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ABSTRACT: The copepod Acartia tonsa exhibits 2 different feeding modes: when feeding on small 

phytoplankton cells it sets up a feeding current and acts as a suspension feeder; when feeding on motile 
prey it acts as an ambush feeder. We examined experimentally the effects of small-scale turbulence on 
feeding rates in these 2 modes. The different feeding behaviours were triggered by offering the cope- 
pods diatoms Thalassiosira weissfloqii and ciliates Strombidium sulcatum, respectively. Turbulence at 
5 different intensities (energy dissipation rate, E, between 4 X I O - ~  and 3.7 X 10' cm2 s - ~ )  was generated 
by an oscillating grid. In ambush feeding mode, low (realistic) intensities of turbulence (E = 1 0 ' ~  to 1 0 - ~  
cm2 s - ~ )  enhanced clearance rates by up to a factor of 4 above those observed in calm water Higher 
intensities of turbulence ( E  = 10-' to 10' cm2 s - ~ )  resulted in a depression of clearance rates, although 
the rates were still significantly higher than those observed in calm water. The depression of clearance 
rates at high turbulence intensities was due partly to a decline in capture success, but mainly to a 
decrease in reactive distance, because turbulence interferes with prey perception by disturbing the 

hydrodynamical signal generated by motile prey. The negative effects were evident only at turbulence 
intensities exceeding those normally encountered by A tonsa in its natural habitat. In suspension feed- 
ing mode, low intensities of ambient turbulence (E = I O - ~  to 10-2 cm2 s-" had negligible effects on 
clearance rates, while at higher turbulence intensities (E = 10-I to 10' cm2 s - ~ )  we observed a negatlve 
effect (depression of clearance rate). The negative effects become evident when ambient turbulent 
fluid shear approaches the maximum shear rate of the copepod's feeding current, and we hypothesize 
that at these intensities the feeding current is eroded. Again the negative effects were observed only at 
turbulence intensities higher than those typically experienced by A. tonsa in the sea. The differential 
response to turbulence of the 2 feeding behaviours, including the negative effects, were accurately pre- 

dicted by encounter rate and feeding behaviour models proposed by korboe & Saiz (1995; Mar Ecol 
Prog Ser 122:135-145). Because feeding behaviour is specific to the prey (phytoplankton vs mot~le 
prey), and because ambush-mode feeding is much more dependent on turbulence than suspension- 
mode feeding, our findings suggest that prey selection in A. tonsa may be partly governed by turbu- 
lence in the ocean. This may explain why rnicrozooplankton at times dominates the diet of A. tonsa and 

other copepods, even though it is numerically scarce relative to phytoplankton in the environment. 
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INTRODUCTION 

Plankton research received a novel impulse with the 

publication of Rothschild & Osborn's paper (1988) on 

the role played by small-scale turbulence for the en- 

counter rates between planktonic predators and their 

prey. Rothschild & Osborn (1988) and other theoretical 

studies (MacKenzie & Leggett 1991, Yamazaki et al. 

1991) have suggested that microscale turbulence may 

enhance planktonic contact rates and, thus, potentially 

increase feeding rates in planktonic predators. The 

amount of actual data available for examining this idea 

(either lab- or field-generated) is still scarce, but a few 

studies have confirmed that feeding rates of planktonic 

predators may in fact be increased in turbulent as com- 

pared to calm environments (Alcaraz et al. 1989, 

Sundby & Fossum 1990, Saiz & Alcaraz 1992, Saiz et al. 

1992). However, observed enhancements vary consid- 

erably, from marginal in suspension-feeding copepods 

(from 0 to 88 %, depending on food concentration, tur- 
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bulence intensity and species; Saiz et  al. 1992) to sub- 

stantial in fish larvae (factor of 2 to 4; MacKenzie & 

Kierrboe in press). A recent modeling study by Kiarboe 

& Saiz (1995, this issue) has demonstrated how the 

swimming and feeding behaviour of both predator and 

prey, as well as the spatial scales at  which the animals 

operate, lead to very different predictions of the poten- 

tial effects of microscale turbulence on predator-prey 

encounter rates. 

This study examines experimentally the effect of tur- 

bulence on feeding rates in a representative copepod, 

Acartia tonsa, which is very common in coastal and 

neritic temperate seas. A ,  tonsa (as many other cope- 

pods) exhibits 2 different feeding modes (Jonsson & 

Tiselius 1990). When feeding on phytoplankton, A. 

tonsa generates a feeding current with its feeding 

appendages and thoracopods, and cells are filtered out 

of small parcels of water that are squeezed between 

the second maxillae; the straining mechailism is not 

completely understood, but it does not seem to be siev- 

ing (Price 1988). We term this the suspension feeding 

mode (Paffenhofer & Stearns 1988, Saiz 1994). When 

.LLU.uY *- -A+--  S:: ciliates (an:! !ike!y other .cti!e prey) (1. 

tonsa adopts a different feeding behaviour, which we 

shall here term the ambush feeding mode (Jonsson & 

Tiselius 1990): it does not generate a feeding current 

but hangs quietly (without moving the feed~ng 

appendages) in the water while slowly sinking and 

scanning the surrounding water for potential prey. The 

copepod perceives ciliate prey by means of hydro- 

mechanical disturbances generated by the swimming 

ciliate. Once the ciliate is perceived, the copepod re- 

orients itself toward the prey, jumps towards it and 

attempts to catch it. 

Encounter rates depend on velocity differences 

between predator and prey, and microscale turbulence 

may increase the velocity difference and, hence, the 

encounter rate. The model of Kierrboe & Saiz (1995) 

predicts that microscale turbulence has a much greater 

(order of magnitude) effect on encounter rates for 

predators in the ambush than in the suspension feed- 

ing mode. This differential effect is due to the fact that 

the velocity difference generated by the copepod 

behaviour (relative to the ambient turbulent fluid 

velocity) is small for the ambush mode, but compara- 

tively large for the suspension feeding mode. 

