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In the context of chaotic secure communication and based on the sliding mode control technology, this article investigates the
predefined-time modified function projective synchronization for the Colpitts oscillator multiscroll hyperchaotic systems. Firstly,
a four-dimensional multiscroll hyperchaotic system is introduced and the predefined-time synchronization is defined. Subse-
quently, applying a novel predefined-time stability criterion, an integral terminal sliding mode surface is constructed for the
synchronization error system to ensure that the sliding motion is stable within a predefined time; meanwhile, an approaching
controller is designed to enable the error system to reach and remain on the sliding mode surface within another predefined time,
so as to ensure the realization of the predefined-time synchronization. Finally, the simulation experiments are presented to verify
the effectiveness of derived theoretical results.

1. Introduction

During the last decades, the chaotic system has attracted more
and more attention due to its potential applications in secure
communication [1–4]. Chaotic synchronization is the
premise to realize chaotic secure communication, and whose
essence is that the state of the response system can be con-
sistent with that of the drive system according to a particular
relationship. +erefore, the intensive study of the synchro-
nization scheme and synchronization control technology of
chaotic systems can provide a solid theoretical support for the
development of chaotic secure communication [5, 6].

+e security is an important indicator to measure the
performance of the communication scheme. Since the se-
curity performance of a chaotic system increases with its
complexity, the carrier system with stronger chaotic char-
acteristics can effectively improve the reliability of chaotic
secure communication. However, most chaotic synchroni-
zation studies focus on chaotic systems with single scroll or

double scroll, such as Chua system, Lorenz system, R€ossler
system, and L€u system. Compared with the traditional
chaotic systems, multiscroll chaotic systems exhibit more
complex topological structure and more unpredictable dy-
namic behavior. +erefore, adopting the multiscroll chaotic
system as the carrier system is more beneficial to improve the
attack resistance of the communication scheme [7–10].

Synchronization time is another important indicator to
measure the performance of the communication scheme
since the encoded message cannot be recovered before the
synchronization is established. To realize fast synchroniza-
tion, the finite-time control technique has been formulated.
Compared with asymptotic control, finite-time control has
many advanced properties, such as fast and finite-time
convergence, high tracking accuracy, and good robustness to
uncertainty. +erefore, finite-time synchronization has be-
come more and more attractive in recent years [11–13].

However, the convergence time of finite-time stability
depends heavily on the initial state of the system. In
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particular, when the initial state is far from the equilibrium
point, the convergence time may be unbounded. To solve
this problem, the fixed-time stability has been proposed, in
which the convergence time is uniformly bounded for all
initial states of the system; that is to say, the upper bound of
the convergence time does not depend on the initial state of
the system. +e fixed-time stability has been applied to
design robust control schemes for synchronizing chaotic
systems [14–16]. However, even though the fixed-time
stability has a significant advantage over the classical finite-
time stability in some sense, the convergence (settling) time
in fixed-time control cannot be preassigned because the
relationship between the tuning gains and the upper bound
of the settling time is unclear in general.

Additionally, in the process of secure communication,
the designer expects the encoded message can be recovered
within any sufficiently short time given in advance. It is
necessary to consider the concept of predefined-time sta-
bility control technique, applying which an upper bound
(sometimes the least upper bound) of convergence (settling)
time is directly involved in the design of the controller as a
preassigned tuning gain [17–20]. In chaotic secure com-
munication, if the synchronization scheme is designed based
on the above control technique, the encrypted message will
be decrypted within a predetermined time which is inde-
pendent of the initial state. +is motivates our work.

Sliding mode control (SMC) is well known for its ro-
bustness to system parameter variations and external dis-
turbances [21]. However, the traditional SMC schemes based
on linear sliding surface can only guarantee the asymptotic
convergence but not the finite-time convergence. In order to
obtain better control performance, the terminal sliding
mode control (TSMC) has been proposed by adding a
nonlinear item into the sliding mode surface function, which
can realize the finite-time stability of the system [22].
Nevertheless, there is serious chattering in both SMC and
TSMC, which limits their practical application. To solve this
problem, the integral terminal sliding mode control
(ITSMC) is designed by introducing the integral compen-
sation term into the function of terminal sliding mode
surface, which can further weaken the chattering caused by
the sign function [23, 24]. It is a pity that most existing
integral terminal sliding mode controls are single-power and
lack of flexibility.

