4); the limit cycle converges to the loop of heteroclinic orbits when
λ → (λ�)+ (Theorem 4.4), and limit cycle emerges from the coexistence equi-
librium (λ, vλ) at λ = λ̄ through a supercritical Hopf bifurcation (Theorem 3.1).
(Fig. 3c, d)

(v) When λ̄ < λ < 1, there is no periodic orbits (Theorem 5.1), (λ, vλ) is locally
stable, and the basins of attraction of (λ, vλ) and (0, 0) are separated by the
stable manifold of (b, 0). (Fig. 2c)

(vi) When λ ≥ 1, there is no periodic orbits, and the attractive basins of (b, 0) and
(1, 0) are separated by the stable manifold �b

λ of (b, 0) (Theorem 2.6). (Fig. 2d)

We suspect that the parameter condition 7b +2a −2 > 0 is only a technical condition
which is needed for Theorem 4.4, and other theorems do not require this condition.
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Table 1 Values of parameter m or λ in Figs. 2 and 3

Figure Fig. 2a Fig. 2b Fig. 2c Fig. 2d Fig. 3a Fig. 3b Fig. 3c Fig. 3d

m 2.5 2.1 1.52 1.45 1.8 1.6933 1.69 1.682

λ 0.3333 0.4545 0.9615 1.1111 0.625 0.7212 0.7246 0.7331

Recall that λ = ad/(m − d)
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Fig. 4 Bifurcation diagrams of of the periodic orbits of (5.2) with a = 0.5, b = 0.4 and d = 1. The
Hopf bifurcation point λ̄ is 0.7359, and the heteroclinic point λ� is 0.7212. The horizontal axis on the left
and middle graphs is λ ∈ [0.72, 0.74]. Left: v-amplitude of the periodic orbits, where each vertical line
represents the v-range of the limit cycle for that λ-value (the vertical axis is v); the almost horizontal curve
in the center is the v value of the coexistence equilibrium; H is the Hopf bifurcation point λ = λ̄, and LPG
is the homoclinic point λ = λ�; Right: the period of the limit cycles (the vertical axis is the period T )

On the other hand, this condition holds if 1 > b > 2/7 (the threshold is not too low)
or a > 1.

The numerical phase portraits in Figs. 2 and 3 are generated using the Eq. (5.2) and
they are produced by using pplane7 package of Matlab developed by Polking and
Arnold (2003). The parameters which we use are a = 0.5, b = 0.4 and d = 1, and
different m-values (and corresponding λ-values) given in Table 1.

While Figs. 2 and 3 show the evolution of the phase portraits, the following Fig. 4
shows the bifurcation of the periodic orbits for (5.2) between λ� < λ < λ̄. The bifur-
cation diagrams confirm the theoretical prediction of backward and supercritical Hopf
bifurcation at λ = λ̄. From the left panel of Fig. 4, one can see that the minimum
of the predator population is nearly zero when λ is close to λ�, which increases the
possibility of extinction. This is similar to the limit cycles in Rosenzweig–MacArthur
model with logistic growth (Hsu and Shi 2009; Rosenzweig 1971) when λ → 0 (λ
is also the coordinate of the predator nullcline), which suggests that the paradox of
enrichment destabilizes the population, and the oscillation of the population makes it
more vulnerable to possible stochastic fluctuation. It is also clear from the right panel
of Fig. 4 that the period of the limit cycle tends to ∞ as λ → (λ�)+, which is one of the
alternatives in the global bifurcation theorem in Alexander and Yorke (1978), Chow
and Mallet-Paret (1978), and Wiggins (1990). The bifurcation diagrams in Fig. 4 are
generated by MatCont (Dhooge et al. 2003), which is a Matlab toolbox that for
numerical bifurcation diagrams.
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5.2 Cubic model with linear functional response

The same rigorous complete global bifurcation diagram for (5.2) also holds for the
model with Lotka–Volterra interaction, which in dimensionless version is:

{ du
dt = u(1 − u)

( u
b − 1

) − muv,

dv
dt = −dv + muv.