While turbulence does enhance encounter rates, it 

also conceivably has some negative effects on feeding 

rates. Turbulence may interfere with signal transmis- 

sion and reception as well as capture success in the 

a.mbush feeding mode, and i t  may erode the feed~ng 

current in the suspension feeding mode (Saiz et al. 

1992, Kierrboe & Saiz 1995). 

The purpose of this study was to examine both the 

potentially positive and negative effects of microscale 

turbulence on feeding rates for the 2 feeding modes of 

Acartia tonsa. We approached this by using 2 different 

prey: the aloricate ciliate Strombidium sulcatum and 

the diatom Thalassiosira weissflogii, which trigger, 

respectively, the ambush and the suspension feeding 

modes in A. tonsa. The implications of oceanic turbu- 

lence for foraging and prey selection in A. tonsa and 

other neritic copepods are discussed on the basis of our 

findings. 

MATERIAL AND METHODS 

The research was conducted at the Danish Institute 

for Fisheries and Marine Research (Charlottenlund). 

The copepod Acartia tonsa originated from a labora- 

tory culture at the Institute. The culture of the aloricate 

ciliate Strombidium sulcatum was donated by Dr. 

Catherine Bernard (EIelsingsr, Denmark) and origi- 

nated from a culture kept at the Station Zoologique in 

Villefranche-sur-Mer (France). 

Generation of turbulence in the laboratory and its 

qna~!ifica!icn. T~rbulence was gecerated $1 means cf 

oscillating stainless steel grids (diameter 13.2 cm; mesh 

size 1 cm; open area ca 70%). The amplitude of the 

stroke (12 cm) covered approximately the entire vol- 

ume of the experimental containers. A thyristor control 

allowed us to vary the stroke frequency and conse- 

quently the intensity of turbulence. The apparatus was 

identical to the one described by Kiarboe et al. (1990), 

except that a different grid was used. 

Turbulence (dissipation rates) as a function of grid 

stroke frequency was estimated by 2 independent 

methods. First, an ensemble approach was employed 

following berrboe et al. (1990). This approach con- 

sisted of quantifying the amount of work exerted by 

the grid in a stroke and provided an estimate of the 

rate of energy input into the water volume. The rate 

of kinetic energy input should equal the rate of turbu- 

lent energy dissipation. The second method consisted 

of determining fluid velocities using small suspended 

particles (Licopodium pollen; size: 25 pm equivalent 

spherical diameter) as tracers. A black and white 

CCD video camera hooked up to a VHS videocassette 

recorder and elther mounted on a stereomicroscope 

or equipped with a 105 mm macro lens was employed 

to record the motions. Recording frequency was 

50 frames S-'  The camera was provided with an 

adjustable electronic shutter which allowed us to vary 

the exposure time. The camera was focused in a spot 

located in the middle of the cylinder and at the mid- 

point between the wall and the shaft. The grid was 

run for 15 rnin at the selected speed before filming 

Tapes were analyzed on a frame-by-frame basis and 

the position of the particles on the screen drawn on 
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plastic sheets. For the lowest-speed particles, tracking 

was performed frame by frame and velocities com- 

puted at different intervals. For the fastest particles, 

velocities were determined by measuring the length 

of the streaks left by the particles and by relating 

them to the exposure time. The time resolution of the 

tracks was always at least 2 orders of magnitude 

higher than the corresponding frequency of grid oscil- 

lation. The tracks of the particles were digitized with 

a tablet hooked up to a computer, and velocity logs for 

the X and z components were used to estimate turbu- 

lent dissipation rates. 

Dissipation rates were estimated as the decay of tur- 

bulent kinetic energy (TKE) after the grid passed 

through the view area. Eight (6 at 35 strokes nlln-l) 

sections of the stroke were chosen for the determina- 

tion of particle velocities. About 100 particles were 

tracked in each section. 

Turbulent kinetic energy for a given section was 

computed as: 

1 " 
TKE = - c[ui2 + u;2 +v;'] 

2 n  1 

where v:, U',, and v> are  the fluctuating velocities (that 

is, after subtracting the mean) for the X, y and z com- 

ponents respectively, and n is the number of particles 

tracked in that section. The y component of velocity 

was assumed to equal the one for the X component, 

thus assuming horizontal isotropy of grid-generated 

turbulence. 

TKE varied with time since the passage of the grid 

according to the function 

TKE = a e-'l ( 2 )  

where t is time since the grid passage, and a and b are 

the function coefficients (see Table 1). 

The turbulent dissipation rate (E) is given by 

and the average turbulent dissipation rates (E) for each 

stroke frequency were estimated by integrating Eq. (3) 

through a full stroke and then dividing by the period of 

the stroke (T): 

Five stroke frequencies were examined (Table 1). 

The values obtained with the ensemble method were 

somewhat higher than those obtained by particle 

tracking, but the correspondence between estimates 

was good (Fig. 1A). The overestimation by the ensem- 

ble method can be explained as a result of the fact that 

it measures the mechanical energy input in the con- 

tainer. Some of this energy input dissipates a s  turbu- 

Table 1. Calibration of the set-up for generating turbulence, 
showing the coefficients for calculating turbulent kinetic 
energy (TKE, cm2 s - ~ )  as a function of time ( t ,  S)  through a 
stroke. The estimated values for the exponential fit (Eq. 2) at 
each stroke frequency (min-l) and the correlation coefficient 

(r) are shown 

Stroke frequency a b r 

1.3 0.107 0.404 0.918 

3 0.742 0.665 0.988 

10 5.74 1.705 0.967 

20 20.5 3.336 0.934 

35 29.1 3.770 0.999 

particle tracking 

a, 0 - - 0 energy input 
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10  100 

Grid frequency 
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Fig 1. (A) Plot of the estimated rate of energy input and the 
estunated average dissipat~on rate (from particle tracking) at 
the 5 grid stroke frequencies examined. (B)  Welghted dissipa- 
tion rate as a function of gnd  stroke frequency (see text for 
details). Regression line shown. The equation f~t ted was E = 

0.00085 X ~re~uency".""" r = 0.992 
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lence, but a fraction would be expected to be 'lost' 

through the stirring device and walls of the container. 

