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METHODOLOGY

PredCRG: A computational method 
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by employing support vector machine 
with Laplace kernel
Prabina Kumar Meher1* , Ansuman Mohapatra2, Subhrajit Satpathy1, Anuj Sharma3, Isha Saini1, 

Sukanta Kumar Pradhan2 and Anil Rai1* 

Abstract 

Background: Circadian rhythms regulate several physiological and developmental processes of plants. Hence, the 

identification of genes with the underlying circadian rhythmic features is pivotal. Though computational methods 

have been developed for the identification of circadian genes, all these methods are based on gene expression 

datasets. In other words, we failed to search any sequence-based model, and that motivated us to deploy the present 

computational method to identify the proteins encoded by the circadian genes.

Results: Support vector machine (SVM) with seven kernels, i.e., linear, polynomial, radial, sigmoid, hyperbolic, Bes-

sel and Laplace was utilized for prediction by employing compositional, transitional and physico-chemical features. 

Higher accuracy of 62.48% was achieved with the Laplace kernel, following the fivefold cross- validation approach. 

The developed model further secured 62.96% accuracy with an independent dataset. The SVM also outperformed 

other state-of-art machine learning algorithms, i.e., Random Forest, Bagging, AdaBoost, XGBoost and LASSO. We also 

performed proteome-wide identification of circadian proteins in two cereal crops namely, Oryza sativa and Sorghum 

bicolor, followed by the functional annotation of the predicted circadian proteins with Gene Ontology (GO) terms.

Conclusions: To the best of our knowledge, this is the first computational method to identify the circadian genes 

with the sequence data. Based on the proposed method, we have developed an R-package PredCRG (https:// cran.r- 

proje ct. org/ web/ packa ges/ PredC RG/ index. html) for the scientific community for proteome-wide identification of 

circadian genes. The present study supplements the existing computational methods as well as wet-lab experiments 

for the recognition of circadian genes.
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Background
Rhythms of biological activity with a periodicity of 24 h 

are called circadian rhythms (CR) and are generated 

endogenously [1, 2]. �ere are molecular components 

with the underlying rhythmic features defining the cir-

cadian clock (CC). �e three components (input, output 

and oscillator) model of the CC is the widely adopted one 

[3]. In this model, the input connects the environmen-

tal cues to the core component oscillator and the output 

links the functions of the oscillator with different bio-

logical processes [4]. So far, the CR has been extensively 

investigated in Arabidopsis thaliana, and the same clock 
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mechanism has been extended to several dicot [5–8] and 

monocot [9, 10] plants as well.

�e roles of CR in respect of regulating different meta-

bolic pathways including carbon fixation and allocation 

of starch & sugar in leaf tissues have been reported in 

earlier studies [11, 12]. Anticipation of plants to environ-

mental fluctuations (on a daily basis) is facilitated by CC 

[13], where the daily timing of the biological process is 

organized to specific time of the day and night [11, 14, 

15] to increase the performance and reproductive fitness 

[16–18]. Including contribution to the agronomic traits 

of crops [19, 20], correct circadian regulations have been 

reported to enhance biomass accumulation, seed viabil-

ity and photosynthesis [21, 22]. �e roles of the circadian 

system in regulating plant response to different biotic 

and abiotic stresses have also been well studied [23, 24]. 

Plant growth and development related metabolisms are 

also regulated by CC, where it affects the quality and pro-

ductivity of crops by bringing changes in the metabolites 

[25, 26]. �e CC comprises several genes that form the 

transcriptional-translational feedback loops, resulting in 

rhythmic expression [11, 27]. �e CC genes are report-

edly involved in hormonal signaling [28, 29], growth and 

development of plant species [30, 31]. As reported in ear-

lier studies [32, 33], crop productivity can be enhanced 

by manipulating the CC, particularly through circadian 

up-regulation of photosynthetic carbon assimilation.

A plethora of computational methods such as COS-

OPT [34], Fisher’s G-test [35], HAYSTACK [36], JTK-

CYCLE [37], ARSER [38] and LSPR [39] have been 

developed for the identification of potential circadian 

genes using the gene expression data. A supervised learn-

ing approach ZeitZeiger [40] has also been developed 

for the identification of clock-associated genes from 

genome-wide gene expression data. In this study, we 

made an attempt to discriminate protein sequences asso-

ciated with the circadian rhythms from the proteins that 

are not involved in the circadian clock. �e motivations 

behind the present study are that (i) the existing compu-

tational methods use the genome-wide gene expression 

data for identifying the genes associated with the CC, 

(ii) identification of the circadian genes through wet-lab 

experiments require more time and resource, and (iii) 

no computational method based on the sequence (pro-

tein) data is available. In this study, we have employed 

the support vector machine with the Laplace kernel for 

discriminating circadian genes (CRGs) from non-CRGs 

by using the sequence dataset. We have also developed 

an R-package for easy prediction of CRGs by using the 

proteome-wide sequence data. �is package is unique 

and we anticipate that our computational model will sup-

plement the existing efforts for the identification of circa-

dian genes in plants.

