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Abstract
Prediabetes is a state characterized by impaired fasting glucose or impaired glucose tolerance. Evidence is increasingly

demonstrating that prediabetes is a toxic state, in addition to being a harbinger of future development of diabetes mellitus.

This minireview discusses the pathophysiology and clinical significance of prediabetes, and approach to its management, in

the context of the worldwide diabetes epidemic. The pathophysiologic defects underlying prediabetes include insulin resistance,

b cell dysfunction, increased lipolysis, inflammation, suboptimal incretin effect, and possibly hepatic glucose overproduction.

Recent studies have revealed that the long-term complications of diabetes may manifest in some people with prediabetes; these

complications include classical microvascular and macrovascular disorders, and our discussion explores the role of glycemia in

their development. Finally, landmark intervention studies in prediabetes, including lifestyle modification and pharmacologic treat-

ment, are reviewed.
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Introduction

Nearly 415 million people worldwide are estimated to have
diabetes mellitus, and over 90% of these have type 2 dia-
betes mellitus (T2DM). In 2014, 9% of adults 18 years and
older had diabetes.1–3 Global estimates show that diabetes
accounted for 12% of health expenditures in 2010, or at least
$376 billion—a figure expected to reach $490 billion by
2030.2 The increasing prevalence affects children and ado-
lescents as well, especially the obese pediatric population.3

Diabetes is the leading cause of blindness, amputation,
and end-stage kidney disease, and is associated with an
approximately two- to four-fold increased risk of myocar-
dial infarction and stroke.4–6 A number of pivotal clinical
trials have demonstrated that the microvascular complica-
tions of diabetes can be prevented through optimization of
glycemic control. Furthermore, glycemic control along with
control of comorbid risk factors such as hypertension and
dyslipidemia significantly decreases composite cardiovas-
cular risks.7

The development of T2DM is usually preceded by a vari-
able interlude of prediabetes, characterized by impaired

fasting glucose (IFG) or impaired glucose tolerance (IGT).8–10

Studies have demonstrated that prediabetes is a toxic state in
which much of the cardiovascular disease (CVD) burden asso-
ciated with established diabetes is already evident.11–13

Similarly, emerging studies indicate that the microvascular
complications of diabetes (traditionally thought to develop
after years of hyperglycemia) can in fact manifest during the
stage of prediabetes. In this minireview, we present the epi-
demiology, clinical manifestations, pathophysiology, and
approach to management of the microvascular and macrovas-
cular complications associated with the toxic cardiometabolic
state of prediabetes.

Scope and definition of the problem

Prediabetes is defined as an intermediate state of hypergly-
cemia with glycemic parameters above normal but below
the diabetes threshold.11 The diagnosis of prediabetes
can be established on the basis of a fasting plasma glucose
of 100–125 mg/dL (IFG), a 75-g oral glucose tolerance test
showing a 2-h postload plasma glucose of 140–199 mg/dL
(IGT), or an hemoglobin A1c (HbA1c) level of 5.7–6.4%.14–18
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The worldwide prevalence of IGT in 2010 was estimated
to be 343 million, and the International Diabetes Federation
projects an increase in prevalence of prediabetes to 471 mil-
lion globally by 2035.15 In the United States, the Centers for
Disease Control and Prevention National Diabetes Statistics
Report from 2009 to 2012 indicated that 37% of US adults
older than 20 years and 51% of those older than 65 had
prediabetes, as defined by fasting glucose or HbA1c

levels.6 When applied to the entire 2012 US population,
these estimates suggest that there are nearly 86 million
adults with prediabetes in the United States.6

Risk factors for prediabetes

Generally, the risk factors for prediabetes are similar to
those for diabetes (Table 1). A recent Chinese study

involving over 27,000 patients found that both body mass
index (BMI) and waist circumference were positively asso-
ciated with impaired glucose metabolism and risk of pre-
diabetes.19 Waist circumference had a stronger association
with glucose impairment and diabetes compared with BMI,
indicating that central obesity is more closely associated
with risk of prediabetes.19 These findings suggest that
waist circumference should be included in assessing risk
of T2DM in clinical practice.19

