
Predicate Abstraction for Software Verification

Cormac Flanagan Shaz Qadeer
Compaq Systems Research Center

130 Lytton Ave, Palo Alto, CA 94301

Abstract

Software verification is an important and difficult prob-
lem. Many static checking techniques for software re-
quire annotations from the programmer in the form of
method specifications and loop invariants. This anno-
tation overhead, particularly of loop invariants, is a sig-
nificant hurdle in the acceptance of static checking. We
reduce the annotation burden by inferring loop invari-
ants automatically.

Our method is based on predicate abstraction, an
abstract interpretation technique in which the abstract
domain is constructed from a given set of predicates
over program variables. A novel feature of our approach
is that it infers universally-quantified loop invariants,
which are crucial for verifying programs that manipu-
late unbounded data such as arrays. We present heuris-
tics for generating appropriate predicates for each loop
automatically; the programmer can specify additional
predicates as well. We also present an efficient algo-
rithm for computing the abstraction of a set of states
in terms of a collection of predicates.

Experiments on a 44KLOC program show that our
approach can automatically infer the necessary predi-
cates and invariants for all but 31 of the 396 routines
that contain loops.

1 Introduction

Ensuring the reliability of software systems is impor-
tant but extremely difficult, due to the test coverage
problem. Static analysis techniques could potentially
verify that a program satisfies a (lightweight) specifi-
cation, for example, that it should not crash. A com-
pletely automatic solution to this checking problem is
impossible in general since the problem is undecidable.
Semi-automatic techniques rely on the programmer to
provide additional annotations describing method spec-
ifications and loop invariants. This annotation overhead
is a significant obstacle to the use of formal techniques

in software design. While method specifications also
function as useful documentation and may be helpful
for code maintenance, loop invariants do not provide
comparable benefits along these lines. Thus, the task
of writing appropriate loop invariants for a large pro-
gram is perceived to be especially tedious.

In this paper, we present a new method for automat-
ically inferring loop invariants. Our method is based on
predicate abstraction [GS97], which is a special form
of abstract interpretation [CC77] in which the abstract
domain is constructed using a given set of predicates.
These predicates are generated in a heuristic manner
from the program text; the programmer is free to pro-
vide additional predicates. Given a suitable set of pred-
icates for a given loop, our algorithm infers loop invari-
ants that are boolean combinations of these predicates.
Thus, the problem of computing loop invariants is re-
duced to the easier problem of guessing a relevant set
of simple predicates.

Our algorithm analyzes the loops of a method in or-
der, since knowing the invariant for one loop constrains
the possible initial states of a subsequent loop, and helps
infer a more precise invariant for that loop. The invari-
ant for each loop is computed by iterative approxima-
tion. The first approximation is obtained by abstracting
the set of reachable states at loop entry. Each succes-
sive approximation enlarges the current approximation
to include the states reachable by executing the loop
body once from the states in the current approxima-
tion. The iteration terminates in a loop invariant since
the abstract domain is finite.

The fundamental operation in the algorithm de-
scribed above is the abstraction of a set of reachable
states. The abstraction operation is performed by mak-
ing queries to an automatic theorem prover, and may re-
quire an exponential number of queries. Existing meth-
ods [DDP99, SS99] perform much better in practice,
but are still costly. We describe a new abstraction al-
gorithm that requires fewer queries than existing algo-
rithms, particularly for large numbers of predicates.

The loop invariant inference method described above
is inadequate for verifying loops that manipulate un-
bounded data such as arrays. For such loops, the re-
quired invariants are universally quantified. Naive ap-
plication of predicate abstraction requires the user to
guess the full quantified expression as a predicate, which
is no simpler than guessing the loop invariant itself. We
avoid this limitation by allowing the predicates to re-
fer to skolem constants , which are fresh variables not
mentioned anywhere else in the program. These skolem
constants represent some fixed, unknown value, thus
allowing us to universally quantify them out from the
inferred invariant without loss of soundness.

We have implemented our algorithm using the in-
frastructure of the Extended Static Checker for Java
(ESC/Java) [DLNS98, LSS99]. The goal of ESC/Java
is to detect statically programming errors that are nor-
mally detected only at run-time, if ever. Such er-
rors include null pointer dereferences, array bounds er-
rors, division by zero, and the violation of programmer-
specified properties such as method specifications and
object invariants. We have evaluated our method on
several small but interesting examples, including the list
partition algorithm from the SLAM paper [BMMR01]
and a selection sort example. We have also evaluated
our method on the front end for ESC/Java, which con-
tains about 44K lines of Java code and 520 loops. Our
loop invariant inference algorithm, using heuristics we
develop for guessing candidate predicates, was able to
verify the correctness of all but 31 of the 396 methods
that contain loops.