Particle encounter rates due to turbulent fluid motion 

scale with the dissipation rate raised to the power of 

0.33 (Ki~rboe & Saiz 1995). Consequently, we com- 

puted a weighted-average dissipation rate (i) from the 

particle tracking data as follows: 

Fig. 1B shows the relation between the weighted dis- 

sipation rates and stroke frequency. Dissipation rates 

predicted from this relation were used in subsequent 

calculations. 

Experimental design. To examine the effect of tur- 

bulence on feeding rates, experiments must be con- 

ducted well below saturating food concentrations (see 

Saiz et al. 1992). While there was enough information 

in the literature to determine an appropriate range of 

limiting food concentrations for Acartia tonsa fed Tha- 

lassiosira weissflogii (e.g. Paffenhofer & Stearns 1988, 

Saiz et al. 1993), no such information was available for 

d. locsa feeding cn Strornbidicn: sulcatum. Thrrefcrc 

we first determined the functional response of A. tonsa 

feeding on this ciliate in calm water. These experi- 

ments were run at a broad range of food concentra- 

tions, ranging from less than 1 cil. ml-' to ca 130 cil. 

ml-'. Incubations were conducted in 1.20 1 screw-cap 

bottles. The other experimental procedures were the 

same as those followed for the turbulence experiments 

(see below). 

The experimental design for the turbulence experi- 

ments consisted of 1 experimental factor, turbulence 

intensity, tested at 5 levels and contrasted to a control 

situation (calm water). The 5 intensities of turbulence 

selected (see Table 2 for energy dissipation rates esti- 

mated for each level) ranged from realistic values for 

coastal and shelf waters to extremely high values (E ca 

10' cm2 s - ~ ) ,  probably experienced only occasionally, 

if ever, in the field (Granata & Dickey 1991, MacKenzie 

& Leggett 1991). 

As experimental containers we  used Plexiglas cylin- 

ders for the stirred condition (i.d. 14 cm; effective vol- 

Table 2. Estimated weighted dissipation rates for the different 
experimental treatments 

Stroke frequency Dissipation rate 
(min") (cm2 S -3) 

1.7 4.0 X 10' 

3 2.3 X 10-> 

10 8.6 X 10' ' 
20 6.9 X 10" 

35 3.7 X 10' 

ume 2.3 1). As a control (calm condition), parallel 

screw-cap bottles (2.3 1) were incubated on a slowly 

rotating wheel (end-over-end; 0.2 rpm). Care was 

taken to avoid bubbles inside the rotating bottles. A 

well-sealed constant-speed rotating bottle does not 

induce internal motion of the water after an initial 

spin-up period (Jackson 1994). Previous experiments 

using Thalassiosira weissflogii as prey showed that 

feeding rates in slowly rotating bottles did not differ 

from those of animals incubated in still containers 

(stirred every 5 h to ensure homogeneous suspensions; 

ANOVA test, p > 0.1). 

Three independent experiments were conducted at  

each turbulence intensity. Each experiment consisted 

of 4 replicates in turbulence and 4 in still water. Four 

additional containers without copepods were run at 

each condition to correct for growth of prey. 

Ciliate experiments. Ciliates were grown on bacteria 

(in wheat-grain medium) in ddrkness a1 room tempera- 

ture. To prepare the experimental suspensions, sub- 

samples of the stock cultures were preserved with Lu- 

gol's solution, filtered onto 2 or 5 pm membrane filters 

and ccuztcd under a stcrecmicrcsccpc. The stock czl- 

ture was then diluted with 0.2 pm filtered sea water (with 

EDTA added to enhance survival; see Jonsson Pr Tiselius 

1990) to the desired concentration. As a general proce- 

dure, a small amount of ciliate medium (ca 150 ml) pre- 

viously sieved through a 5 pm mesh was added to the 

batch suspension of ciliates to ensure the presence of 

bacteria in the water during the experiments. 

Copepods were sorted the day prior to the experi- 

ment and conditioned until the experiment at  a satu- 

rating concentration of Thalassiosira weissflogii (above 

1.5 ppm) in 1.2 1 screw-cap bottles fixed on a turning 

wheel (0.2 rpm). This procedure ensured some homo- 

geneity in the previous short-term feeding history of 

the copepods. The acclimated copepods were collected 

on a submerged sieve and transferred to the experi- 

mental containers (8 to 23 adult females per container). 

Two initial 1 1 samples were preserved in 1 % Lugol's 

solution. The experiments were conducted in darkness 

at 18 k 1°C. At the end of the experiments (ca 24 h), 1 1 

samples were taken from each experimental container 

and preserved in Lugol's solution. The remaining 

water was sieved and the number and condition (alive 

or dead) of the copepods noted. The end-of-experi- 

ment Lug01 samples were also sieved (180 pm) in order 

to count the copepods in the preserved samples. Mor- 

tality of these copepods was estimated from the mor- 

tality observed in the unpreserved samples. Ciliate 

samples were processed and counted as described 

above. At least ca 300 cells per sample were counted in 

several transects. If this was not possible or if the cells 

were not homogeneously distributed on the filter, all 

cells were counted. 
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Algal experiments. The general procedures were 

similar to those mentioned above, except that cope- 

pods were starved for ca 20 h prior to experiments. The 

number of copepods per container was 27 to 35. Algal 

concentrations were estimated as biovolume (ppm or 

mm3 I - ' )  using an Elzone partlcle counter fitted with a 

120 pm orifice tube. Here the total number and sur- 

vival of copepods were checked at  the end of the 

experiments. 