Other factors that have been examined in studies of T2DM
are race, ethnicity, family background, and first-degree rela-
tives with T2DM. The Diabetes Prevention Program enrolled
approximately 3000 multiethnic individuals with IGT,
diagnosed using a 75-g oral glucose tolerance test. In this
landmark study, the risk of incident diabetes (approximately
11%) was the same in non-Hispanic blacks, Asian-Americans
and Pacific Islanders, non-Hispanic whites, Hispanic-
Americans, and Native Americans.20 These data suggest
that once individuals progress from normal glucose toler-
ance to IGT, the risk for further progression to diabetes is
the same across ethnic groups.

Pathophysiology of prediabetes

Similar to the findings in established T2DM, prediabetes is
associated with demonstrable alterations in insulin sensitiv-
ity, pancreatic b-cell function, inflammatory cytokines,
incretin response, and hepatic glucose production (HGP)
(Figure 1).21–39 Insulin resistance precedes the development
of diabetes by several years and is evident in individuals
with IFG or IGT.21–23 Using hyperinsulinemic euglycemic

Insulin 
resistance

Dysregulated hepatic 
glucose production

Prediabetes
Impaired insulin
secretionIncreased 

lipolysis

Figure 1 Pathophysiology of prediabetes: skeletal muscle insulin resistance, impaired insulin secretion by the pancreatic b-cells, dysregulated hepatic glucose

production and increased lipolysis are among the documented defects underlying the development of prediabetes. (A color version of this figure is available in the

online journal.)

Table 1 Risk factors for type 2 diabetes

� Physical inactivity

� First-degree relative with diabetes

� High-risk race/ethnicity

� Gestational diabetes or delivery of a baby weighing 9 lb or greater

� HDL cholesterol <35 mg/dL � TG >250 mg/dL

� Hypertension (>140/90 mmHg or on therapy)

� A1C �5.7, impaired glucose tolerance, or impaired fasting glucose

on previous testing

� Conditions associated with insulin resistance: severe obesity,

acanthosis nigricans, PCOS history

� History of cardiovascular disease

Source: American Diabetes Association.14
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clamp and the homeostasis model assessment of insulin
resistance (HOMA-IR), Dagogo-Jack et al.23 determined
that subjects with IFG or combined IFGþIGT have up
to a three-fold difference in insulin sensitivity compared
with normoglycemic subjects. In the Pathobiology of
Prediabetes in a Biracial Cohort study, it was found that,
with regard to insulin sensitivity, both clamp-derived
insulin sensitivity (predominantly muscle action) and
HOMA-IR (a reflection of hepatic insulin sensitivity) were
predictive of progression to prediabetes (Figure 1).24

Similarly, early development of insulin resistance was asso-
ciated with progression from normoglycemia to prediabetes,
and from prediabetes to T2DM, among Pima Indians.25

Along with insulin resistance, b-cell dysfunction (char-
acterized by impaired insulin secretory response to glucose
administration) occurs in prediabetes and worsens with
subsequent progression to T2DM.28–31 Insulin secretory
dysfunction has also been demonstrated during transition
from normoglycemia to prediabetes in African-American
and Caucasian offspring of T2DM parents.24 The incretin
effect refers to the greater increase in plasma insulin
response to glucose ingestion when compared with intra-
venous glucose infusion in amounts that match plasma glu-
cose levels generated by ingested glucose (isoglycemic).
The incretin effect is thought to be responsible for 70–80%
of total insulin release to the oral glucose load and is
mediated by glucagon-like peptide-1 (GLP-1) and glucose-
dependent insulinotropic peptide.33–35 The intestinal secre-
tion of GLP-1 following oral glucose ingestion has been
reported to be attenuated in people with IGT compared
with normoglycemic subjects.34