Moreover, as chaotic synchronization is applied in se-
cure communication, the level of the communication se-
curity is dependent on the complexity level of the
synchronization scheme. So far, many complex synchro-
nization schemes have been proposed, among which the
modified function projective synchronization (MFPS) is
more general and it covers almost all of the existing syn-
chronization methods [25–27]. Applying MFPS, the drive
system and the response system are synchronized up to a
desired scaling function matrix. To the best of our knowl-
edge, the predefined-time modified function projective
synchronization (MFPS) for chaotic systems is still open,
which is another motivation of our work.

Motivated by the above discussion, in this article, the
problem of predefined-time modified function projective

synchronization is discussed for chaotic systems with
multiple scrolls. Compared with the existing literature, the
main contributions that make this work more competitive
are summarized as below.

First, by introducing the predefined-time synchroniza-
tion, the synchronization time can be preassigned according
to the task requirements and it can be arbitrarily short.
Second, adopting sliding mode control technology to realize
the predefined-time stability not only can enhance the ro-
bustness of the system to external interference and uncertain
parameters but also can determine the time of the sliding
mode reaching phase and the settling time during the sliding
mode phase by distributing the weights of time distribution,
which is more flexible. Last but not the least, the multiscroll
chaotic system applied in this work is convenient for
physical realization, and the number of scrolls can be ad-
justed according to the designer’s requirement, which is also
flexible.

+e rest of this article is organized as follows. In Section
2, the multiscroll chaotic system and the synchronization
problem are introduced. In Section 3, an novel terminal
sliding mode control scheme is designed to realize the
predefined-time synchronization. In Section 4, the secure
communication experiment is carried out to prove the
validity and the advancement of the proposed synchroni-
zation control scheme. Finally, the conclusion and future
work are presented in Section 5.

2. Preliminaries and Problem Description

In this section, we will list some relevant preliminaries and
introduce the synchronization problem.

2.1. Four-Dimensional Multiscroll Systems. Recently, Bao
constructed a new four-dimensional multiscroll hyper-
chaotic system by modifying the original equation of the
third-dimensional single-scroll chaotic Colpitts oscillator
model with two piecewise linear triangular wave functions
[10]. Its dynamical model is given as

_x1 � μ x3 − gM x2( )[ ],
_x2 � μ x3 + gN x4( )[ ],
_x3 � −

0.5 x1 + x2( )
μ

− x3,

_x4 � x1 + x2,



(1)

in which

gK(ξ) � ∑K
k�− K,k≠0

p

2q
ξ − p 2k −

|k|

k
( ) + q∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ − ξ
∣∣∣∣∣∣∣∣∣∣


− p 2k −

|k|

k
( ) − q∣∣∣∣∣∣∣∣} − ξ,

(2)
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represents a piecewise linear triangular wave function.When
we choose μ � 1, p � 1, q � 0.02, M � 2, N � 1 and
(x1(0), x2(0), x3(0), x4(0)) � (1, 2, − 1, − 3), the chaotic
attractor of system (1) and the function curves of gM(x2)
and gN(x4) are shown in Figures 1–3 respectively.

Remark 1. When the parameter μ> 0.6263, the chaotic or
hyperchaotic state of system (1) is robust and stable, and the
number of chaotic scrolls in its chaotic attractor is determined
by the parametersM andN. +e number of chaotic scrolls on
phase planes x1 × x4 and x2 × x4 is (2M + 1)(2N + 1), the
number of chaotic scrolls on phase plane x3 × x4 is 2N + 1,
and the number of chaotic scrolls on the other three phase
planes is 2M + 1. +erefore, the number of chaotic scrolls can
be changed by adjusting the values of the parametersM andN,
which has important application value in chaotic secure
communication. For instance, if we reset M � 4, N � 4, then
the chaotic attractor of system (1) is shown in Figure 4.

Remark 2. Since the state of chaotic system (1) is bounded,
combined with the property of triangular wave function (2),
one can derive that the composite functions gM(x2) and
gN(x4) are also bounded, which can be shown in Figures 2-3.

Remark 3. Compared with several chaotic systems commonly
used in chaotic secure communication which are shown in
Figure 5, it is obvious that the multiscroll chaotic oscillator
presented in this work is more complex, so it has better security.