(5.6)

A global bifurcation analysis of (5.6) was given in Bazykin (1998) Section 3.5.5 and
Conway and Smoller (1986), and a recent biological explanation of the bifurcation for
(5.6) is given in van Voorn et al. (2007). Our results in this paper provide more rigorous
verification of the rough picture in Conway and Smoller (1986), and the generalization
to the system (1.2) shows that such global bifurcation hold for a much wider class of
models. For (5.6),

f (u) = (1 − u)(u − b)

bm
, and g(u) = mu. (5.7)

Our analysis in earlier sections shows for

f (u) = (1 − u)(u − b)

bm
, and g(u) = mu

a + u
, a > 0, (5.8)

(it corresponds to the system (3.7)), all calculations to verify the conditions (a1)–(a6)
are similar to that of (5.1). One can easily verify that (a1)–(a4) and (a6) are satisfied for
f, g in (5.7) and (5.8). Hence all results in Theorems 2.6, 3.1 and 4.4 hold. Moreover
similar to Theorem 5.1, we can verify the nonexistence of periodic orbits discussed in
previous subsection for λ ∈ (λ̄, 1):

1. For (5.6) ( f, g in (5.7)),

λ̄ = 1 + b

2
, r(u) = 2(λ − u) − (1 + b)

bm
, h(u) = u

λ − u
.

After the same calculation in the proof of Theorem 5.1, we get

r(u)

h(u)
− r(x)

h(x)
= u − x

bux
(2ux + [(1 + b) − 2λ]λ) < 0

for all λ − 1 < u < 0 and 0 < x < λ − b. Hence there is no periodic orbits in
the first quadrant, which provides a more precise result than that in Conway and
Smoller (1986).

2. For (3.7) ( f, g in (5.8)),

λ̄ = 1 + b

2
, r(u) = r(u) = 2(λ − u) − (1 + b)

bm
, h(u) = (m − d)u

m(λ − u)
,
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and

r(u)

h(u)
− r(x)

h(x)
= m(u − x)

b(m − d)ux
(2ux + [(1 + b) − 2λ]λ) < 0

for all λ − 1 < u < 0 and 0 < x < λ − b. Thus there is no periodic orbits.

Therefore the exact same global bifurcation scenario listed in Sect. 5.1 holds for (5.6)
and (3.7) with

λ̄ = 1 + b

2
, λ� >

2b

1 + b
,

and here we only need (a, b) satisfies (compare to (5.5))

a > 0, 1 > b > 0. (5.9)

We also mention that an epidemic model with Allee effect was considered recently
by Thieme et al. (2009):

{ d S
dt = σ S(G(S)/σ − I ),

d I
dt = I (σ S − σ S∗).

(5.10)

If we define f (S) = G(S)/σ and g(S) = σ S, then (5.10) is in form of (1.2). The
function G(S) in Thieme et al. (2009) satisfies (a1), and g(S) is linear. Hence if con-
ditions on f in (a3), (a4) and (a6) are satisfied, then the results in this subsection hold
for (5.10). We note that some results (but not all) which we proved in this paper were
also proved in Thieme et al. (2009) for the special case (5.10), but our results hold for
much more general cases. Similar epidemic models were also considered in Hilker
et al. (2009). We thank an anonymous referee for bringing (Hilker et al. 2009; Thieme
et al. 2009) to our attention.

5.3 Boukal–Sabelis–Berec model

Boukal et al. (2007) proposed a model which incorporates both the strong and weak
Allee effect: ⎧⎨

⎩
dU
ds = AU

(
1 − U

K

) (
1 − B+C

U+C

)
− EU n

1+E HU n V,

dV
ds = −DV + EU n

1+E HU n V .
(5.11)

With change of variables:

u = U

K
, v = V

K
, t = As,
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the system (5.11) is converted into

⎧⎨
⎩

du
dt = u(1 − u)

(
1 − b+c

u+c

)
− eun

1+ehun v,

dv
dt = −dv + eun

1+ehun v,
(5.12)

where b = B/K , c = C/K , e = E K n/A, h = H A and d = D/A. When 0 < b < 1,
(5.12) exhibits a strong Allee effect in prey population densities and a type Holling II
or III functional response of the predator, where b is the Allee threshold, and c is an
auxiliary parameter (c > 0). In this subsection we only consider the case of n = 1
(type II or linear functional response).

First we consider the case of linear functional response g(u) = eu. Then (5.12)
(with h = 0) becomes

⎧⎨
⎩

du
dt = u(1 − u)

(
1 − b+c

u+c

)
− euv,

dv
dt = −dv + euv.