Methods
Collection of protein sequences

�e protein sequences encoded by the experimentally 

validated oscillatory genes were collected from the Circa-

dian Gene Database (CGDB) [41]. In this comprehensive 

database, about 73,000 genes encompassing 68 animals, 

39 plants and 41 fungal species were available. A total 

of 12,041 protein sequences were retrieved from 9 plant 

species, i.e., A. thaliana (6981), Glycine max (4810), O. 

sativa (110), Zea mays (72), Hodeum vulgare (22), Arabi-

dopsis lyrata (21), Physcomitrella patens (10), Solanum 

tuberosum (10) and Triticum aestivum (5). �e 12,041 

sequences were used to build the positive dataset. Fur-

ther, 22,586 reviewed protein sequences of Viridi plan-

tae collected from the UniProt (https:// www. unipr ot. org) 

were used to construct the negative dataset. �e positive 

dataset thus comprised the protein sequences encoded 

by the circadian genes (CRG) and the negative dataset 

comprised the protein sequences encoded by other than 

the circadian genes (non-CRG). �e positive and nega-

tive datasets were also referred to as CRG and non-CRG 

classes, respectively.

Processing of positive and negative datasets

�e CD-HIT program [42] was employed to remove 

the sequences that were > 40% identical to any other 

sequences. In order to avoid the homologous bias in the 

prediction accuracy, both positive and negative datasets 

were subjected to homology reduction. After remov-

ing the redundant sequences, 8211 and 6371 sequences 

were obtained for the negative and positive datasets, 

respectively. �e sequences with residues B, J, O, U, X 

and Z were also excluded to avoid ambiguity for gen-

erating numeric features because these six letters do 

not stand for any of the amino acids that function as 

the building blocks of proteins. After removing such 

sequences, 8202 negative and 6370 positive sequences 

were retained for the analysis. It was also noticed that 

the lengths of the sequences in the positive dataset 

were highly heterogeneous (39–4218 residues). �us, 

the positive dataset was divided into four homogene-

ous subsets (P1, P2, P3 and P4) based on quartile values 

of the sequence length in order to improve the predic-

tion accuracy, where 39 ≤ P1 < 221 , 221 ≤ P2 < 363 , 

363 ≤ P3 < 538 and 538 ≤ P4 < 1001(Table 1). Since the 

sequences with > 1000 amino acids were detected as out-

liers (Fig.  1a), using such sequences may generate noisy 

feature vectors. Hence, the sequences with > 1000 resi-

dues were further excluded from the analysis. Similar to 

the positive set, four subsets (N1, N2, N3 and N4) were 

created from the negative dataset, where 43 ≤ N1 < 407 , 

407 ≤ N2 < 485 , 485 ≤ N3 < 607 and 607 ≤ N4 < 1001

(Table  1). In this way, we prepared four homogeneous 

https://www.uniprot.org
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sub-datasets, i.e., Q1 (P1, N1), Q2 (P2, N2), Q3 (P3, N3) 

and Q4 (P4, N4) instead of a single heterogeneous dataset 

(Table 2).

Generation of numeric features

For each protein sequence, we generated amino acid 

composition (AAC), ProtFP features [43], FASGAI fea-

tures [44], Cruciani properties [45], transitional prop-

erties [46, 47] and other physico-chemical properties 

(hydrophobicity, instability index, molecular weight and 

iso-electric point). �e AAC is one of the popular fea-

tures of protein sequences [48–51] which comprises a 

20-dimensional numeric vector of amino acid frequen-

cies. Given its simplicity and computational ease, the 

AAC is a well-performing feature set in terms of accuracy 

[51]. �e ProtFP descriptor comprises the first 8 princi-

pal components obtained from the principal component 

analysis of 58 AAindex [52] properties of 20 amino acids. 

Based on the ProtFP features, each sequence was trans-

formed into an 8-dimensional numeric feature vector. 

�e FASGAI is a set of 6 numeric descriptors that repre-

sent 6 different properties of protein sequences, i.e., bulky 

properties, hydrophobicity, compositional characteris-

tics, alpha and turn propensities, electronic properties 

and local flexibility. �e Cruciani properties comprise 3 

descriptors (polarity, hydrophobicity and H-bonding) 

that are based on the interaction of amino acids with dif-

ferent chemical groups. �e transitional features repre-

sent the frequencies of amino acid residues of one type 

followed by residues of other types. Pertaining to transi-

tional features, three types of residues for hydrophobicity 

(polar, neutral and hydrophobic), three types of residues 

corresponding to secondary structure (strand, helix and 

coil) and two types of residues for solvent accessibility 

(exposed and buried) were utilized. By using 8 types of 

residues, a total of 21 transitional descriptors were gener-

ated for each protein sequence. After combining all the 

feature sets, a total of 62 numeric features were obtained. 

A brief description about these features and the R-pack-

ages used to generate these features are provided in the 

Additional file 1: Table S1.

Prediction with support vector machine

Support vector machines (SVM) [53] have been widely 

and successfully employed in the field of bioinformatics 

[54–60], and hence we have utilized the SVM for pre-

diction in the present study. Binary SVM classifier was 

employed for the classification of CRG and non-CRG 

proteins. Let xi be the 62-dimensional numeric feature 

vector for the ith protein sequence, where i = 1, 2, …, N. 