RESULTS 

Ciliate concentration (cells m l . ' )  

Functional response of Acartia tonsa 

feeding on ciliates 

The calm water functional responses of ingestion and 

B clearance rates to the concentration of ciliates are shown 

in Fig. 2A, B. The ingestion rate increased with ciliate 

concentration and became saturated at concentrations 

above 20 cil, ml-'. Accordingly, the clearance rate de-  

chnes with increasing prey concentration. This response 

resembles a Holling type I1 response (Holling 1959) and 

we thus fitted Holling's disk equation to the data: 

and 

Ciliate concentration (cells m l . ' )  where I is the ingestion rate (cil. cop.-' d- l ) ,  F is the 

clearance rate (m1 cop.-'  d- l ) ,  P is the prey concentra- 
Fig. 2. (A) Ingestion rate of Acartia tonsa fed  the aloncate 

tion (ell, m l - ~ ) ,  a is the rate of prey dis- 
ciliate Strombidium sulcatum In calm water. The line corre- 

sponds to Hollina tvDe I1 ( E a .  6) fit to the data (r  = 0.892). The cOvery' Or maximum 'learance rate at  low food 'On- < . .  . . .  
3'values at the hlghest food concentration were  not included centration (m1 cop.-'  d-'1, and b is the handling time 
because they weighted too much in the regression and pro- (d cil.-'). The fitted parameters (see legend of Fig. 2) 
vided unrealistic parameter values. The fitted parameters suggest a m a x ~ u m  calm.water clearance rate (a) of 
were a = 137 5 and b = 2.45 X 10-4 (B) Clearance rate of A 

tonsa fed Strombidium sulcatum In calm water The Line cor- 
between 137 (Eq. 6) and 183 (Eq. 7) m1 d - ' ,  and a max- 

responds to the Hollina type I1 (Ea .  71 fit to the data f r =  0 7241. imum ingestion rate (b - ' )  of between 3723 (Eq. 6, and - . A  ~ A 

The fitted parameters were a = 183 2 and b = 2 69 X 10-4 ' 4080 (Eq. 7) cil. cop.-' d - '  

Average food concentrations, clearance and inges- 

tion rates were computed as in Frost (1972). 

Although all the experiments regarding turbulence 

were conducted at the same initial ciliate concentra- 

tion (4 cells ml-l, below saturation; see 'Results'), 

there were differences in the actual average food con- 

centrations. This was due to differences in feeding 

rates between treatments and to differences in the 

growth rate of ciliates. To solve this problem, the 

number of copepods in the experimental containers 

was adjusted to allow similar decreases in the food 

concentration. 

Effect of turbulence on Acartia tonsa clearance rates 

Clearance of ciliates 

We examined the effect of turbulence at ciliate con- 

centrations < 5  ml-', which was well below the calm- 

water saturating concentration (Fig. 2A). Below this 

concentration the clearance rate in calm water was 

independent of food concentration (Fig. 3A, r2 = 0.02, 

p > 0.2) and averaged 182 k 7.6 (SE) m1 d- l ,  close to the 

estimate of maximum clearance rate from the Holling 

fit mentioned above. 
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Fig. 3B, C shows the relationship between clearance 

rate and ciliate concentration at the different turbu- 

lence intensities tested. Two effects of turbulence on 

clearance rate were seen: (1) at all turbulence intensi- 

ties clearance decreased with increasing food concen- 

tration, and (2) at all turbulence intensities maximum 

clearance rates at low food concentrations were higher 

than in calm water. Both the slopes and the intercepts 

of the linear regressions of clearance vs food concen- 

tration differed among the 5 treatments (covariance 

analysis, p < 0.001 for both slopes and intercepts). 

1.7 strokes min-' 

3 strokes rnin-' 

m @  b 

0. 

m 

Table 3. Comparison of maximum observed clearance rates 

(at 1 cil. ml- l )  and maxlmum pred~cted clearance rates (P,  
from the model of Klarboe & Saiz 1995) of Acartia tonsa feed- 

ing on Strombidium sulcatum at different turbulence inten- 

sities. See text for further explanation 

Fig 3. (A)  Clearance rate of Acartia tonsa fed the aloricate clhate 
Strornbidi~lm sulcaturn in calm water at food concentrations < 5  cil. 

ml-l. Data from both the functional response experiments and the con- 
trol (calm) treatments of the turbulence experiments have been 

included. The one very high value between 1 and 2 cil. ml-l was not 

included in the analyses. (B) Clearance rate (F) of A. tonsa fed S, sul- 

catum in turbulent water at food concentrations (P) < 5  ciliates ml-l. 

Regression lines not shown. For 1.7 strokes min - l ,  F =  787.8 - 223 3P, 
r2 = 0.684; for 3 strokes min-l. F= 1027.8 - 313.OP, r2 = 0.653. (C) Clear- 

ance rate of A. tonsa ted S. sulcatum in turbuient water at  food con- 
centrations < 5  ciliates ml-' Regression lines not shown. The very high 

value at 2 ciliates ml-' was not included in the analyses. For 10 strokes 

min-', F = 475.3 - 88.OP, r2 = 0 254, for 20 strokes mm-', F = 428 4 - 

110.9P, r2 = 0 694, for 35 strokes min-l, F = 355.1 - 86.1P, r2 = 0.520 

D~ss~pat ion rate 

(cm2 S-') 

Max. clearance 

+ 95 % C1 (cm' d - ' )  

The negative relation between Acartia tonsa clear- 

ance rates and prey concentration in turbulent water 

suggests that even at these low prey concentrations 

ingestion approaches saturation due to higher en- 

counter rates. The copepods appear to 'see' more prey 

in turbulent water due to enhanced encounter rates. 

Maximum clearance rates at each turbulence inten- 

sity were estimated as the predicted clearance rate at 

1 cil. ml-' from the linear regressions (Table 3). These 

are conservative estimates of maximum clearances 

because clearance at concentrations < l  cil. ml-l, 

where we lack observations, might have been higher. 

At all turbulence intensities maximum clearance rates 

were higher than that obtained in calm water (Table 3).  

It is noticeable that there appears to be a dome-shaped 

relationship between maximum clearance rates and 

turbulence intensities. Maximum clearance peaked at 

3 strokes min.', reaching values nearly 4 times higher 

than the observed ones in calm water, and decreased 

at both higher and lower turbulence ~ntensities. 

