
April 2007 105

I N V I S I B L E  C O M P U T I N G

Predicting driver destinations 

could help target location-based 

services.

M obile computers have the
potential to provide a
new array of location-
based services to drivers
as they travel around.

However, naïve implementations of
vehicle-based m-commerce applica-
tions could be more frustrating than
helpful. For example, while people
might welcome information about
available discount parking several
minutes before arriving at a crowded
airport or urban center, they would
not likely want to hear about a sale on
bananas as they drive by a grocery
store at 40 mph. 

An automobile’s navigation system
could answer the question, “Where do
you want to go today?” by using accu-
rate predictions of driver destinations
to deliver anticipatory notifications
about traffic jams, alternate routes,
and interesting sights. In addition,
location-specific services could be bet-
ter targeted to drivers, highlighting
relevant geocentric opportunities as
well as suppressing irrelevant market-
ing, much like an antispam filter.

The Predestination algorithm pre-
dicts a driver’s destination based on

both general trends, such as the likeli-
hood that people will choose various
types of destinations, and personalized
data such as a list of previously visited
locations (http://research.microsoft.
com/users/jckrumm/predestination.pdf).
We designed the algorithm to run on
a vehicle’s navigation system and learn
a driver’s habits based on logged GPS
measurements. 

Moving beyond classic machine-
learning techniques, we added an
open-world modeling component.
Designed to boost prediction accuracy
in the algorithm’s early “out of the
box” phase when little or no individ-
ual training data is available, the com-
ponent also extends to longer-term
usage. In the open-world model, the
algorithm can predict destinations
that the driver has not yet visited.

WHERE DO PEOPLE DRIVE?
In early 2004, we initiated the

Microsoft Multiperson Location Sur-
vey (MSMLS) to collect GPS mea-
surements from volunteer drivers with
the goal of developing a corpus of
driving data to support multiple loca-
tion-centric research projects. Each

MSMLS participant receives a GPS
receiver that can record up to 10,000
GPS waypoints. The receivers are con-
figured to be “hands off;” drivers in
the study simply leave the unit unat-
tended on their car’s dashboard for
two to four weeks. 

To date, we have collected data
from about 200 drivers, mostly in the
Seattle, Washington, area, covering
about 135,000 kilometers of driving
in about 11,000 discrete trips. Each
of these trips represents one destina-
tion that we use to train and test
Predestination.

WHERE DO YOU GO?
Predestination represents space as a

simple grid of 1-km squares, as Figure
1 shows. Square outlines indicate the
relative popularity of destinations,
with darker outlines representing
higher destination probabilities—thus
coastal and rural areas are clearly not
as popular as urban and residential
areas.

As a trip progresses, the algorithm
computes a probability for each cell
of the grid that the driver will end the
trip there. Using Bayesian inference, it
combines four different sources of evi-
dence about the driver’s behavior:
ground cover, driving efficiency, driv-
ing time, and personal destinations.
The algorithm recomputes all the
probabilities each time the driver
enters a new cell. 

Computing probabilities, rather
than a single-most-likely cell, exposes
the inherent uncertainty in prediction,
which applications can exploit in deci-
sion making.

Ground cover
The US Geological Survey catego-

rizes the ground cover of each 30m �
30m square of the country into one
of 21 different categories. In consid-
ering the destinations of our drivers,
we found that the two most likely
destination labels were, by far, “com-
mercial” and “low-intensity residen-
tial.” Among the least popular were
“bare rock,” “perennial ice,” and
“emergent herbaceous wetlands.”
Computing probabilities of destina-
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their ultimate destination based on
driving-time estimates from a map-
based route planner. 

As Figure 2 shows, destination prob-
abilities start out uniform and then
gradually drain away from regions
where the driver is clearly not heading.
The algorithm’s driving-efficiency ele-
ment updates destination probabilities
by increasing the likelihood of those
cells to which the observed path is a
somewhat efficient route.

tion by type of ground cover yields
the grid shown in Figure 1.