Further, N1 and N2 are the respective number of protein 

sequences for the CRG and non-CRG classes such that 

N = N1 + N2. Also, let us denote yi as the class label for 

xi , where yi ∈{-1, 1} with 1 and -1 as the class labels for 

the CRG and non-CRG classes, respectively. �e decision 

function for the binary SVM classifier to classify a new 

observation vector x can be formulated as.

�e value of αi can be obtained by solving the convex 

quadratic programming

subjected to the constraint.

0≤αi ≤ C and 
∑N

i=1
αiyi = 0.

Here, C is the regularization parameter that controls 

the tradeoffs between margin and misclassification error, 

and b is the bias term. Choosing an appropriate kernel 

function in SVM is important because the kernel func-

tion maps the input dataset to a high-dimensional feature 

space where the observations of different classes are lin-

early separable. In this study, 7 different kernel functions 

K
(

xi, xj
)

 were utilized (Table 3). �e performances of the 

kernels were first evaluated with the default parameters 

(Additional file  2: Table  S2) by using a sample dataset. 

f (x) = sgn

{

N
∑

i=1

yiαiK (xi, x) + b

}

.

maximize

N∑

i=1

N∑

j=1

αiαjyiyjK (xi, xj)

Table 1 Summary statistics of the sequence length for positive 

and negative datasets

Based on the summary, both positive and negative datasets are divided into 

four sub datasets, where the length categories are minimum to 1st quartile, 

1st quartile to median, median to 3rd quartile and 3rd quartile to 1000 (amino 

acids)

Dataset Min 1st Quartile Median 3rd quartile Max

Positive 39 221 363 539 4218

Negative 43 256 407 607 5400

(See figure on next page.)

Fig. 1 a Box plot of the sequence lengths of the positive dataset, where it can be seen that sequence length with more than 1000 amino acids 

are outlying observations. Thus, the maximum sequence length considered is 1000 amino acids. b Overall accuracy for the four homogeneous 

sub-datasets and the heterogeneous full dataset. It is seen that accuracies are higher for the sub-datasets with homogeneous sequence length 

as compared to dataset with highly heterogeneous sequence length. c Performance metrics for seven different kernel functions with respect 

to classification of circadian and non-circadian proteins using support vector machine. Among all the kernel functions, Laplace, linear and radial 

kernels are found to be superior with regard to overall classification accuracy
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�en, the kernel functions with higher accuracies were 

chosen for the subsequent analysis.

Cross-validation approach

In the present study, we employed fivefold cross-valida-

tion to control the bias-variance trade-off [61] and assess 

the performance of the SVM classification models. To 

perform the fivefold cross-validation, observations of 

CRG and non-CRG classes were randomly partitioned 

into 5 equal-sized subsets each. In each fold of the cross-

validation, one randomly selected subset from each 

CRG and non-CRG classes were used as test set and the 

remaining four subsets of CRG and non-CRG classes 

together were used as training set. �e classification was 

repeated five times with different training and test sets in 

each fold. �e accuracy was computed by taking an aver-

age over all the five test sets.

Prediction with balanced dataset

In all the four sub-datasets (Q1, Q2, Q3, Q4), the size of 

the negative set was higher than that of the positive set 

(Table 2). By using such an imbalanced dataset, the SVM 

classifier may produce biased accuracy towards the class 

having a larger number of instances. �us, a balanced 

dataset was preferred for prediction using the SVM clas-

sifier. �e balanced dataset was prepared by taking all the 

instances of the positive class and an equal number of 

instances from the negative class. For instance, the bal-

anced dataset for Q1 contained 1588 positive and 1588 

randomly drawn negative (from 2045) instances. Further, 

using only one random negative set means the remain-

ing negative instances are out of the evaluation. To over-

come such a problem, the classification experiment was 

repeated 10 times with a different negative set (randomly 

drawn) each time along with the same positive set. So, the 

problem of unbalanced-ness was handled by following 

the repeated cross-validation procedure, without training 

of the SVM model with unbalanced data. Performance 

metrics were measured by following the fivefold cross-

validation technique and the final metrics were obtained 

by taking an average over all the 10 experiments.

Using predicted class as a feature

�e labels of each instance were represented as − 1 and 

1 for the CRG and non-CRG classes respectively. �e 

predicted labels of the instances obtained after classi-

fication was considered as a numeric feature and added 

to the existing feature set. �en, the prediction using the 

same dataset (with different training and test) was per-

formed again by using the new feature set. �is process 

was repeated 50 times and the accuracy was analyzed 

after adding the new feature each time. �e idea of using 

the predicted label as numeric feature was implemented 

to achieve higher classification accuracy.

Performance metrics

�e true positive rate (TPR or sensitivity), true negative 

rate (TNR or specificity), accuracy, positive predictive 

value (PPV or precision), area under receiver operating 

characteristic curve (auROC) and area under precision-

recall curve (auRPC) were computed to evaluate the per-

formance of classifier. �e TPR, TNR, accuracy and PPV 

are defined as follows.