Clearance of diatoms 

The effect of turbulence on the rate at which Acartia 

tonsa cleared Thalassiosira weissflogii at food concen- 
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Table 4.  Comparison of pooled maximum clearance rates of 
Acartia tonsa feeding on Thalassiosira weissflogii at different 
turbulence intensities (low: 1 0 - ~  and 10-2 cm2 S-" high: from 
10-' to 10' cm%-". Maximum clearance rates are  estimated 

from the regressions between clearance rate and food concen- 
trat~on (data shown in Fig. 6)  at afood concentration of 0.2 ppm 

Turbulence intensity Max. clearance rates * C1 
(m1 cop.-' d.') 

Calm 76 + 5.4 

Low 68 * 9.3 
High 43 * 8.9 

I 

m 
a, - 
0 0 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Diatom concentration (mm3 I- l )  
trations below 0.6 ppm was examined; this is below the 

calm-water saturating concentration (Paffenhofer & 

Stearns 1988, Saiz et al. 1993). Unlike the clearance 

rates on ciliates, no positive effects of turbulence were 

found for diatoms (Figs. 4A to C). For statistical 

purposes we pooled the experiments together into 

3 groups: zero (calm water), low (experiments run at 

1.7 and 3.0 strokes min-l) and high (experiments per- 

formed at 10, 20 and 35 strokes min-') turbulence. 

Covariance analysis performed on log-transformed 

data (to correct for heteroscedasticity in variance) 

showed that although there were no differences in the 

slopes, the intensity of turbulence had a significant 

negative effect on the intercepts of the regressions 

between clearance rate and food concentration (p < 

0.0001). 

Maximum clearance rates were estimated at a food 

concentration of 0.2 ppm (Table 4). At low turbulence 

maximum clearance rates were similar to those mea- 

sured in calm water, while at higher turbulence inten- 

sities clearance rates were significantly lower than 

those measured in calm and low turbulence water. 

o 3 strokes min-' 

0.2 0.3 0.4 0 5 0 6 0.7 0.8 

Diatom concentration (mm3 I ' l )  

l 0 strokes rnin-' 
0 20 strokes min-' 

DISCUSSION 

We found very different responses of Acartia tonsa 

to turbulent fluid motion depending on the feeding 

mode exhibited. Feeding rates were substantially 

increased for ambush-feeding A. tonsa at moderate 

intensities of turbulence ( E  = to cm2 s - ~ ;  up to 

293% enhancement), while at these same intensities 

clearance rates for suspension-feeding copepods were 

unaffected. At the highest intensities of turbulence ( E  = 

10-' to 10' cm2 s - ~ )  A. tonsa experienced declining 

clearance rates in both feeding modes. At moderate 

intensities of turbulence these observations agree with 

the predictions of the encounter rate model of Kierrboe 

& Saiz (1995), while the response at higher intensities 

can be explained by taking into account potential 

changes in capture success and reaction distance of 

the copepod. Below we first discuss the effects on both 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Diatom concentration (mm3 I- l )  

Fig. 4 (A)  Clearance rate of Acartia tonsa f e e d ~ n g  on the 
diatom Thalassiosira weissflogii in calm water. ( B  & C)  The 

same as ( A ) ,  but in turbulent water 

feeding modes in further detail, and subsequently con- 

sider some of their possible ecological implications. 

Ambush feeding mode 

The encounter rate model of Kiorboe & Saiz (1995) 

predicts that the (maximum) clearance rate (P )  of a 
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passively sinking ambush feeding Acartia tonsa with a 

100% capture efficiency (i.e. all encountered prey 

items are captured) in calm water is: 

where r, is the reactive distance (up to 0.1 cm for cili- 

ates; Jonsson & Tiselius 1990), r2 is the radius of the 

prey (Strombidium sulcatum, 15 X cm), and v1 is 

the sinking velocity of the predator (0.069 cm S-'; Jon- 

sson & Tiselius 1990). This calculation ignores encoun- 

ters due to sinking and motility of the ciliates. The 

sinking velocity of S. sulcaturn is ca 0.002 cm S-'  and at 

bacterial concentrations exceeding 106 ml-' the ciliate 

exhibits a positive population growth and has negligi- 

ble motility (Fenchel & Jonsson 1988). Since we added 

bacteria to our experimental containers, and because 

the ciliates were growing during incubations in terms 

of both numbers and of biomass, this is a reasonable 

assumption. 

For turbulent water the predicted clearance rate is: 

where E is :he dissipation rate. 

Table 3 compares clearance rates calculated from 

Eqs. (8) & (9) with the clearance rates observed at low 

prey concentration (1 cil. ml-l). In calm water and at 

1.7 and 3.0 strokes min ' there is a very good corre- 

spondence between observed and predicted values. 

This correspondence suggests that the capture effi- 

ciency is actually close to loo%, as was also found for 

Acartia tonsa feeding on a related ciliate species 

(Strombidium reticulaturn) by Jonsson & Tiselius 

(1990). It is also consistent with the observation that S. 

sulcatum seems to have a weak escape response to 

predators (see below). However, at higher turbulence 

intensities, predicted values considerably exceed 

observed values. The same pattern is evident if we 

replot the functional response, but replace the prey 

density (P) with apparent prey concentration P(PE/Po) 

(Fig. 5). PE/Po is the ratio by which prey encounter rate 

in turbulent water is increased over that in calm water 

according to the model, and P(PE/Po) is thus the prey 

density that the copepod actually perceives. The func- 

tional responses of ingestion rate to apparent prey 

concentration at both 1.7 and 3.0 strokes min-' are 

now well explained by the calm-water functional 

response curve (Fig. 5). Thus, the encounter rate 

model accurately predicts feeding rates of A. tonsa at 

moderate intensities of turbulence. At higher turbu- 

lence intensities, however, observed ingestion rates 

tend to be well below the functional response values 

in calm water. 