(5.13)

The conditions (a1)–(a3) can easily be verified. For condition (a6), we have

u f ′′′(u) + 2 f ′′(u) = 2(c + 1)(c + b)(u − 2c)

e(u + c)4 .

Hence if c ≥ 1/2, then u f ′′′(u) + 2 f ′′(u) ≤ 0 for u ≤ 1 so that (a6) holds for
u ∈ (b, 1), and the results in Theorems 2.6, 3.1 and 4.4 hold. Thus the global bifurca-
tion for λ ∈ (0, λ̄)

⋃
(1,∞) is similar to (5.2) if c ≥ 1/2.

However the Allee effect growth function in (5.13) is more flexible than the ones
in (5.2) or (5.6) (Boukal et al. 2007; Courchamp et al. 2008), and this shows on its
dynamics. For parameters not in the range indicated above, (5.13) can have other richer
dynamics. Indeed one can calculate that

λ̄ =
√

c2 + b + (b + 1)c − c,

thus if b + (b + 1)c > 8c2, then λ̄ f ′′′(λ̄) + 2 f ′′(λ̄) > 0 and the Hopf bifurcation at
λ = λ̄ is subcritical and forward. This subcritical Hopf bifurcation only occurs for
small c, and as we have seen that for large c, the dynamics of (5.13) is similar to (5.2)
and (5.6).

With this subcritical Hopf bifurcation, for λ̄ < λ < λ̄ + ε, the system possesses
three locally stable states: the equilibrium points (0, 0), (λ, vλ) and a stable large
amplitude periodic orbit which is close to the heteroclinic loop (see Fig. 5). And a
small amplitude cycle is unstable, and it separates the basins of attraction of (λ, vλ)

and the large cycle. There is a largest λ̃ > λ̄ such that the system has periodic orbit
for λ ∈ (λ�, λ̃], and λ = λ̃ is a saddle-node bifurcation point for the periodic orbits.
Near λ = λ̃, the two periodic orbits are nearly identical (see Fig. 5 Right). Note that
unlike λ̄ and λ�, λ̃ can only be determined numerically.
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Fig. 5 Multiple periodic orbits in (5.13). Here c = 0.3, b = 0.4, e = 1. λ̄ = 0.653939 and Hopf bifurcation
is subcritical. Left: λ = 0.6540, near subcritical Hopf bifurcation point; Right: λ = 0.6544, two nearly
identical periodic orbits when λ is close to the saddle-node bifurcation point

For the case h > 0 (type II functional response), we let a = 1/(eh), m = 1/h.
Then (5.12) becomes

⎧⎨
⎩

du
dt = u(1 − u)

(
1 − b+c

u+c

)
− muv

a+u ,

dv
dt = −dv + muv

a+u ,
(5.14)

which is in the form of (1.2) with

f (u) = 1

m
(1 − u)(u − b)

(
u + a

u + c

)
, g(u) = mu

a + u
.

The dynamics of (5.14) is similar to that of (5.13). In fact, one can calculate that

f ′′(u) = 1

m

(
−2 + 2M

(u + c)3

)
,

u f ′′′(u) + 2 f ′′(u) = 1

m

(
−4 + 2(2c − u)M

(u + c)4

)
,

where

M = c3 + (1 − a + b)c2 + (b − a − ba)c − ba.

One can see (a1), (a3) and (a6) are satisfied if c is sufficiently large, since

lim
c→∞

M

(u + c)3 = 1, lim
c→∞

(2c − u)M

(u + c)4 = 2,

uniformly for u ∈ [b, 1], and any a > 0, 1 > b > 0. Hence the results in Theo-
rems 2.6, 3.1 and 4.4 hold for (5.14) if c is large. On the other hand, subcritical Hopf
bifurcation is still possible in this case for small c. We do not claim that we have a
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complete classification of all possible dynamics of (5.14), but it certainly contains all
dynamics of (5.13). Also we do not include a result on the nonexistence of periodic
orbits for λ ∈ (λ̄, 1) since the calculation involved in applying Theorem 4.2 and 4.3
is too complicated here.