Sensitivity(TPR) =
TP

TP + FN
,

Specificity(TNR) =
TN

TN + FP
,

Accuracy =
1

2
(TPR + TNR),

Table 2 Summary of the positive and negative datasets

Full dataset of positive and negative classes are partitioned into four sub-

datasets i.e., Q1, Q2, Q3 and Q4. The partitioning was done based on the 

homogeneity of sequence length. For the Q1 sub-dataset, the sequence lengths 

for the positive and negative classes are P1 and N1 respectively, where P1 

corresponds to 39 to 221 amino acids and N1 corresponds to 43 to 407 amino 

acids sequence length. Similar inference can be made for other sub-datasets

P1: 39 to 221 amino acids; P2: 221 to 363 amino acids; P3: 363 to 538 amino 

acids; P4: 538 to 1000 amino acids; N1: 43 to 407 amino acids; N2: 407 to 485 

amino acids; N3: 485 to 607 amino acids; N4: 607 to 1000 amino acids

Sub-dataset #Positive 
sequence

#Negative 
sequence

Length 
category

Q1 1588 2045 P1, N1

Q2 1596 2047 P2, N2

Q3 1593 2050 P3, N3

Q4 1365 1499 P4, N4

Total (Full dataset) 6142 7641 -

Table 3 List of kernel functions and their mathematical 

expressions

γ , d, r  and order are kernel parameters and <  > denotes the inner product

Kernel type Kernel function 
{

K
(

x i , x j
)}

Radial basis function (RBF) exp(−γ �xi − xj�
2)

Polynomial (γ < xi , x j> +r)d

Linear < xi , x j >

Hyperbolic tanh(γ < xi , x j > +r)

Laplace exp(−γ �xi − xj�)

Bessel −Bessel
d

order
γ �xi − xj�

2

Sigmoid (< xi , x j > +r)d
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�e TP and TN are the number of correctly classified 

instances of the CRG and non-CRG classes, respectively. 

�e FN and FP are the number of misclassified instances 

of the CRG and non-CRG classes, respectively. �e ROC 

curve was obtained by taking the sensitivity in y-axis and 

1-specificity in x-axis, whereas the PR curve was plotted 

by taking the precision and recall (sensitivity) in x- and 

y-axes respectively.

Results
Prediction analysis with di�erent sequence length 

category

Prediction was performed with the full dataset and sub-

datasets, where 50% randomly drawn observations from 

both CRG and non-CRG classes were utilized. For com-

paring the accuracy between the full dataset (diverse 

sequence length) and sub-datasets (homogeneous 

sequence length), prediction was done only with the RBF 

kernel because the trend in accuracy between the homo-

geneous and full datasets was expected to remain the 

same by using the other kernels as well. �e accuracies 

were observed to be higher (~ 4–6%) for the homogenous 

sub-datasets (Q1, Q2, Q3, Q4) as compared to the het-

erogeneous full dataset (Fig. 1b). �us, the four sub-data-

sets (i.e., Q1, Q2, Q3 and Q4) were used hereafter instead 

of full dataset.

Prediction analysis with di�erent kernel functions

Performance of the kernel functions were compared by 

using a random sample of 50% observations. �e sensi-

tivity and specificity were respectively higher with the 

Laplace and linear kernels for the sub-datasets Q2, Q3 

and Q4 (Fig.  1c). For sub-dataset Q1, sensitivity and 

specificity were higher with the RBF and polynomial ker-

nels, respectively (Fig. 1c). �e linear and Laplace kernels 

achieved similar accuracy for Q2 and Q3 sub-datasets, 

whereas the linear kernel achieved a little higher accuracy 

than the Laplace for Q1 and Q4 (Fig. 1c). �us, no single 

kernel was found to perform better for each sub-dataset. 

It was also observed that the performance accuracies 

were higher for Q2 and Q3 (~ 65%) than that of Q1 and 

Q4 (~ 60%). Further, the Bessel kernel function achieved 

the lowest (~ 50%), followed by the hyperbolic kernel 

(Fig. 1c). As the Laplace, linear and RBF kernels achieved 

higher accuracies as compared to the other kernel func-

tions, these three kernels were chosen for the subsequent 

prediction analysis. �e mathematical representations of 

the Laplace and RBF functions are similar except for the 

distance between the feature vectors which is expressed 

in squared term for the RBF and in linear term for the 

Precision(PPV ) =
TP

TP + FP
.

Laplace. �is may be the reason the variability captured 

by the Laplace kernel could be higher than that of RBF 

kernel, resulting in higher classification accuracy with 

the Laplace kernel. Further, the polynomial, hyperbolic 

and sigmoid kernels are the transformation of the linear 

kernel with additional parameters. So, the variability with 

respect to the discrimination of the CRG and non-CRG 

classes couldn’t be captured well by these kernels. �is 

may be one of the possible reasons that the linear kernel 

achieved higher accuracy as compared to the other three 

kernels.

Prediction analysis with iteratively added features

Either a little or no improvement in accuracies were 

observed with the Laplace and linear kernels, even after 

adding 50 predicted label features (results not provided). 