Background. Beginning in the 1970’s, a num-
ber of researchers have addressed the problem of au-
tomatically inferring loop invariants. The first pa-
pers [GW74, Weg74, KM76] proposed heuristics for gen-
erating loop invariants for sequential programs. Algo-
rithms based on iterative forward and backward traver-
sal, with heuristics for terminating the iteration, ap-
peared soon after [GW75, SI77]. Abstract interpreta-
tion [CC77] introduced the widening operator, which
was used to compute [CH78] fixpoints more system-
atically. ESC/Modula-3 [DLNS98] experimented with
generating loop invariants using both abstract inter-
pretation and a second technique called loop modifi-
cation inference. In the 1990’s, a number of researchers
worked on generating auxiliary invariants for proving
safety properties of concurrent algorithms and proto-
cols [MP92, BLS96, BBM97].

Predicate abstraction has also been used for verify-
ing protocols [DDP99, SS99] and hardware [CGJ+00].
Recently the SLAM project [BMMR01] has also ex-
plored predicate abstraction for sequential programs.
They perform abstraction on each program statement,
whereas our method abstracts only when necessary,

/*@ requires a != null && b != null */
/*@ requires a.length == b.length */
/*@ ensures \result == a.length || b[\result] */

int find(int[] a, boolean[] b) {
int spot = a.length;
for (int i = 0; i < a.length; i++) {

if (spot == a.length && a[i] != 0)
spot = i;

b[i] = (a[i] != 0);
}
return spot;

}

Figure 1: Method find

that is, at loop headers. As a result, our inferred in-
variants are more precise and we require fewer predi-
cates. In addition, the SLAM approach is unable to
infer universally-quantified invariants, which we have
found crucial for verifying many programs.

Outline. Section 2 motivates our approach with a
simple example. Section 3 describes an idealized pro-
gramming language and Section 4 describes how to infer
loop invariants for this language. Our inference algo-
rithm depends on the predicate abstraction algorithm
described in Section 5. Section 6 describes our heuris-
tics for guessing suitable predicates. Section 7 reports
on our experience using our method on various exam-
ples. Finally, we conclude in Section 8.

2 Motivating example

We illustrate our technique for inferring loop invariants
using the method find shown in Figure 1. This method
takes as parameters an array of integers a and an ar-
ray of booleans b. The method returns the index of the
first nonzero element of a if one exists and a.length
otherwise. The method also sets the i-th element of b
to true if the i-th element of a is nonzero, and to false
otherwise. The preconditions of the method specified
by the annotation /*@ requires .. */ states that the
arrays are nonnull and of the same length. The post-
condition /*@ ensures .. */ states that the returned
index (denoted by \result) is either a.length or b is
true at that index.

The method body consists of a loop that iterates
over the elements of a and sets the elements of b appro-
priately. A variable spot, initialized to a.length, is set
to the index of the first nonzero element if one exists.
Proving that no array bounds violation occurs requires
the loop invariant 0 <= i. This is a simple invariant
involving a single predicate and can be stated without
much effort. Proving the postcondition of this method

requires the more complex loop invariant:
/*@ loop_invariant spot == a.length ||

(b[spot] && spot < i) */

Constructing this loop invariant requires ingenu-
ity in choosing the correct boolean combination of
the three predicates spot == a.length, b[spot], and
spot < i. Predicate abstraction allows us to specify
only the predicates (none of which is a loop invariant
by itself), and derive the loop invariant automatically
from them. These loop predicates are suggested to the
algorithm by the annotation:
/*@ loop_predicate spot == a.length, b[spot], spot < i */

The predicate abstraction algorithm computes the
strongest boolean combination of these three predicates
by iterative approximation. The first approximation
is spot == a.length, which holds at loop entry.
The second approximation, after one loop iteration,
is spot == a.length || (b[spot] && spot < i).
This approximation is a fixpoint and is therefore the
desired loop invariant.