This example shows that a parameter other than the carrying capacity or the Allee
threshold could have an influence on the dynamics by inducing a subcritical Hopf
bifurcation. The parameter c in (5.12) affects the shape of the growth rate per capita,
which we shall discuss more in Sect. 5.5 along with another example of subcritical
Hopf bifurcation.

5.4 Another example of subcritical Hopf bifurcation

We have observed that in (5.13), the Hopf bifurcation may be supercritical or sub-
critical depending on a parameter value. Here we propose another model with that
property:

{ du
dt = u

(
1 + Be−β − u − Be−βu

) − uv,

dv
dt = −dv + uv,

(5.15)

where d > 0, B > 1, and Bβ > 1. The functions f (u) = 1 + Be−β − u − Be−βu ,
g(u) = u satisfy (a1)–(a3). The predator functional response is assumed to be Lotka–
Volterra type to ease the computation, but we expect the results hold for more general
functional responses. The growth rate per capita f (u) is a logistic one subject to a loss
term not due to the primary predator v. The carrying capacity is chosen as 1 + Be−β

so that f (1) = 0. The alternative predator is assumed to have a constant population,
and the per capita predation rate Be−βu is a decreasing one. Hence in this model, the
Allee effect is caused by another predator, which has been recognized as one of the
possible causes of the Allee effect (see Berec et al. 2007; Gascoigne and Lipcius 2004,
and Courchamp et al. (2008) Sections 2.3.2 and 3.2). Notice that the Allee effect is
strong if B > 1 + Be−β . This can also be viewed as a possible reduced two-predator
and one prey model with different predator functional responses.

After direct computation, we have

f ′(u) = −1 + Bβe−βu and f ′(u) = 0 if and only if u = λ̄ = 1

β
ln Bβ;

f ′′(u) = −Bβ2e−βu < 0; f ′′′(u) = Bβ3e−βu > 0 for all u > 0.

In this case the expression of the first Lyapunov coefficient in (3.3) is reduced to

a(λ̄) = λ̄ f ′′′(λ̄) + 2 f ′′(λ̄)

16
= λ̄ f ′′(λ̄)

16

(
f ′′′(λ̄)

f ′′(λ̄)
+ 2

λ̄

)
= f ′′(λ̄)

16
(2 − ln Bβ).

(5.16)
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Fig. 6 Phase portraits of the system (5.15). Here B = 1.2, β = 9. Left: d = 0.27140, the Hopf bifurcation
is subcritical and forward; Right: d = 0.27309, two nearly identical periodic orbits when d is close to the
saddle-node bifurcation point
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Fig. 7 Graphs of growth rate per capita functions with strong Allee effect. Left: f (u) = e−1(1 − u)(u −
b)/(u + c) with b = 0.1, e = 1, c = 0.01, 0.1 and 1 respectively from the higher to the lower ones; Middle:
f (u) = 1 + Be−β − u − Be−βu with B = 1.2, β = 20, 8 and 2 respectively from the higher to the lower
ones; Right: f (u) = (1 − u)(u − b) with b = 0.05, 0.2 and 0.4 respectively from the higher to the lower
ones. For all cases, the Hopf bifurcation point λ̄ is the maximum point of f (u)

Then the Hopf bifurcation is supercritical and backward if ln Bβ < 2, and it is sub-
critical and forward if ln Bβ > 2. See Fig. 6 for phase portraits with two periodic
orbits.

Note that the key of the subcritical Hopf bifurcation is that f ′′′(u) > 0. There is
no obvious biological meaning of the third order derivative of the growth rate per
capita function. But a comparison of the graphs of the growth rate per capita functions
f1(u) = e−1(1 − u)(u − b)/(u + c) as in (5.13), f2(u) = 1 + Be−β − u − Be−βu as
in (5.15) and f3(u) = (1 − u)(u − b) as in (5.6) (see Fig. 7) reveals that if the “hump”
is more or less symmetrical ( f3, or f1 with large C or f2 with small β), then the Hopf
bifurcation is supercritical, but if the “hump” leans to u = b (the survival threshold),
then a subcritical Hopf bifurcation could occur.