On the other hand, 2–4% improvement in accuracies 

was observed with the RBF kernel after including the 

additional features. Specifically, accuracies in Q1, Q2, 

Q3 and Q4 reached plateau after addition of 26, 25, 20 

and 45 features, respectively (Fig. 2a). �e probable rea-

son for not improvement in accuracy for the linear and 

Laplace kernels may be the variability introduced in the 

dataset with the inclusion of features (only -1 s and 1 s) 

was not captured well by these two kernels. On the other 

hand, the non-linear RFB kernel could have captured that 

variability which contributed towards the discrimina-

tion of both the classes. Nevertheless, accuracies of the 

linear and Laplace without iterated features and RBF 

with iterated features were found to be similar. �us, we 

employed these three kernels for the subsequent predic-

tion analysis.

Final prediction analysis

Final prediction analysis was performed using the three 

selected kernels (Laplace, linear and RBF) with opti-

mum parameters setting. �e optimum values γ (for 

RBF and Laplace) and C (for RBF, Laplace and linear) 

were determined by performing a grid search with γ : 

 2–6 to  26 and C:  2–6 to  26 with step size 2. Here,  2–6:26 

with step size 2 means  2–6,  2–5,  2–4,  2–3,  2–2,  2–1,  20,  21, 

 22,  23,  24,  25,  26. For all the three kernels, higher accura-

cies were obtained with the default parametric values. 

�erefore, the prediction was made with the default 

parameter settings (Additional file 2: Table S2). Higher 

accuracies were obtained with the linear kernel for 

Q1 (61.13%) and Q2 (64.76%) sub-datasets, whereas 

the Laplace and RBF achieved higher accuracies for 

Q3 (65.69%) and Q4 (60.01%) respectively (Table  4). 

With regard to precision, the linear kernel achieved 

higher accuracies for Q1 (61.63%), Q2 (65.19%) and 

Q3 (64.67%), whereas the RBF kernel secured the high-

est accuracy for Q4 (60.05%) (Table  4). Sensitivities 
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of Q1 (68.64%) and Q2 (67.52%) were higher with the 

RBF kernel, whereas the sensitivities for Q3 (70.56%) 

and Q4 (64.91%) were higher with the Laplace kernel 

(Table  4). Higher values of specificities were obtained 

with the linear kernel for Q2 (62.61%) and Q3 (63.89%), 

whereas the RBF and Laplace kernels achieved higher 

specificities for Q4 (60.29%) and Q1 (63.21%), respec-

tively (Table 4). �e aucROC values for Q1 (52.5%), Q2 

(50.4%), Q3 (49.5%) were higher with the Laplace ker-

nel, whereas the linear kernel secured higher aucROC 

for Q4 (51.1%) (Fig.  2b). �e aucPR values for Q3 

(47.8%) and Q4 (50.7%) were higher with the RBF ker-

nel, whereas the Laplace and linear kernel achieved 

higher aucPR for Q1 (53%) and Q2 (51.3%), respectively 

(Fig. 2b).

�e linear kernel achieved higher accuracy and preci-

sion for Q1, whereas the aucPR, aucROC and specificity 

were higher with the Laplace kernel. For Q2, the specific-

ity, accuracy, precision and aucPR were higher with the 

Laplace kernel, whereas the linear kernel achieved higher 

accuracy in terms of sensitivity and aucROC. In Q3, the 

specificity, precision and aucPR were higher with the lin-

ear kernel, whereas the sensitivity, accuracy and aucROC 

were higher with the Laplace kernel. For Q4, though RBF 

secured higher accuracy in terms of specificity, accuracy, 

precision and aucPR, the Laplace kernel achieved higher 

accuracy in terms of sensitivity and aucROC than that of 

RBF. �us, no kernel was found to be an obvious choice 

with regard to higher prediction accuracy. �erefore, we 

employed a multiple criteria decision making (MCDM) 

Fig. 2 a Classification accuracy with respect to classification of circadian and non-circadian proteins by using support vector machine with the 

radial (RBF) kernel with addition of iteratively generated features. It is observed that the accuracies are improved by addition of iteratively generated 

features in all the four sub-datasets. b ROC and PR curves with regard to the classification of circadian and non-circadian proteins by using support 

vector machine with linear, Laplace and RBF kernels
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approach to determine the best kernel function which is 

explained in the next section.

TOPSIS analysis

�e MCDM method TOPSIS [62] with different per-

formance metrics as the multiple criteria was used to 

determine the best kernel (in terms of accuracy). �e 

TOPSIS scores were higher with the Laplace kernel for 

Q1 (61.12) and Q3 (58.11), whereas the linear and RBF 

kernel achieved higher scores for Q2 (67.50) and Q4 

(57.91) sub-datasets, respectively (Table  5). Overall, the 

highest score (73.20) was achieved by the Laplace kernel 

as compared to the linear (70.09) and RBF (23.77) kernel 

functions (Table  5). �us, the Laplace kernel function 

was chosen as the best kernel function and utilized for 

the subsequent analysis.