2.2. Predefined-Time Stability and Predefined-Time
Synchronization. Consider the dynamical system:

_υ(t) � ϕ(t, υ; σ), t ∈ [0,+∞), (3)

where υ ∈ Rn stands for the system state and σ ∈ Rm rep-
resents the constant parameter vector. Assume the origin is
an equilibrium point of system (3), and denote υ0 � υ(0);
then, ϕ(0, υ0; σ) � 0.

Definition 1 (finite-time stability) [13]. +e origin of system
(3) is said to be globally finite-time stable if it is globally
asymptotically stable and any solution υ(t, υ0) of (3) reaches
the equilibrium point within some finite time, i.e.,

lim
t⟶T υ0( )−

υ t, υ0( ) � 0,
υ t, υ0( ) ≡ 0, ∀t≥T υ0( ), (4)

in which T(υ0) � inf ε≥ 0: limt⟶ευ(t, υ0) � 0{ } is called the
settling-time function of system (3).

Definition 2 (fixed-time stability) [16]. +e origin of system
(3) is said to be fixed-time stable if it is globally finite-time stable
and the settling-time functionT(υ0) is bounded, i.e., there exists
a positive constant Tmax such that T(υ0)≤Tmax, ∀υ0 ∈ Rn.

Definition 3 (predefined-time stability) [19]. +e origin of
system (3) is said to be globally predefined-time stable if it is
fixed-time stable and the settling-time function T(υ0) satisfies

T υ0( )≤Tc, ∀υ0 ∈ Rn, (5)

in which Tc is a finite positive constant given in advance, and
we called it the predefined time.

Lemma 1 (see [20]). Let Tc > 0 be a predefined constant. If
there exists a radially unbounded Lyapunov functionV(]) for
dynamic system (3) and it satisfies

_V(]) � g(V(])),

g(V)≤ − π

αTc
V1+(α/2) + V1− (α/2)( ), (6)

where α ∈ (0, 1) is a real constant.

+en, the origin of system (3) is globally predefined-time
stable with a predefined time Tc.

Proof. For any υ0 ∈ Rn, the settling-time function T(υ0)
complies to

T υ0( ) � ∫T υ0( )

0
dt � ∫0

V υ0( )

1

g(V)
dV

≤ ∫0
V υ0( )

−
1

π/αTc( ) V1+(α/2) + V1− (α/2)( ) dV
�
αTc
π

∫V υ0( )

0

dV

V1+(α/2) + V1− (α/2)

�
αTc
π

∫V υ0( )

0

dV

V1− (α/2) 1 + Vα( )

�
αTc
π

∫V υ0( )

0

(2/α)dV(α/2)

1 + Vα

�
αTc
π
·
2

α
arctan V(α/2)( )∣∣∣∣∣V υ0( )

0

�
2Tc
π
arctan V υ0( )(α/2)( ).

(7)

Since V(υ0) ∈ [0,+∞), which implies
arctan(V(υ0)

(α/2)) ∈ (0, (π/2)]. Hence, we obtain
T(υ0)≤Tc and

Tc � supT υ0( ). (8)

□

Definition 4 (modified function projective synchronization)
[25]. Two chaotic dynamical systems

_x(t) � h1(t, x), (9)

_y(t) � h2(t, y) (10)

are said to be modified function projective synchronization
(MFPS), if there exists a reversible scaling matrix Λ(t) such
that
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lim
t⟶∞

‖y(t) − Λ(t)x(t)‖ � 0, (11)
where x(t), y(t) ∈ Rn stand for the state vectors for the
above two chaotic systems, respectively,

Λ(t) � diag λ1(t), . . . , λn(t){ }, and λi(t) is a bounded and
continuously differentiable nonzero function, i � 1, 2, . . . , n.

Denote e(t) � y(t) − Λ(t)x(t), and we can obtain the
error dynamical system between (9) and (10):
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Figure 1: Multiscroll chaotic attractor of system (1) with M � 2 andN � 1.
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_e(t) � h2(t, y) − Λ(t)h1(t, x) − _Λ(t)h1(t, x). (12)

Definition 5. It is said that the two chaotic systems men-
tioned in Definition 1 are predefined-timemodified function
projective synchronization if and only if the origin of error
dynamical system (12) is globally predefined-time stable
with predefined time Tc > 0.