Other pathophysiological processes associated with
T2DM that may be initiated during the prediabetes phase
include adiposopathy, increased lipolysis, chronic low-
grade inflammation, and dysregulated HGP.36–44 As the
magnitude of insulin secretion or insulin action declines
during progression to T2DM, there is tendency to increased
lipolysis; the resultant increase in circulating free fatty acids
(FFAs) further worsens insulin resistance in muscle and
liver tissue.36–38 Moreover, in non-diabetic individuals,
FFAs stimulate insulin secretion, whereas in people predis-
posed to diabetes elevated FFAs may fail to augment insulin
secretion, while continuing to impair peripheral glucose
uptake and promote hepatic glucose overproduction.38

Several studies have reported that elevated levels inflam-
matory cytokines, such as high-sensitivity C-reactive pro-
tein (hsCRP)and tumor necrosis factor-alpha are associated
with an increased risk of progression from normoglycemia
to prediabetes.24,41,42 In contrast, adiponectin, a cytokine
with favorable cardiometabolic and anti-inflammatory
effects, is less abundant in subjects with prediabetes com-
pared with healthy control, and its levels decrease further
during progression to T2DM.40,43 Finally, although meas-
urement of HGP can be challenging, hyperinsulinemic
clamp studies coupled with stable isotope techniques in
healthy subjects, subjects with isolated IFG, and those
with combined IFGþ IGT have led to the conclusion that
HGP is indeed increased in prediabetes (IFG with or with-
out IGT).44,45 Taken together, these data lend additional

support to the concept that hepatic insulin resistance
occurs early in the evolution of T2DM.45

Complications of prediabetes

The most obvious sequela of prediabetes is the risk of devel-
opment of T2DM. The estimated annual conversion rate from
prediabetes to diabetes is approximately 10%, making it a
high-risk state for development of diabetes.20 In the China
Da Qing Diabetes Prevention Study, the cumulative incidence
of progression to diabetes from IGTover a 20-year period was
reported to be higher than 90%.16 The predictors of progres-
sion from prediabetes to T2DM include weight gain, insulin
resistance, decreased insulin secretion and unfavorable adi-
pocytokine profile, among others.20,21,25,31,32,43 In addition to
the risk of progression to T2DM, the prediabetes state itself is
associated with a spectrum of microvascular and macrovas-
cular complications.

Macrovascular complications

Prediabetic dysglycemia increases the risk of adverse CVD
events, such as myocardial infarction, stroke, or cardiovascu-
lar death.9,46 In the EPIC-Norfolk study, a 1% increase in
HbA1c within the normal range was associated with increased
10-year cardiovascular mortality.47 An analysis of the 44–55-
year-old men from the Paris Prospective Study cohort showed
that, compared with normoglycemic subjects, the presence of
IGT was associated with a doubling of CVD mortality.48

Furthermore, patients who progress to T2DM manifest an
additional risk for atherosclerotic disorders, resulting in an
increased burden of CVD, stroke and peripheral vascular dis-
eases, compared with non-diabetic subjects.49,50 Most patients
with prediabetes have features of the insulin resistance
(metabolic) syndrome, including upper-body obesity, hyper-
triglyceridemia, decreased HDL cholesterol levels and hyper-
tension, among others. Components of the metabolic
syndrome often can be identified in prediabetic subjects sev-
eral years before the diagnosis of T2DM (Figure 2).49,50

Microvascular complications

The three classical microvascular complications—retinopathy,
neuropathy, and nephropathy—have all been documented in
people with prediabetes (Figure 2).50–57 The occurrence of
these ‘‘long-term’’ complications of hyperglycemia in people
with prediabetes indicates susceptibility of certain individuals
to the development of microvascular complications following
exposure to subdiabetic glycemic burden. The exact basis for
such increased susceptibility has not been unraveled. In the
Diabetes Prevention Program (DPP), �8% of subjects with
IGT had retinopathy,51 similar to the 8.1% prevalence of ret-
inopathy observed among individuals with prediabetes in
the Gutenberg Health Study in Germany.53 In another study,
the estimated prevalence of microalbuminuria among predia-
betic subjects at15.5%.13 Individuals with prediabetes also
have altered retinal hemodynamics and microvascular func-
tion.54 Thus, retinal vasoreactivity measurements may be a
sensitive tool to assess early vascular risk.54