Prediction with the independent test dataset

�e SVM with the Laplace kernel was used for the pre-

diction of the independent dataset. �e independent 

dataset was built with the circadian clock associated 

sequences collected from the existing studies. We col-

lected 30 sequences from [63], 27 sequences from [64], 

13 sequences from [33] and 26 sequences from [65]. Out 

of 96 sequences (30 + 27 + 13 + 26), some sequences were 

not found in NCBI (while searching with the gene  ID) 

and some others were found to be present in the train-

ing (positive) dataset. After excluding such sequences, 

the remaining 54 circadian protein sequences were used 

as an independent dataset. Prediction for the independ-

ent dataset was made by using the models trained with 

Q1, Q2, Q3 and Q4 sub-datasets. Out of 54 sequences, 34 

sequences were correctly predicted as circadian proteins 

and 20 sequences were wrongly predicted as non-circa-

dian proteins. In other words, an accuracy of 62.96% was 

obtained with the independent dataset, which was simi-

lar to that of fivefold cross-validation accuracy with the 

Laplace kernel i.e., 62.48% (61.04 + 64.20 + 65.69 + 59.01

/4). �us, it may be said that the prediction accuracy was 

neither overestimated nor underestimated.

Comparative analysis with other machine learning 

algorithms

�e performance of SVM with the Laplace kernel (pro-

posed approach) was further compared with that of other 

state-of-art machine learning algorithms, i.e., Random 

Forest (RF) [66], Bagging [67], Adaptive Boosting (Ada-

Boost) [68], eXtreme Gradient Boosting (XGBoost) [69] 

and L1-penalized logistic regression LASSO [70]. �e RF, 

Bagging, AdaBoost, XGBoost and LASSO were imple-

mented by using the R-packages randomForest [71], ipred 

[72], adabag [73], xgboost [74] and glmnet [75] respec-

tively. All the predictions were made with default param-

eters (Additional file  3: Table  S3) and the performance 

metrics were measured by following fivefold cross-val-

idation. In terms of sensitivity, specificity, accuracy and 

precision, performance of the LASSO and the proposed 

approach were observed to be higher than that of other 

four algorithms (Fig.  3). RF achieved higher auROC for 

Q1 (55.08%), Q2 (52.69%) and Q3 (52.23%), whereas 

XGBoost for Q4 (50.36) sub-datasets (Fig.  3). �e pro-

posed approach achieved higher aucPRC for Q1 (53.01%) 

and Q2 (50.13%), whereas XGBoost and AdaBoost for 

Q3 (50.67%) and Q4 (60.66%), respectively. Between 

LASSO and the proposed approach, higher specificities 

were achieved by LASSO (Q2: 65.45%, Q3: 64.46%, Q4: 

57.43%) than that of proposed approach (Q2: 64.32%, 

Q3: 60.81%, Q4: 53.11%). On the other hand, higher sen-

sitivities were observed for the proposed approach (Q2: 

64.07%, Q3: 70.56%, Q4: 64.91%) than that of LASSO 

Table 4 Classification accuracy of the support vector machine 

with three different kernels with default parameters

Classi�cation was made with each sub dataset and performance metrics were 

computed following repeated cross validation where the experiment was 

repeated 100 times. In terms of accuracy, performances are higher for the 

Laplace kernel for Q2 and Q3 sub-datasets, whereas linear and RBF kernel 

performed better in Q1 and Q4 respectively. Performance metrics are higher for 

Q2 and Q3 sub-datasets than that of Q1 and Q4. The accuracies are seen to be 

more stable for RBF kernel, barring few exceptions

Dataset Kernel Sensitivity Speci�city Accuracy Precision

Q1 Linear 59.24 ± 0.90 63.02 ± 3.42 61.13 ± 1.66 61.63 ± 2.16

Laplace 58.86 ± 1.71 63.21 ± 2.42 61.04 ± 1.86 61.56 ± 2.07

Radial 68.64 ± 1.55 51.86 ± 3.42 60.25 ± 1.54 58.81 ± 1.55

Q2 Linear 63.32 ± 2.06 66.21 ± 1.39 64.76 ± 1.48 65.19 ± 1.43

Laplace 64.07 ± 1.83 64.32 ± 2.11 64.20 ± 1.49 64.25 ± 1.57

Radial 67.52 ± 3.67 60.62 ± 1.30 64.07 ± 1.93 63.14 ± 1.47

Q3 Linear 66.10 ± 4.34 63.89 ± 2.85 65.01 ± 2.20 64.67 ± 1.94

Laplace 70.56 ± 4.25 60.81 ± 2.61 65.69 ± 1.93 64.29 ± 1.56

Radial 67.61 ± 3.52 60.75 ± 4.74 64.18 ± 1.11 63.36 ± 1.78

Q4 Linear 59.26 ± 2.29 57.94 ± 3.71 58.61 ± 2.50 58.53 ± 2.63

Laplace 64.91 ± 2.68 53.11 ± 2.27 59.01 ± 1.71 58.06 ± 1.48

Radial 59.70 ± 2.52 60.29 ± 1.98 60.01 ± 1.51 60.05 ± 1.45

Table 5 TOPSIS scores of the prediction performance for the 

three different kernels

For Q1 and Q3, TOPSIS scores are higher for the Laplace kernel, whereas linear 

and RBF achieved higher scores for Q2 and Q4 respectively. While all the four 

sub-datasets are accounted, the Laplace kernel achieved higher TOPSIS score 

than the other two kernel functions

Kernel Q1 Q2 Q3 Q4 Overall

Linear 54.64 67.50 45.98 47.56 70.09

Laplace 61.12 59.85 58.11 41.67 73.20

Radial 40.78 31.75 24.98 57.91 23.77
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(Q2: 63.26%, Q3: 66.6%, Q4: 60.14%). However, the accu-

racy and precision of the proposed approach and LASSO 

were found to be similar (Fig. 3). �us, the LASSO and 

the proposed approach may achieve similar accuracy and 

better than the other considered algorithms.