2.3. Problem Statement. Denote

A �

0 0 μ 0

0 0 μ 0

−
0.5

μ
−
0.5

μ
− 1 0

1 1 0 0




,

f(x) � f1(x), f2(x), f3(x), f4(x)[ ]T
≜ − μgM x2( ), μgN x4( ), 0, 0[ ]T,

(13)
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and then system (1) can be rewritten as

_x(t) � Ax(t) + f(t), (14)

or _xi(t) � Aix(t) + fi(x), i � 1, · · · , 4. (15)

In this work, multiscroll chaotic system (14) is adopted as
the drive system, and the response system is chosen as

_y(t) � Ay(t) + f(y) + u(t), (16)

where u(t) ∈ R4 is the vector of control input.
+e main objective in this work is to design a sliding

mode control scheme to achieve the predefined-time
modified function projective synchronization of (14) and
(16). Since the predefined-time synchronization problem
is equivalent to the predefined-time stabilization problem
of the error system, now let us define the MFPLS error
vector:

e(t) � y(t) − Λ(t)x(t), (17)

from which the corresponding error dynamic system is
obtained as

_ei(t) � _yi(t) − λi(t) _xi(t) −
_λi(t)xi(t)

� Aie(t) + fi(y) − λi(t)fi(x) −
_λi(t)xi(t) + ui(t),

i � 1, 2, 3, 4.

(18)
Let fi(x, y) � fi(y) − λi(t)fi(x), and error system (18)

is simplified into

_ei(t) � Aie(t) + fi(x, y) −
_λi(t)xi(t) + ui(t),

i � 1, 2, 3, 4.
(19)

Combining the boundedness of λi(t) and Remark 2, we
can obtain that the function fi(x, y) is also bounded. In this
work, we assume that there exists known nonnegative
constant di such that

fi(x, y)




 



≤di, i � 1, 2, 3, 4. (20)

3. Design of the Predefined-Time
Control Scheme

In this section, we will focus on the design of predefined-
time synchronization control scheme by means of terminal
sliding mode control technology.+is control scheme will be
realized by two steps: (1) construct a nonsingular terminal
sliding surface to ensure the predefined-time stable of the
sliding motion. (2) Design an approaching control law to
guarantee the occurrence of the sliding motion in predefined
time.

3.1. Sliding Mode Phase. In this work, a novel nonsingular
integral terminal sliding mode switching function is in-
troduced as follows:

Si(t) � ei(t) + ∫t
0
ci1ei(σ) + ci2sgn ei(σ)( ) ei(σ)∣∣∣∣ ∣∣∣∣1+α1(

+ ci3sgn ei(σ)( ) ei(σ)∣∣∣∣ ∣∣∣∣1− α1)dσ,
(21)

where 0< α1 < 1, ci1 > 0, ci2 � (π/2
1+(α1/2)α1T1,c), and

ci3 � (π/2
1− (α1/2)α1T1,c) represent the sliding mode param-

eters, i � 1, 2, 3, 4.

Remark 4. Compared with the following two traditional
integral terminal sliding mode switching functions proposed
in [24, 28],

Si(t) � ei(t) + c∫t
0
sgn ei(σ)( ) ei(σ)∣∣∣∣ ∣∣∣∣αdσ, c> 0, 0< α< 1,

(22)

Si(t) � ei(t) + c∫t
0
ei(σ)dσ, c> 0, (23)

sliding mode switching function (21) has the following
advantage: the factor ci1ei + ci2sgn(ei)|ei|

2− α1 plays the
leading role in guaranteeing a fast convergence speed as
|ei(t)| is much larger than 1, while the factor ci3sgn(ei)|ei|

α1

is the dominant one when |ei(t)| is much less than 1, so as to
ensure the fast convergence speed throughout the sliding
mode stage.

Let

Si(t) � _Si(t) � 0, i � 1, 2, 3, 4, (24)

and the dynamics of slidingmode can be obtained as follows:

_ei(t) � − ci1ei(t) + ci2sgn ei(t)( ) ei(t)∣∣∣∣ ∣∣∣∣1+α1(
+ ci3sgn ei(t)( ) ei(t)∣∣∣∣ ∣∣∣∣1− α1), i � 1, 2, 3, 4.