Remarkably, symptoms and signs of classical diabetic
peripheral polyneuropathy can occur in people with
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prediabetes.11,55,56 Approximately 11–25% of individuals
with prediabetes show evidence of peripheral neuropathy.55

Furthermore, prediabetes is associated with autonomic dys-
function, manifesting as reduced heart rate variability and
increased prevalence of erectile dysfunction.11

Mechanisms of prediabetic complications

The pathogenesis of microvascular complications in
patients with established diabetes is not fully understood.
Besides genetic predisposition, some proposed mechanisms
include hyperglycemia-induced alterations in the polyol,
hexosamine, and protein kinase C (PKC) pathways;
advanced glycosylation; glomerular hyperfiltration; induc-
tion of transforming growth factor-b and other deleterious
growth factors; and oxidative stress, among others.50,57

Among these various contenders, those involving blood
glucose elevation are particularly pertinent when consider-
ing potential mechanisms to explain the occurrence of dia-
betic complications in people with prediabetes. Intracellular
hyperglycemia has been linked to the activation of four
toxic pathways that can lead to tissue damage: increased
flux through the polyol pathway, formation of advanced
glycosylation end products, increased hexosamine pathway
activity, and PKC activation (Figure 3).50,57 The operation of
these toxic pathways has been documented in experimental
models and humans with diabetes; however, clinical experi-
ence indicates that actual tissue damage leading to diabetes
complications requires several years of exposure to uncon-
trolled hyperglycemia. What is unclear, therefore, is why
some individuals with subdiabetic levels of glycemia
become susceptible to the ‘‘premature’’ development of
complications typically seen in patients with long-standing
diabetes. It is possible that individuals vary in their

responses to varying levels of glycemia with regard to the
threshold for triggering the aforementioned toxic path-
ways.50,57 Equally plausible is a multiplier effect, wherein
the simultaneous activation of multiple pathways might
render certain individuals particularly vulnerable to the
development of premature microvascular and macrovascu-
lar complications. Indeed one toxic pathway, involving acti-
vation of PKC, links elevated blood glucose to downstream
mechanisms that induce tandem alterations in the expres-
sion of nitric oxide synthase, vascular endothelial growth
factor, plasminogen activator inhibitor-1, TGF-b, reactive
oxygen species, and nuclear factor-kappa B, a master regu-
lator of inflammation (Figure 3).50,57 These downstream
effects of glycemic activation of PKC, especially those invol-
ving vascular and inflammatory pathways, can account
for the worsening b-cell function, insulin resistance, micro-
vascular and macrovascular complications in susceptible
persons. Thus, current understanding suggests that
the modest elevation of blood glucose levels in the predia-
betic state may have profound deleterious effects in suscep-
tible individuals.50,57–59 Despite emerging contributions
from the application of metabolomics, the current lack
of precise tools for predicting which persons with predia-
betes would develop microvascular and macrovascular
complications argues in favor of a comprehensive preven-
tion approach broadly targeted at individuals with
prediabetes.60–62

Intervention studies

The U.S. Food and Drug Administration have not approved
any drug specifically for the treatment of prediabetes.
Several landmark clinical trials have established the efficacy
and primacy of lifestyle modification in preventing

Prediabetes

Cardiovascular                     
Disease

Cerebrovascular 
Disease

Re�nopathy

Neuropathy

Microalbuminuria

Nephropathy

Peripheral 
Vascular Disease

Type 2 DM

Figure 2 The toxic environment of prediabetes increases the risks for macrovascular and microvascular complications

1326 Experimental Biology and Medicine Volume 241 June 2016
. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .



progression from prediabetes to T2DM.20,63,64 The Finnish
Diabetes Prevention Study showed that for every 1 kg
decrease in weight, the risk of developing diabetes in the
future was reduced by 16%.63 The DPP demonstrated that
approximately 10% of subjects with IGT and high-normal
FPG progressed to clinical diabetes each year over an aver-
age of 2.8 years of follow-up in the study.20 The Da Qing
study showed a 42% decrease in the incidence of diabetes in
participants in the lifestyle intervention groups compared
with those in the control group over 6 years.64 The Da Qing
study cohort also showed reduction in cardiovascular
and all-cause mortality and diabetes complications in
the lifestyle intervention arm during a 20-year follow-
up period.64,65 Clearly, lifestyle intervention is a cost-
effective approach to diabetes prevention, with evidence
of a 40–70% relative risk reduction for future development
of T2DM.20,63,64–66