Proteome-wide identi�cation and functional annotation

�e developed computational model was further 

employed for proteome-wide identification of proteins 

associated with the CR (CR-proteins). We collected the 

proteome-wide sequence datasets of two crop species 

Fig. 3 Difference performance metrics of the proposed approach (SVM with the considered features) along with the five other state-of-art learning 

algorithms. The accuracies of the proposed approach are found at par with that of LASSO, but higher than the other algorithms
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i.e., rice (proteme id: UP000059680) and sorghum (pro-

teome id: UP000000768) from the proteome database 

(https:// www. unipr ot. org/ prote omes/). �ere were four 

trained models in the background corresponding to Q1, 

Q2, Q3 and Q4. Based on the sequence length of the sup-

plied test sequence, the trained model was first decided 

and subsequently the prediction was made. Out of 48,903 

sequences of rice, only 1538 were predicted as CR-pro-

teins with > 0.8 probability. Similarly, 1510 out of 41,298 

sequences of sorghum were predicted as CR-proteins 

with > 0.8 probability. �e probability threshold 0.8 was 

used to minimize the number of false positives. Func-

tional analysis of the predicted 1538 rice sequences and 

1510 sorghum sequences were also carried out with Gene 

Ontology (GO) terms. �e GO annotation (biological 

process and molecular function) was performed using the 

PANTHER [76]. In rice, 1260 out of 1538 were mapped 

into biological processes (BP) and molecular functions 

(MF). In sorghum, 1140 out of 1510 were mapped into BP 

and MF. For BP in rice, biological_process (GO:0008150; 

51.98%), cellular process (GO:0009987; 39.44%), meta-

bolic process (GO:0008152; 38.57%), organic substance 

metabolic process (GO:0071704; 33.33%) and cellular 

metabolic process (GO:0044237; 31.19%) showed maxi-

mum number of hits (Fig. 4). With regard to MF in rice, 

the most represented GO terms were molecular_function 

(GO:0003674; 55.31%), catalytic activity (GO:0003824; 

39.04%), binding (GO:0005488; 33.57%) and ion bind-

ing (GO:0043167; 20.79%) (Fig.  4). In sorghum, meta-

bolic process (GO:0008152; 39.47%), organic substance 

metabolic process (GO:0071704; 33.15%), cellular meta-

bolic process (GO:0044237; 32.11%) and nitrogen com-

pound metabolic process (GO:0006807; 26.22%) were the 

most represented BP, whereas the molecular_function 

(GO:0003674; 57.36%), catalytic activity (GO:0003824; 

40.78%) and hydrolase activity (GO:0016787; 14.12%) 

were the most represented MF (Fig.  4). �e metabolic 

process showed significant enrichment in BP, whereas 

the catalytic, hydrolase and transferase activities were 

found significantly enriched for MF category in both rice 

and sorghum (Fig. 4).

An R-package for users

Based on the proposed computational model, we devel-

oped an R-package “PredCRG” (https:// cran.r- proje ct. 

org/ web/ packa ges/ PredC RG/ index. html) for proteome-

wide identification of proteins encoded by the circadian 

genes. �ere are three main functions in this package 

i.e., PredCRG, PredCRG_Enc and PredCRG_training. 

With the function PredCRG, users can predict the labels 

of the test protein sequences as circadian (CRG) or non-

circadian (non-CRG) along with their probabilities. �e 

function PredCRG_Enc can be used to encode the protein 

sequences based on the features of the PredCRG model. 

Most importantly, with the function PredCRG_training, 

users can develop their prediction models using four dif-

ferent kernel functions (Laplace, RBF, linear and poly-

nomial) with their training datasets. �e trained model 

can be subsequently used for the prediction of the test 

sequence of their interest. In summary, the developed 

R-package will be of great help for the researchers work-

ing in the field of identifying circadian genes via wet-lab 

experiments.

Discussion
�e distribution of common CR-related genes in plants 

is yet to be fully understood [63]. Identification of molec-

ular components underlying the plant CR will certainly 

facilitate understanding the plant behavior in response 

to different environmental stimuli [77]. Circadian genes 

manipulation may help breeding crop cultivars with 

enhanced reproductive fitness [1, 33]. Circadian genes 

also reciprocate the defense signaling genes in plants 

[78]. Keeping in mind the roles of circadian genes, a com-

putational model was developed in the present study to 

recognize the proteins encoded by the circadian genes.