The explanation for this discrepancy between the 

model predictions and the observed clearance rates at 

high turbulence levels might be a change in capture 

1.7 strokes rnin-' 
3 strokes rnin-' 
10 strokes rnin-' 
20 strokes rnin-' 

I 35 strokes rnin-' 

l o O o  
0 20 4 0 60 80 100 

Apparent ciliate concentration 

(cells m l' ') 

Fig. 5. Ingestion rate of Acartia tonsa fed the aloncate ciliate 
Strombidium sulcatum as a function of the apparent food con- 
centration (taking into account the increased encounter rate 
in turbulent water). The line is the Holling type I1 fit in calm 

water shown in Fig. 2A 

efficiency and/or reaction distance in the presence of 

turbulence, 2 variables assumed to be constant in the 

model presented by Ki~rboe & Saiz (1995). Both of 

these may, however, be negatively influenced by tur- 

bulence (Saiz et al. 1992). In the following we examine 

the dependency of capture success and reaction dis- 

tance on turbulence. 

Due to turbulence, encountered prey may be ad- 

vected out of the copepod's reaction sphere faster than 

the copepod can react (Granata & Dickey 1991, Mac- 

Kenzie et al. 1994). Kiarboe & Saiz (1995) provided an 

expression (modified from MacKenzie et al. 1994) for 

the likelihood that encountered prey are advected 

away prior to capture. This likelihood is a function of 

the turbulent velocity, of the predator's reaction dis- 

tance and of its reaction time. 

By assuming a reaction time of Acartia tonsa to cili- 

ates of 0.1 s (Jonsson & Tiselius 1990) and a reaction 

distance of 0.1 cm we calculated the capture success 

(6) and corresponding clearance rates (6P) as a function 

of turbulence intensity using the model of Kisrboe 

& Saiz (1995) (Table 5). Only at  very high intensities 

of turbulence is the capture success significantly 

affected. The estimated decline in capture success 

with increasing turbulence is insufficient to account for 

the observed variation in clearance rate. The analysis 

demonstrates, however, that at typical intensities of 

turbulence in the ocean (E c 10-' cm2 s - ~ )  capture suc- 

cess is not depressed much due to prey being advected 

out of the reaction sphere of the copepod (6 > 96 %). 

We next examine the potential effect of turbulence 

on reaction distance. Acartia tonsa is believed to per- 
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ceive the hydromechanical signal generated by a 

swimming prey by means of mechanoreceptors on the 

first antennae (Jonsson & Tiselius 1990). Turbulence 

may interfere with this hydromechanical signal, 

thereby reducing the effective reaction distance. Kisr- 

boe & Saiz (1995) modeled the relationship between 

reaction distance (r) and energy dissipation rate (E) and 

found 

where ro is the calm-water reaction distance, S is the 

signal strength, K, is the critical signal-to-noise ratio, 

and b is a proportionality constant. 

Empirical estimates of reaction distances were 

obtained by equating the observed clearance with P 
and solving for reaction distance (rl) in Eq.  (9). The 

resulting estimates of reaction distance as a function 

of E have been plotted in Fig. 6, which also shows the 

fit of Eq. (10) to the data. Because the observed rela- 

tionship has the form predicted by Eq. (IO), this sug- 

gests that a large fraction of the unexplained varia- 

tion in clearance rate with turbulence intensity can in 

fact be accounted for by changes in the reaction dis- 

tance. 

One aspect that we have not considered in the dis- 

cussion above is the behaviour of the prey. If turbu- 

lence negatively affected the ability of the prey to 

escape, the clearance rates would be higher. This does 

not seem to be the case in our experiments because 

Strombidium sulcatum has a weak escape response 

(no jumping ability; Jonsson & Tiselius 1990, Bernard 

pers, comm.). Also, the good agreement between the 

model predictions and the experimental data at low 

turbulence suggests a high capture success and conse- 

quently a low escaping ability. 

Table 5. Acartia tonsa fed the ciliate Strornbidium sulcatum. 

Maximum observed clearance rates (at 1 cil. ml-l), capture 
success (6) and corrected maximum predicted clearance rate 
(hp). 6 is calculated by assuming a constant reaction distance 
of 0.1 cm and a reaction time of 0.1 S, and employing the 
model of MacKenzie et al. (1994) as modified by Kierboe & 

Saiz (1995). The corrected clearance rate is the product of 
capture success (6) and the maximum clearance rate (p) pre- 

dicted from the model of Kisrboe & Saiz (1995) 

Dissipation rate Obs. clearance 6 
(cm2 s - ~ )  2 95 % C1 (cm3 d-l)  

6 P 
(cm3 d") 

0 182 k 7.6 1 .O 193 

4.0 X I O - ~  565 k 35.1 0.98 467 

2.3 X 10-2 715 k 63.3 0.96 673 

8.6 X 10-' 315 k 51.7 0.86 1627 

6.9 X 10' 318 k 27.3 0.68 2445 

3.7 X 10' 269 ? 31.9 0.33 2027 

Diss~pation rate, cm2 s 

Fig 6. Estimated change in reaction distance of Acartia tonsa 
to the ciliate Strombidiurn sulcatum as a function of turbu- 
lence dissipation rate assuming constant capture efficiency. 
The hne is the least-squares fit of Eq. (10) to the data. See text 

for further explanation 

Suspension-feeding mode 

The clearance rate of a suspension-feeding copepod 

in calm and turbulent water can also be predicted by 

Eqs. (8) & (g), but the parameters rl and u must be 

interpeted somewhat differently (Ki~rboe & Saiz 1995). 

When a suspension-feeding copepod creates a feeding 

current, a large volume of water is scanned by its feed- 

ing appendages (Strickler 1985). However, only a frac- 

tion of the water in the feeding current passes through 

the volume (the capture volume) that can be reached 

by the food-collecting feeding appendages (in Acartia 

tonsa the second maxillae; Paffenhofer & Stearns 

1988). Many suspension-feeding copepods are able to 

detect phytoplankton cells at a distance as they are 

approaching in the accelerating feeding current (i.e. 

before making physical contact). On perceiving the 

cells the copepods reroute them into the water that 

passes through the capture volume, thus increasing 

the effective volume of water scanned. Only particles 

passing through this volume can be captured. Within 

this volume parcels of water are squeezed between the 

feeding appendages, and the particles are thereby 

strained (Strickler 1985). 