In addition to lifestyle modification, several medications
have been tested for their efficacy in preventing diabetes
among people with prediabetes (Table 2).67–79 Some
pharmacologic agents approved for obesity treatment (e.g.
orlistat) and drugs used for the treatment of T2DM (met-
formin, thiazolidinediones, alpha-glucosidase inhibitors)
have been shown to delay or prevent the conversion from
prediabetes to T2DM.67–79 The medications that have been
tested have had variable efficacy on diabetes prevention
(�25–% risk reduction vs. placebo) and are often associated

with adverse effects. In the studies that attempted drug
withdrawal, a rapid increase in blood glucose ensued, indi-
cating that the drugs were masking rather than preventing
diabetes.71,73 Notably, the effect of metformin (31% risk
reduction vs.placebo) was weaker than the 58% risk reduc-
tion observed in the lifestyle arm in the DPP.20 In the Indian
Diabetes Prevention Program, neither metformin nor
pioglitazone showed additive effect on diabetes prevention
when combined with lifestyle modification.78,79 Besides
pharmaceutical agents, nutraceuticals have been proposed
as an alternative remedy for mitigating diabetes risk;
however, there is insufficient evidence to support that
approach.75

Indeed, the desirable characteristics of an acceptable
drug for the primary prevention of T2DM set a high bar
that has so far been elusive (Table 3).

Restoration of normal glucose regulation

In the DPP, intensive lifestyle modification, but not metfor-
min therapy, was significantly associated with the restor-
ation of normal glucose regulation (NGR).80,81 A recent
analysis of the Diabetes Prevention Program Outcome
Study revealed a 56% long-term reduction in diabetes inci-
dence in people with prediabetes who were able to return to
NGR, even if transiently. Thus, regression from prediabetes
to NGR, even if transient, appears to predict long-term
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Activation of Toxic        
Pathways by Glucose and/or 

Reactive Oxygen Species

Polyol Pathway   AGE/RAGE Pathway   PKC Pathway Hexosamine Pathway

Target Tissue Damage
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fructose and sorbitol 
depletes antioxidant 
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cell  to oxidative stress.
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Figure 3 Toxic pathways linking blood glucose levels to tissue damage in susceptible persons. Intracellular hyperglycemia activates the aldose reductase (polyol)

pathway as well as other pathways involving advanced glycosylation, PKC activation and increased flux through nutrient-sensing the hexosamine pathway. These

activated pathways further lead to induction of downstream processes that mediate fibrosis, vascular dysfunction, inflammation, free radical generation, and tissue

damage.

AGE: advanced glycosylation end products; eNOS: endothelial nitric oxide synthase; NF-kB: nuclear factor-kB; PAI-1: plasminogen activator inhibitor-1; PKC: protein

kinase C; RAGE: receptor for AGE; TGF-b: transforming growth factor-b; UDP: uridine diphosphate; VEGF: vascular endothelial growth factor. (A color version of this

figure is available in the online journal.)
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decrease in the risk of glycemic progression to T2DM.81

Logically, subjects who remain free from dysglycemia and
experience NGR would be protected from diabetes compli-
cations. These considerations argue strongly in favor of
having reversal of prediabetes and restoration of NGR as
a primary goal for intervention in people with prediabetes.

Conclusions

In conclusion, prediabetes, far from being benign, is a toxic
environment that is associated with the development of
microvascular and macrovascular complications. Given
the increasing global burden of diabetes, it is imperative

for public health planners to promote screening and early
recognition of people with prediabetes, so that timely life-
style counseling can be offered. Also, advances are needed
in the science of prediction, so as to better identify and
target individuals with prediabetes at high risk for the pre-
mature development of classical diabetes complications.
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