Driving efficiency
We have found that drivers are not

optimally efficient in getting where
they want to go, though efficiency
tends to increase as they near their
destination. Predestination captures
this tendency by computing how often
drivers transition to a grid cell that is
actually farther away in time from

Driving time
According to the 2001 US National

Household Travel Survey (http://nhts.
ornl.gov/2001/index.shtml), the aver-
age car trip is 14 minutes long.
Working from an NHTS distribution
of trip times, along with estimated
driving times between cells in our
grid, Predestination computes the
probability of each cell based on how
long it would take to drive there. This
tends to bound predictions to those
relatively close to the starting point.

Personal destinations
Drivers tend to revisit places

they’ve been before. In fact, after log-
ging destinations for two weeks, we
found that the probability of a driv-
er’s trip terminating in a previously
unvisited cell within the grid was
only about 9 percent. The rate of a
driver visiting a previously unob-
served destination decays roughly
exponentially with observation time,
converging to an equilibrium rate of
visiting new destinations. Interest-
ingly, the rate that women visit pre-
viously unobserved destinations
tends to decay slightly faster than the
rate for men. 

Our analysis also showed that des-
tinations are often clustered, with dri-
vers choosing destinations near each
other, likely for reasons of efficiency
and familiarity. 

Figure 1. Grid of 1-km squares showing the relative popularity of destinations in the Seat-

tle, Washington, area. Darker outlines represent higher destination probabilities.

Figure 2. Predestination’s driving efficiency element.The driver starts in the red cell on the left and leaves a path of filled cells as the trip

proceeds.The algorithm updates destination probabilities by increasing the likelihood of those cells to which the observed path is a

somewhat efficient route.
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predicted destination as the highest-
probability cell, we found, unsur-
prisingly, that the algorithm’s pre-
diction accuracy improves as drivers
progress on their trip. Median error
begins at about 3 km, drops to
around 2 km at the halfway point,
and goes down to 1 kilometer at the
end of the trip—it is not zero because
Predestination doesn’t know when
the trip ends.

We imagine Predestination as a
future component of vehicle naviga-
tion systems, which are already
equipped with the necessary GPS,
CPU, and map data. Predictions about
destination can be an important com-
ponent of ubiquitous computing, and
we hope that such predictions might
one day enhance the provision of
information and services to people as
they move through the world. ■

Predestination’s “closed world”
component considers drivers’ habit-
ual return to previously observed des-
tinations, while the “open world”
component calculates the learned like-
lihood that drivers will visit a previ-
ously unlogged destination. The
algorithm folds the two analyses
together to compute probability dis-
tributions over destinations. 

The open-world modeling method-
ology has several useful properties,
including the provision of a smooth
transition over time between un-
trained, out-of-the-box behavior and
more fully trained customization for
an individual driver.

W e trained Predestination on
half of our data and tested it
on the other half. Taking the

John Krumm is a researcher in the Adap-
tive Systems and Interaction Group at
Microsoft Research. Contact him at 
jckrumm@microsoft.com.

Eric Horvitz is a principal researcher and
research area manager in the Adaptive
Systems and Interaction Group at
Microsoft Research. Contact him at
horvitz@microsoft.com.

Editor: Bill N. Schilit, Google;
bill.schilit@computer.org,
http://schilit.googlepages.com

■ Monthly updates highlight the latest additions to the digital library 
 from all 23 peer-reviewed Computer Society periodicals.

■ New links access recent Computer Society conference publications.

■ Sponsors offer readers special deals on products and events.

Available for FREE to members, students, and computing professionals.

Visit http://www.computer.org/services/csdl_subscribe

For the 
IEEE 
Computer Society 
Digital Library 
E-Mail Newsletter

Si
gn

 U
p 

To
da

y



108 Computer

I N V I S I B L E  C O M P U T I N G