5.5 General nonlinearities

Besides the examples given above, our main analytical results hold under very general
conditions on f (u) and g(u). Here we discuss the restrictiveness of these conditions
(a1)–(a6) and their applicability to predator–prey models with strong Allee effect
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on the prey population. The condition (a1) and (a2) are our basic assumptions, and
we always assume them. If (a1) is not satisfied, then f (u) may have multiple positive
“humps”; and in (a2), only monotonic functional responses are considered not the non-
monotonic ones such as Holling type IV. In all known examples, (a3) ( f ′′(λ̄) < 0) is
satisfied hence the Hopf bifurcation is non-degenerate. (a4) is a condition for super-
critical Hopf bifurcation. In discussions in this section, we find that a supercritical
bifurcation occurs for prototypical examples, but a subcritical bifurcation is also pos-
sible. (a5) is a more complicated condition to verify but restricted to the linear or type
II functional responses, it becomes a simpler condition (a6). We note that if (a6) is
satisfied, then the Hopf bifurcation must be supercritical as showed in (3.4) and (3.5).

In summary, while our results allow more generality on the nonlinear function, we
state a result which is easier to verify the algebraic conditions, thus possibly more
valuable to the applications:

Theorem 5.2 Suppose that f (u) satisfies (a1), (a3) and (a6), and g(u) is one of the
following:

g(u) = u, or g(u) = mu

a + u
, a, m > 0. (5.17)

Then by adapting a bifurcation parameter λ by defining

λ = d if g(u) = u, or λ = ad

m − d
if g(u) = mu

a + u
, (5.18)

there exist two bifurcation points λ� and λ̄ such that the dynamics of (1.2) can be
classified as follows:

1. If 0 < λ < λ�, then the equilibrium (0, 0) is globally asymptotically stable;
2. If λ� < λ < λ̄, then there exists a unique limit cycle, and the system is globally

bistable with respect to the limit cycle and (0, 0);
3. If λ̄ < λ < 1, and if there is no periodic orbit, then the system is globally bistable

with respect to the coexistence equilibrium (λ, vλ) and (0, 0);
4. If λ > 1, then the system is globally bistable with respect to (1, 0) and (0, 0).

We note that the nonexistence of periodic orbits for λ̄ < λ < 1 can be proved using
Theorem 4.2, which has been showed for some examples in Sects. 5.1, 5.2 and 5.4.

For the applicability of Theorem 5.2, we verify various typical growth rates with
Allee effect for the conditions (a1), (a3) (a4), and (a6). Here we choose a collection
of 6 growth rate per capita functions from Table 3.1 of Courchamp et al. (2008) (see
also Table 1 of Boukal and Berec (2002)), and verify the range of parameters so that
the conditions (a1), (a3), (a4) and (a6) are satisfied. We list the parameter restrictions
when g(u) = u in Table 2, and the one with g(u) = u/(a + u) in Table 3. In Table 2,
the restriction for (P1), (P2) and (P3) are all natural ones, hence Theorem 5.2 holds for
all parameter ranges; for (P4), (P5) and (P6), some additional mathematical conditions
are needed for Theorem 5.2, and different dynamics could exist for other parameter
ranges. For Table 3, some restriction on the parameters are always needed for each
example. Outside of the parameter ranges given in Tables 2 and 3, the system could
have other dynamical behavior like multiple periodic orbits.
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6 Concluding remarks

Oscillatory behavior in predator–prey (consumer-resource) interaction has been an
important topic in population dynamics since the pioneer work of Rosenzweig and
MacArthur (1963), Rosenzweig (1971), and May (1972) etc. Global dynamical behav-
ior such as global asymptotic stability of coexistence equilibrium, uniqueness and
stability of limit cycle for predator–prey system with logistic type prey growth is now
well-known (see Cheng 1981; Hsu 1978; Kuang and Freedman 1988; Xiao and Zhang
2003). In this article we rigourously establish the global bifurcation of a class of general
predator–prey system with prey growth satisfying a strong Allee effect type growth
pattern. The key bifurcation parameter λ is the location of the predator nullcline u = λ.
While it is clear that when λ is below the prey extinction threshold b, the prey will
become extinct, and consequently the predator will also starve to die, we show that
there exists a higher threshold λ� such that when λ < λ�, then the predator invasion
leads to the extinction of both species, this phenomenon is called overexploitation
Rosenzweig (1971). Mathematically it means the global stability of the equilibrium at
(0, 0), which is rigorously proved here. The threshold λ� is at the unique point where
a point-to-point heteroclinic orbit loop exists.