Acartia tonsa appears to lack the ability to reroute 

cells (Paffenhofer & Stearns 1988). Furthermore, it is 

not known whether A. tonsa is able to select those 

parcels of water within the capture volume that con- 

tain particles, or whether the straining motions of the 

maxillipeds are simple, automatic and with no behav- 

ioural response. In the latter case turbulence will not 

increase the particle capture rate and, hence, clear- 

ance and ingestion rates of the copepods. I f ,  however, 

particles within the capture volume can be sensed 

individually (as in other copepods), the functional reac- 

tion distance (r,) is given by the length of the 2nd max- 
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illae, and the relevant current veloclty is that at dis- 

tance r, from the copepod (Ki~rboe & Saiz 1995). The 

2nd maxilla of A. tonsa measures about 0.02 cm, and 

the feeding current velocity at  this distance from the 

copepod is ca 0.8 cm S - '  (Jonsson & Tiselius 1990). The 

diameter of the diatom Thalassiosira weissflogii is 

about 12 X 10'4 cm. Inserting these values in Eq. (8) 

yields a calm-water clearance rate of 92 m1 d-l. The 

observed calm-water clearance rates of 60 to 80 m1 d- '  

at low food concentrations are close to this value. The 

predicted effect of turbulence in this scenario is small; 

inserting the same values in Eq. (9) yields 99 and 

104 m1 d-' at 1.7 and 3.0 strokes min-' ( E  = 4 X 10-" 

and 2.3 X 10-2 cm2 s - ~ ) ,  corresponding to 7 and 13% 

increases in clearance rates, respectively. Given the 

variability in our measurements, we would not have 

been able to detect such small enhancements. In simi- 

lar experiments with A. tonsa, Saiz et  al. (1992) found a 

statistically significant increase of ca 26% in clearance 

rates at  dissipation rates >10-' cm2 s-3 (Alcaraz pers. 

comm.); this is also consistent with the model predic- 

tion of 21 % at such a high dissipation rate. Thus, both 

inode: predictions and observatioix suggest that :he 

effect of turbulence on clearance and ingestion rates in 

the suspension feeding mode is small at intensities typ- 

ical of the habitats occupied by A. tonsa, and about an 

order of magnitude less than the effect on these rates 

in the ambush feeding mode. 

At higher intensities of turbulence our observations 

show a negative influence on clearance rates (Table 4),  

while Eq. (9) predicts increases of 45, 89 and 156% 

respectively at 10, 20 and 35 strokes min-'. We suggest 

that this negative influence is due to ambient fluid 

motion interfering with or destroying the feeding cur- 

rent. The maximum current shear generated by sus- 

pension-feeding Acartia tonsa is about 10 s-' (Jonsson 

& Tiselius 1990; see also Kiorboe & Saiz 1995). The 

negative effects of turbulence in our experiments 

became evident at 10 strokes min-' (Fig. 4). The fluid 

shear generated at  this turbulence intensity can be cal- 

culated from the energy dissipation rate as 

where v is the kinematic viscosity (ca 10-2 cm2 S - ' ) .  

Thus, at 10 strokes min-l the ambient fluid shear is 

9 S-'. This suggests that when the ambient fluid shear 

approaches the shear generated by the copepod's 

feeding current, the latter is being disturbed or eroded. 

Note, however, that such high dissipation rates rarely, 

if ever, occur in the habitats occupied by A ,  tonsa. 

Implications for copepod feeding rates 

and prey selection 

In coastal areas, where Acartia tonsa occurs, typical 

intensities of turbulence are on the order of I O - ~  to 10-2 

cm2 s-3 (Granata & Dickey 1991). At about this level of 

turbulence we found the highest turbulence-enhanced 

feeding rates for A. tonsa in the ambush feeding mode. 

Thus, ambush-feeding A. tonsa appear to be well 

adapted to the ambient levels of turbulent fluid motion 

experienced in their habitat. 

The observed substantial enhancement of feeding rate 

(a factor of ca 4) has obvious implications for the perfor- 

mance of Acartja tonsa in the sea. Previously reported 

copepod clearance and ingestion rates on ciliates (see re- 

view by Stoecker & Capuzzo 1990) are likely to have se- 

verely underestimated performance in the field because 

they were estimated in calm water conditions. The graz- 

ing impact of copepods on ciliate (microplankton) com- 

munities in the field probably will have to be reconsid- 

ered in the light of the significant enhancement of 

predation rates by copepods found in our study at com- 

mon turbulence intensities. For the suspension feeding 

mode, however, realistic levels of ambient turbulent fluid 

motion have relatively little effect on feeding rates, and 

deleterious effects only occur at turbulence intensities 

exceeding typical field intensities. 

The differential effect of small-scale turbulefice on 

suspension and predatory feeding has implications for 

optimal foraging and prey selection in Acartia tonsa 

and other copepods that can switch between ambush 

and suspension feeding modes ( e . g ,  several species of 

Acartia and Centropages; Tiselius & Jonsson 1990). 

The dietary composition of planktonic copepods is cur- 

rently under debate, and the classical view that cope- 

pods feed predominantly on diatoms has recently been 

challenged (e.g. Gifford 1993, Kleppel 1993). Gut con- 

tent analyses have shown that animal prey frequently 

dominates the diet of planktonic copepods, in particular 

when the concentration of diatoms is relatively low and 

the abundance of ciliates and other microzooplankton 

is relatively high (reviewed in Kiorboe & Nielsen 1994). 