(25)

Theorem 1. For a predefined timeTc > 0, sliding mode (25) is
predefined-time stable and the trajectory e(t) converges to the
equilibrium e(t) � 0within timeT1,c � β1Tc and the constant
gain β1 ∈ (0, 1).

Proof. Construct the following Lyapunov function:

V1,i(t) �
1

2
e2i (t), i � 1, 2, 3, 4. (26)

By taking the derivative of V1,i(t) along the trajectory of
system (17), we obtain

_V1,i(t) � ei(t) _ei(t)

� − ci1 ei(t)( )2 + ci2 ei(t)∣∣∣∣ ∣∣∣∣2+α1 + ci3 ei(t)∣∣∣∣ ∣∣∣∣2− α1( )
� − 2ci1V1,i −

π

α1T1,c
V1,i( )1+ α1/2( )

+ V1,i( )1− α1/2( )( )
≤ − π

α1T1,c
V1,i( )1+ α1/2( )

+ V1,i( )1− α1/2( )( ).
(27)
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Applying Lemma 1, we can directly deduce that each
element ei(t) converges to zero in the predefined time T1,c
during the sliding mode phase, where i � 1, 2, 3, 4. +is
yields the error vector e(t) converges to e(t) � 0 within
T1,c. □

Remark 5. As shown in Figure 6, compared with (22) and
(23), sliding mode switching function (21) designed in this
work can ensure error system (19) converges to the
equilibrium point ei(t) � 0 faster during the sliding mode
phase, and the convergence time can be preassigned, so it
is more flexible. Here, the error system is started from
ei(0) � 0 with i � 1, and the convergence time during the
sliding mode phase based on (21) is preappointed as
T1,c � 0.1.

3.2. Sliding Mode Approaching Phase. Until now, the sliding
surface has been established. In order to ensure the existence
of the sliding mode in the predefined time, the following
sliding mode approaching control law is designed:

ui(t) � − ci1ei + ci2sgn ei( ) ei∣∣∣∣ ∣∣∣∣1+α1 + ci3sgn ei( ) ei∣∣∣∣ ∣∣∣∣1− α1[
+ k1sgn Si( ) Si∣∣∣∣ ∣∣∣∣1+α2 + k2sgn Si( ) Si∣∣∣∣ ∣∣∣∣1− α2]
− disgn Si( ) − Aie + _λi(t)xi(t),

(28)
where k1 � (π/2

1+(α2/2)α2T2,c) and k2 � (π/2
1− (α2/2)α2T2,c)

are two control gains, and i � 1, 2, 3, 4.

Theorem 2. For the predefined time Tc given in Beorem 1,
applying control law (28), the error trajectory ei(t) of (19) will
reach the sliding surface Si(t) � 0 within the predefined time
T2,c � β2Tc and remain on it forever. Here, the weighted gain
β2 satisfies β2 ∈ (0, 1) and β1 + β2 � 1.

Proof. Selecting the following Lyapunov function, we get

V2,i(t) �
1

2
S2i (t), i � 1, 2, 3, 4. (29)

Taking the time derivative of V2,i(t), we get

_V2,i(t) � Si(t) _Si(t)

� Si _ei + ci1ei + ci2sgn ei( ) ei∣∣∣∣ ∣∣∣∣1+α1 + ci3sgn ei( ) ei∣∣∣∣ ∣∣∣∣1− α1( )[ ]
� Si fi(x, y) − disgn Si( )( ) − Sik1sgn Si( ) Si∣∣∣∣ ∣∣∣∣1+α2
− Sik2sgn Si( ) Si∣∣∣∣ ∣∣∣∣1− α2
≤ di Si

∣∣∣∣ ∣∣∣∣ − di Si∣∣∣∣ ∣∣∣∣( ) − k1 Si∣∣∣∣ ∣∣∣∣2+α2 − k2 Si∣∣∣∣ ∣∣∣∣2− α2
� − k1 Si

∣∣∣∣ ∣∣∣∣2+α2 − k2 Si∣∣∣∣ ∣∣∣∣2− α2
� −

π

α2T2,c
V2,i( )1+ α2/2( )

+ V2,i( )1− α2/2( )( ).
(30)

Hence, from Lemma 1, it follows that the error trajectory
ei(t) can reach the sliding surface Si(t) � 0 in the predefined
time T2,c and then remain on it forever. □

Remark 6. Combining the results of +eorems 1 and 2,
applying control law (28), systems (14) and (16) can realize
modified function projective synchronization within the
predefined time T1,c + T2,c � β1Tc + β2Tc � Tc. +e designer
can determine the time length of the sliding mode reaching
phase and the stable settling-time length during the sliding
mode phase by distributing the time distribution weight
according to the task requirement.