When λ moves across λ = λ�, a limit cycle appears as an alternative stable state,
which can be established if initially the prey is over the self-growth threshold b, and
the initial amount of the predator is under the overexploit threshold to make a suc-
cessful invasion. This picture changes again when it moves past λ̄, the alternative
stable state of limit cycle switches to a coexistence equilibrium point, and the oscil-
lation dies down to the stable equilibrium. Finally when λ is larger than 1, which is
the carrying capacity of the prey population, the alternative stable state becomes the
prey-only equilibrium, in which the predator species is not able to establish itself and
will become extinct. For these cases, higher initial predator density will always lead
to the overexploitation. Our rigorous analysis of the phase planes complements with
several recent discussion of the ecological scenarios in Berec et al. (2007), Boukal
et al. (2007), van Voorn et al. (2007), and Zhou et al. (2005).

Our rigorous analysis can be applied to most existing predator–prey models with
strong Allee effect on the prey population, as shown in the examples in Sect. 5. The
choices of the growth rate per capita (or “factored” growth rate per capita) f (u) are
listed in Tables 2 and 3, and our results are most complete when the functional response
g(u) is linear or Holling type II. This demonstrates the robustness of our results, and
the results do not depend on the specific algebraic forms or parametrization of the
nonlinear functions in the models.

On the other hand, besides the “basic” dynamics evolution shown above (or see
Theorem 5.2), we also show that the predator–prey systems with Allee effect could
have even richer dynamic structure like multiple limit cycles. Results from Liénard
systems can be used to prove the uniqueness of limit cycle in certain cases, but the exact
number of multiple cycles is not known yet analytically. The examples in Sects. 5.3 and
5.4 show the subtleness of the parameter choices in the Allee effect growth functions.

We do not consider the system with non-monotonic functional response, which has
been recently considered in Aguirre Pablo et al. (2009) and González-Olivares et al.
(2006). We do not include the spatial effect in this article. Some recent numerical
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investigation of the reaction-diffusion models with strong Allee effect have shown
complex dynamics (Morozov et al. 2004, 2006; Petrovskii et al. 2005, 2002), and
our complete analysis of the ODE model will give new suggestions of numerical or
analytical approach to the spatiotemporal models with Allee effect.

Acknowledgments We thank the anonymous referees for their helpful suggestions which greatly improve
the earlier version of the manuscript.

7 Appendix

Here we give the calculation leading to the formula (3.3). First we translate the equi-
librium (λ, vλ) to the origin by the translation ũ = u −λ, ṽ = v − vλ. For the sake of
convenience, we still denote ũ and ṽ by u and v, respectively. Thus the system (1.2)
becomes

{
du
dt = g(u + λ) ( f (u + λ) − (v + vλ)) ,

dv
dt = (v + vλ) (−d + g(u + λ)) .

(7.1)

Rewrite the system (7.1) as follows:

{
du
dt = g(u + λ) f (u + λ) − g(λ) f (λ) − [g(u + λ)(v + vλ) − g(λ)vλ],
dv
dt = −dv + [g(u + λ)(v + vλ) − g(λ)vλ].

Computing the Taylor expansion of related functions:

(v + vλ)g(u + λ) − g(λ)vλ

= a10u + a01v + a20u2 + a11uv + a30u3 + a21u2v + O(|u|4, |u|3|v|),

and

g(u + λ) f (u + λ) − g(λ) f (λ) = b10u + b20u2 + b30u3 + O(|u|4),

where

a10 = g′(λ)vλ, a20 = 1

2
g′′(λ)vλ, a30 = 1

6
g′′′(λ)vλ,

a01 = g(λ), a11 = g′(λ), a21 = 1

2
g′′(λ),

and

b10 = ( f g)′(λ), b20 = 1

2
( f g)′′(λ), b30 = 1

6
( f g)′′′(λ),
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then the system (7.1) becomes

(
du
dt
dv
dt

)
= J

(
u
v

)
+

(
F1(u, v, λ)

F2(u, v, λ)

)
, (7.2)

where

F1(u, v, λ) = (b20 − a20)u
2 − a11uv + (b30 − a30)u

3 − a21u2v + O(|u|4, |u|3|v|),
F2(u, v, λ) = a20u2 + a11uv + a30u3 + a21u2v + O(|u|4, |u|3|v|).