We collected the experimentally validated circadian 

gene sequences of the plant species from the CGDB data-

base (http:// cgdb. biocu ckoo. org/) and constructed the 

positive set. As far as non-circadian gene sequence is 

concerned, no database having such sequences is avail-

able. �us, the protein sequences of the Viridiplantae 

clad collected from the UniProt database was used as 

the negative set. Further, we employed the CD-HIT algo-

rithm to remove the redundant sequences from both the 

positive and negative sets. �e CD-HIT algorithm sorts 

the input sequences from long to short, and processes 

them sequentially from the longest to the shortest. �e 

first sequence is classified as the representative sequence 

of the first cluster. �en, each of the remaining sequences 

is compared to the representative sequences and is clas-

sified as redundant if it is found similar (with the given 

sequence identity cut-off) to the existing representative 

sequence. �is process is repeated till all the sequences 

are classified as either redundant or representative. 

Finally, the non-redundant dataset (at the given thresh-

old) is obtained by combining all the representative 

sequences. In this study, we applied a 40% sequence iden-

tity cut-off and obtained the dataset in which none of the 

sequences were > 40% identical to any other sequences.

�e positive (39–4218 amino acids) and negative 

(43–5400 amino acids) datasets were found to be much 

diverse with regard to sequence length. As sequence 

length plays an important role in determining the phys-

ico-chemical properties of protein sequences, both 

https://www.uniprot.org/proteomes/
https://cran.r-project.org/web/packages/PredCRG/index.html
https://cran.r-project.org/web/packages/PredCRG/index.html
http://cgdb.biocuckoo.org/
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Fig. 4 Gene Ontology terms analysis of the predicted circadian proteins for rice and sorghum
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positive and negative sets were partitioned into four 

homogeneous sub-datasets. As expected, improve-

ments in accuracies were found with the homogene-

ous sub-datasets as compared to the heterogeneous full 

dataset. One of the probable reasons for this may be the 

generation of noisy observation vectors with the diverse 

sequence length. Amino acid composition and physico-

chemical features of proteins determine their functions 

to a large extent [79–81]. �us, the compositional and 

physico-chemical features were adopted for the genera-

tion of discriminative features.

�e considered kernel functions are either expressed 

as the inner product of the feature vectors (polynomial, 

hyperbolic, linear and sigmoid) or the distance between 

the feature vectors (radial, Laplace and Bessel). Among 

the kernel functions, the Laplace kernel emerged as the 

best kernel followed by the linear and RBF for classifica-

tion of circadian and non-circadian proteins. �ough the 

Laplace kernel was found more appropriate in the pre-

sent study, accuracy may vary with different positive and 

negative datasets.

While compared with other start-of-art machine learn-

ing methods such as RF, XGBoost, AdaBoost, Bagging, 

SVM was found to outperform them. We also noticed 

that the accuracy obtained with the LASSO was similar 

to that of SVM with the Laplace kernel. Although LASSO 

produces biased estimates, an advantage of LASSO is 

that it may yield higher accuracy by ignoring the redun-

dant features. When we plotted the correlation matrix 

among the generated numeric features in the form of 

heat maps (Fig.  5), a higher degree of correlations was 

observed among certain features. �e higher correlations 

among the features might have induced the redundancy 

in the feature set. So, one of the probable reasons for get-

ting higher accuracy with the LASSO may be the use of 

only non-redundant features.

Motivated from the earlier studies [82, 83], the pre-

dicted label of the observation was utilized as additional 

feature. With the addition of such features, a little or no 

improvement in accuracy was found with the linear and 

Laplace kernels. On the other hand, improvement in 

accuracy was noticed with the RBF kernel. Improvement 

with the RBF and no improvement with the linear and 

Laplace kernels may be due to the non-linear relationship 

between the iteratively generated features (-1  s and 1  s 

only) and the response vector.

�e developed computational model achieved ~ 63% 

classification accuracy, while assessed through fivefold 

cross-validation procedure. Similar accuracy was also 

obtained with the independent test dataset. Equivalent 

accuracy for five-fold cross-validation and independent 

test set implies that there was neither over-prediction 

nor under-prediction accuracy with the proposed model. 

We further performed proteome-wide identification of 

circadian proteins using proteome dataset of rice and 

sorghum, followed by the functional annotation of the 

predicted circadian proteins. For reproducibility of the 

work, we have developed the R-package “PredCRG”. We 

anticipate that this package would not only be helpful for 

the users to predict their test sequences, but also to build 

their prediction model using their training dataset.

Conclusions
�is study presents a novel computational approach 

for the recognition of proteins encoded by the circa-

dian genes. �e prediction accuracy is not very high. 

Fig. 5 Heat maps showing the correlation among 62 numeric features in four sub-datasets. It can be seen that some of the features are highly 

correlated
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However, this is the first computational approach for 

predicting the circadian genes (proteins) with the 

sequence dataset. So, we believe that further improve-

ment can be made by including more discriminatory 

feature sets. �e developed approach is expected to 

supplement the existing models that are based on gene 

expression data. �e R-package “PredCRG” is believed 

to be of great help to the scientific community for 

proteome-wide identification of circadian genes. Our 

future endeavor would be to develop a more accurate 

model by using the sequence dataset.
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