Diatoms and other non-motile phytoplankton prey can 

only be captured in the suspension feeding mode, 

since they cannot be perceived by mechanoreceptors 

and because chemical perception requires a feeding 

current (Strickler 1985). Conversely, capture of ciliates 

- and likely other microzooplankton prey - is proba- 

bly very inefficient in the suspension feeding mode, 

because the prey may be able to sense and escape the 

feeding current. We suggest, therefore, that microzoo- 

plankton prey are only efficiently captured in the 

ambush feeding mode. Thus, a switch in feeding mode 

implies a shift in prey selection. Depending on the rel- 

ative concentrations of diatoms and ciliates in the envi- 

ronment, A. tonsa should 'choose' the feeding mode 

that results in the highest carbon gain or ingestion rate. 

In Fig. 7 A  we compare the functional responses In 

ingestion rate to the concentration of Strombidium sul- 

catum and Thalassiosira weissflogii respectively (the 
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latter adapted from Saiz et al. 1993) in calm and turbu- 

lent water (E = 1 0 - ~  cm2 s - ~ ) .  Fig. ?B is based on the 

functional responses in Fig. ?A and shows the concen- 

trations of ciliates and diatoms at which the respective 

ingestion rates are equal. Above the line, the ingestion 

rate on ciliates exceeds that on diatoms, and optimal 

foraging theory predicts a switch to ambush feeding 

and a diet consisting of ciliates. At concentrations of 

ciliates and diatoms that fall below the line we would 

conversely predict suspension feeding and a diet com- 

posed of diatoms. The effect of turbulence is to shift the 

borderline to the right, i.e. to increase the range of rel- 

ative concentrations where we predict ambush feeding 

and ciliate diets. Thus, we predict that the effect of tur- 

bulence is to change prey selection. The exact position 

of the lines of course depends on the exact shape of the 

functional responses, which may differ between prey 

items, but the effect of this difference would be mar- 

ginal in this double logarithmic representation. 

As an illustrative example we also plotted (Fig. ?B) 

observed concentrations of ciliates vs concentrations of 

diatoms as recorded during a study covering a com- 

plete seasonal cycle at a shallow (30 m) coastal site in 

the Kattegat (56" 15' N, 12" 00' E) (Kisrboe & Nielsen 

1994). Assuming calm-water functional responses, one 

would predict that Acartia tonsa would suspension- 

feed on almost all observation days, and have a diet 

composed mainly of diatoms (and other phytoplank- 

ton). However, assuming a turbulence intensity of 

10-' cm2 s-3 the prediction changes: during most of the 

year, when diatom concentrations are relatively low, A. 

tonsa is expected to feed mainly on ciliates; only dur- 

ing periods of high diatom abundance (the spring 

bloom) are the copepods expected to switch to a 

diatom diet. From independent evidence (functional 

relationships between egg production rates and ambi- 

ent concentrations of ciliates and large phytoplankton) 

Ki~rboe & Nielsen (1994) argued that the latter was in 

fact the case. Thus, the effect of turbulence may 

explain the inferred seasonal variation in diet composi- 

tion. For the same study site, Nielsen & Kiarrboe (1994) 

found that the populations of ciliates were always 

growing at maximum rates and, thus, were never food 

limited. They also showed that the CO-occurring cope- 

pod populations had sufficiently high clearance rates 

to potentially control the populations of ciliates 

throughout the year. The latter point is reinforced by 

the higher clearance rates in turbulent water observed 

in the present study. In spite of this, Nielsen & Kiarboe 

(1994) observed that ciliate abundance largely fol- 

lowed the seasonal variation in concentration of phyto- 

plankton. Fig. ?B suggests that during periods of high 

diatom concentrations, the copepods switch to a 

diatom diet, thus allowing the ciliate populations to 

escape predator control and to increase in abundance. 

- Thalassiosira, calm 
Thalass~osira, turbulent 

0 1 1 l I I 

0 100 200 300 400 500 600 

Food concentration (pg  C l ' ' )  

calm l u r b  

I 

I 

0.1 l , 
I 

0.1 1 10 100 1000 

Diatom concentration (pgC I") 

Fig. 7. (A) Ingestion rate of Acartia tonsa fed either diatoms 
Thalassioslra weissflogii or ciliates Strombidium sulcatum in 
calm and turbulent (E = 10-2 cm2 s - ~ )  water The ciliate calm- 
water curve is the Holling fit from Fig. 2A. The diatom calm- 
water curve is a Holling fit to data in Saiz et al. (1993). The 
curves for the turbulent condition were generated by increas- 
ing the 'instantaneous rate of prey discovery' (a in Eq. 6) as 
predicted by the model of Kiarboe & Saiz (1995). For S. sulca- 
turn an average cell volume of 14 663 pm3 was employed. A 
conversion factor of 0.12 X 10-= pg C pm-3 was used to convert 
cell volume to carbon for both 7. weissflogii and S. sulcatum. 
See further details in the text. (B) The lines indicate the con- 
centrations of diatoms 'T: weissflogll and ciliates S. sulcatum at 
which the ingestion rates of A. tonsa are the same on both 
diets. The continuous Line corresponds to calm water condi- 
tions, while the dashed line corresponds to a turbulence 

intensity of E = I O - ~  cm2 s - ~ .  The data points correspond to 
observed concentrations of diatoms and ciliates in the Katte- 

gat (Kinrboe & Nielsen 1994). See text for further details 

CONCLUSIONS 

This study has shown that ambush-feeding copepods 

substantially enhance their feeding rates in turbulent 

environments, while suspension-feeding copepods are 

only marginally affected at realistic intensities of tur- 

bulence. These results are in full agreement with the 

predictions of the model study of Kiarrboe & Saiz (1995). 

This differential response to turbulence by copepods 

exhibiting either predatory or suspension feeding 

behaviours has major implications for the extrapolation 
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of laboratory-measured feeding rates to the sea, for the 

performance and distribution of copepods in the sea, 

and for prey selection. The latter aspects need further 

verification, but testable hypotheses immediately 

emerge from the predictions made by Fig. ?B: the prey 

selection of Acartia tonsa offered a mixture of diatoms 

and ciliates should be directly dependent on the inten- 

sity of ambient turbulent fluid motion. We plan to 

examine this prediction in our future work. 
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