Define a matrix

P :=
(

1 0
N M

)
,

where N = − A(λ)
2B(λ)

, and M = −
√

−4B(λ)C(λ)−A2(λ)

2B(λ)
. Then

P−1 =
(

1 0
− N

M
1
M

)
,

and when λ = λ̄,

N− := N |λ=λ̄= 0,

M− := M |λ=λ̄= −
√

−4B(λ̄)C(λ̄)

2B(λ̄)
=

√
f (λ̄)g′(λ̄)

g(λ̄)
.

By using the linear transformation

(
u
v

)
= P

(
x
y

)
,

the system (7.2) becomes

(
dx
dt
dy
dt

)
= J (λ)

(
x
y

)
+

(
F1(x, y, λ)

F2(x, y, λ)

)
. (7.3)

Here

J (λ) =
(

β(λ) −ω(λ)

ω(λ) β(λ)

)
,
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where β(λ) and ω(λ) are defined in (3.1), and

F1(x, y, λ) = F1(x, Nx + My, λ)

:= A20x
2 + A11xy + A21x

2y + A30x
3 + O(|x|4) + O(|x|4, |x|3|y|),

F2(x, y, λ) = − N

M
F1(x, Nx + My, λ) + 1

M
F2(x, Nx + My, λ)

:= B20x
2 + B11xy + B30x

3 + B21x
2y + O(|x|4, |x|3|y|),

where

A20 = (b20 − a20) − a11 N , A11 = −a11 M,

A30 = (b30 − a30) − a21 N , A21 = −a21 M,

B20 = 1

M
(a20 + a11 N ), B11 = a11,

B30 = 1

M
(a30 + a21 N ), B21 = a21.

Rewrite the system (7.3) in the polar coordinate form:

ṙ = β(λ)r + a(λ)r3 + · · · ,

θ̇ = ω(λ) + c(λ)r2 + · · · ,
(7.4)

then the Taylor expansion of (7.4) at λ = λ̄ yields

ṙ = β ′(λ̄)(λ − λ̄)r + a(λ̄)r3 + O(r |λ − λ̄|2, r3|λ − λ̄|, r5),

θ̇ = ω(λ̄) + ω′(λ̄)(λ − λ̄) + c(λ̄)r2 + O(|λ − λ̄|2, r2|λ − λ̄|, r4).
(7.5)

In order to determine the stability of the periodic solution, we need to calculate the
sign of the coefficient a(λ), which is given by

a(λ̄) = 1

16
[F1

xxx + F1
xyy + F2

xxy + F2
yyy]

+ 1

16ω(λ̄)
[F1

xy(F1
xx + F1

yy) − F2
xy(F2

xx + F2
yy) − F1

xxF2
xx + F1

yy F2
yy],

where all partial derivatives are evaluated at the bifurcation point, i.e. (x, y, λ) =
(0, 0, λ̄).

Since y is linear in both F1(x, y, λ) and F2(x, y, λ), we have that

F1
xyy = F2

yyy = F1
yy = F2

yy ≡ 0.
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At (0, 0, λ̄), it is easy to calculate that

F1
xxx + F2

xxy = 6A30 + 2B21 = 6(b30 − a30) + 2a21,

F1
xy F1

xx = 2A11 A20 = −2(b20 − a20)a11 M−,

F2
xy F2

xx = 2B20 B11 = 2

M−
a20a11,

F1
xxF2

xx = 4A20 B20 = 4

M−
a20(b20 − a20).

Notice that

M2− = −C(λ̄)

B(λ̄)
= f (λ̄)g′(λ̄)

g(λ̄)
, and ω(λ̄)M− = C(λ̄) = f (λ̄)g′(λ̄).

By tedious but simple calculations, we obtain that

a(λ̄) = H1 + H2

16g′(λ̄)
, (7.6)

where

H1 = [( f g)′′′(λ) − g′′′(λ) f (λ)]g′(λ)|λ=λ̄,

H2 = [g′′(λ) f (λ) − ( f g)′′(λ)] [g
′(λ)]2 + g(λ)g′′(λ)

g(λ)
|λ=λ̄.

(7.7)

Since f ′(λ̄) = 0, then (7.6) and (7.7) reduce to (3.3).
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