4. Simulation Experiment

In this section, we will present a chaotic secure com-
munication simulation to verify and illustrate the effec-
tiveness of the proposed predefined-time synchronization
scheme.

+e framework of chaotic secure communication is
shown in Figure 7, and the basic principle is as follows.

At the transmitting end, a chaotic signal x(t) is gen-
erated by the drive system as the carrier wave signal, and
then the signal s(t) transmitted by the sender is super-
imposed with the carrier signal x(t) and modulated into a
hybrid signal such as w(t) � Ksx(t) + s(t), which will be
transmitted to the receiver through the transmission
channel. Meanwhile, at the receiver end, the response system
tracks the state of the drive system under the action of the
synchronous controller u(t) and reverses the carrier signal
x̂(t), and then it recovers the original signal s(t) � w(t) −
Ksx̂(t) with its received signal w(t) to realize chaotic secure
communication. In the process of chaotic secure commu-
nication, there are two kinds of signals transmitted in the
signal transmission channel, one is the modulated signal
w(t) and the other is y(t). Even if the attacker intercepts the
above two signals, if he wants to obtain the original in-
formation s(t), he needs to get the secret keys including the
chaotic synchronization scheme and the signal modulation
scheme. +erefore, increasing the complexity of the
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Figure 6: Comparison of the three sliding modes mentioned in this
work with ei(0) � 6.
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synchronization scheme and signal modulation scheme is
the main way to improve the security of secure commu-
nication. Meanwhile, the more chaotic and complex the
carrier signal is, the better its concealment is. +erefore,
improving the complexity of the carrier signal is another
effective mean to improve the antiaggression of the chaotic
modulation scheme.

In this simulation, the four-dimensional multiscroll
hyperchaotic systems (14) and (16) introduced in Section 1
are considered as the encryption system (the drive system)
and the decryption system (the response system), respec-
tively. +e system parameters are taken as
μ � 1, p � 1, q � 0.02,M � 2, andN � 1, and the initial state
value are randomly chosen as x(0) � (1, 2, − 1, − 3) and
y(0) � (5, 1, − 1, − 1)T.

Based on Definition 5, the synchronization scheme is
designed as

lim
t⟶Tc−

‖e(t)‖ � lim
t⟶Tc−

‖y(t) − Λ(t)x(t)‖ � 0,

‖e(t)‖ �‖y(t) − Λ(t)x(t)‖ ≡ 0,
if t≥Tc,

(31)

in which Tc > 0 is the predefined synchronization time, and
the scaling matrix is given as

Λ(t) � diag λ1(t), λ2(t), λ3(t), λ4(t){ } � diag 1 + 0.2 sin t, − 1{

+ 0.5 cos t, 3 − 0.5 sin t, − 5 − 0.4 cos 2t},

(32)
and the upper bound vector of ‖fi(x, y)‖ is given by
(d1, d2, d3, d4) � (4, 4, 0, 0).

Meanwhile, in the simulation experiment of secure
communication, the encrypted signal (the original signal) is
given as

s(t) � 0.8 sin 2t. (33)

In order to enhance the concealment of the communica-
tion scheme, in the signal modulation process, it is usually
required tomodulate the original signal in the carrier signal at a
relatively small ratio which is less than 10%. According to the
above principles, the modulation scheme is designed as

w(t) � s(t) + Ksx(t) � s(t) + 2x1(t) − x2(t) + 6x3(t) − 2.5x4(t).

(34)

From the comparison of Figure 8, one can see that,
based on modulation scheme (34), the bandwidth of the
encrypted signal s(t) is less than that of the carrier signal
Ksx(t), and the modulated signal w(t) is more complex
and more difficult to predict than s(t), which indicates
that the modulated scheme can well hide the original
signal.

Based on +eorems 1 and 2, we carry out the simu-
lation with predefined-time sliding mode control scheme
(21) and (28) proposed in Section 3. +e parameters in the
switching function of the sliding mode surface are taken as
α1 � 0.25, α2 � 0.2, and ci1 � 10, the predefined synchro-
nization time is given as Tc � 0.2, and the weighted gains
in sliding mode stage and sliding mode approaching stage
are allotted as β1 � 0.5 and β2 � 0.5, respectively. Fur-
thermore, the parameters dependent on Tc can be ob-
tained by calculating ci2 � (π/2

1+(α1/2)α1β1Tc),
ci3 � (π/2

1− (α1/2)α1β1Tc), k1 � (π/2
1+(α1/2)α2β2Tc), and

k2 � (π/2
1− (α1/2)α2β2Tc). +en, the simulation results are

shown in Figures 9–11.
As shown in Figures 9–10, even if the synchronization

time Tc is set to be very small, the synchronization scheme
proposed in this work can still ensure that the switching
function of the sliding mode surface Si(t) reaches and re-
mains on the sliding mode surface Si(t) � 0 within the
predefined time T2,c � β2Tc � 0.1 and the MFPS error
ei(t) � 0 converges to zero within the predefined time
Tc � 0.2; thus, the predefined-time MFPS of systems (14)
and (16) is realized successfully.

According to the chaotic secure communication scheme
shown in Figure 7, during the decryption process, the re-
ceiver can use the secret keys to decrypt the original signal as
follows:

ŝ(t) � w(t) − 2 λ1(t)( )− 1y1(t) − λ2(t)( )− 1y2(t)[
+ 6 λ3(t)( )− 1y3(t) − 2.5 λ4(t)( )− 1y4(t)]. (35)

+e state trajectories of the encrypted signal s(t) and the
decrypted signal ŝ(t) are shown in Figure 11, from which
one can see that the decrypted signal can track the original
signal quickly in the desired time Tc � 0.2 and keep con-
sistent with it, which shows the effectiveness of the proposed
secure communication scheme.
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Figure 7: Framework of the chaotic secure communication.
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To further verify the advancement of the synchroniza-
tion scheme designed in this work, we shorten the pre-
defined synchronization time to Tc � 0.02. From the
simulation results shown in Figures 12–14, one can see that

the synchronization control scheme proposed in this work
can still ensure that the encoded message can be recovered
within the predefined time Tc � 0.02, which indicates the
high efficiency of the proposed predefined-time control
scheme.
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Figure 9: Time response of sliding mode surface switching
function S(t) with Tc � 0.2.
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5. Conclusion

In this article, we dealt with the problem of the predefined-
time modified function projective synchronization (MFPS)
for a class of multiscroll chaotic systems. Based on Lya-
punov stability theory, a novel predefined-time stability
criterion was proposed, applying which a terminal sliding
mode control scheme was designed to realize the modified
function projective synchronization within a predefined
time. Finally, the simulation of secure communication
showed that the proposed synchronization control scheme
can ensure that the encoded message can be recovered
within arbitrarily short time given in advance. +e sliding
mode control used in this work is well known for its ro-
bustness to system parameter variations and external
disturbances. Moreover, applying the proposed synchro-
nization control scheme, the designer can determine the
time length of the sliding mode reaching phase T2,c and the
stable settling-time length during the sliding mode phase
T1,c by adjusting the time distribution weight β1 and β2
according to the task requirement. +e smaller the pa-
rameter β2, the shorter the sliding mode approaching time
and the better the system robustness. +is means that the
control scheme designed in this work can effectively deal
with the relatively weak noise to ensure the good com-
munication quality. It is worth emphasizing that, when the
noise is strong, if the noise is strong, it is necessary to
design a filter, noise observer, or an adaptive controller for
the proposed synchronous control scheme. +is topic is
valuable and challenging, and we will study it in detail in
the follow-up work. In addition, the consensus of multi-
agent systems can be regarded as the generalization of
synchronization problem and our further work is to deal
with the predefined-time consensus of multiagent systems
applying the terminal sliding mode control scheme
designed in this work, which is also a meaningful and
challenging subject.
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