Now suppose we want to verify the following addi-
tional postcondition, which states that every element of
the array b before the returned value contains false:
/*@ ensures (\forall int j; 0 <= j && j < \result

==> b[j] == false) */

Proving this postcondition requires the additional loop
invariant:
/*@ loop_invariant

(\forall int j; 0 <= j && j < i && j < spot
==> b[j] == false) */

The loop invariant is universally quantified; the compo-
nent predicates of the invariant refer to the quantified
variable j as well to the program variables. Therefore,
in order to use predicate abstraction as before, we have
to specify the whole loop invariant as a predicate, which
does not simplify the problem. We get around this dif-
ficulty by introducing a skolem constant j, which is a
fresh variable not mentioned elsewhere in the program,
and by introducing extra predicates that refer to the
skolem constant j as well as to the program variables.
/*@ skolem_constant int j;

loop_predicate 0 <= j, j < i, j < spot, b[j]; */

We now perform predicate abstraction yielding the
new invariant:

0 <= j && j < i && j < spot ==> b[j] == false

Since the skolem constant j represents some fixed
unknown value, this invariant is valid for any value of j.
Therefore, the skolem constant can be safely quantified
out to yield the desired universally-quantified loop in-
variant. We have found this technique to be crucial
when checking programs that manipulate unbounded
data, such as arrays.

A, B ∈ Stmt ::= assert e
| assume e
| x := e
| A ; B
| A B
| {P , I} while e do B end

x ∈ Var (variables)
e ∈ Expr (expressions)
I ∈ Formula (logical formulae)
P ⊆ Formula (loop predicates)

Figure 2: A guarded command language

3 A guarded command language

We have implemented our technique as part of
ESC/Java. To verify a Java program, ESC/Java trans-
lates each Java method and its specification into a log-
ical formula called a verification condition (VC). Ide-
ally, the VC has the property that if it is valid then
the method is correct, i.e., it implements its specifica-
tion and never performs an erroneous operation such as
dereferencing a null pointer.

Deriving verification conditions for a large and real-
istic language such as Java is quite complex. To help
structure and modularize this translation, ESC/Java
first translates each method and its specification into an
intermediate representation, known as a guarded com-
mand. This translation eliminates many of the com-
plexities of the Java programming language; it is out-
lined elsewhere [LSS99]. In this paper, we concentrate
on the subsequent task of inferring suitable invariants
for the loops in the intermediate representation.

We base our development on the intermediate lan-
guage shown in Figure 2. The language is a variation
of Dijkstra’s guarded commands [Dij76], together with
some more recent additions (see, e.g., [Nel89, BvW98]).
The language includes assert and assume statements,
assignment statements, sequential composition, nonde-
terministic choice, and loops. By including assume
statements, we no longer need the “guards” that origi-
nally gave the language its name.

Expressions in the language are intentionally unspec-
ified, since their structure is mostly irrelevant to our
development. We assume that the set Expr contains
expressions that are pure (side-effect free), and include
at least the boolean constants true and false . The set
Formula of logical formulae is an extension of boolean
expressions that includes at least the usual boolean op-
erators (∧ , ∨ ,¬, ⇒ , =) and quantification, and is
closed under substitution of expressions for variables.
We let Var denote the set of program variables, and use

S Norm(Q, S) Wrong(Q, S)
x := e ∃x′. x = e(x← x′) ∧Q(x← x′) false
assert P Q ∧ P Q ∧ ¬P
assume P Q ∧ P false
A B Norm(Q, A) ∨ Norm(Q, B) Wrong(Q, A) ∨Wrong(Q, B)
A ; B Norm(Norm(Q, A), B) Wrong(Q, A) ∨Wrong(Norm(Q, A), B)
{P , I} while e do B end Norm(Q, desugar(S)) Wrong(Q, desugar(S))

Figure 3: Strongest-postcondition semantics

Q(x ← e) to denote the capture-free substitution of e
for every free occurrence of x in a formula Q. Where
appropriate, we use double-quotes “. . .” to distinguish
constructed syntax from mathematical definitions and
algorithms.

3.1 Informal semantics

The execution of a statement may either terminate nor-
mally or it may “go wrong” due to a failed assertion.
The execution of the statement “assert e” terminates
normally if the condition e evaluates to true in the cur-
rent program state, and goes wrong otherwise. The as-
sume statement is partial: “assume e” terminates nor-
mally if the condition e evaluates to true, and simply
cannot be executed from a state where e evaluates to
false . The assignment statement “x := e” updates the
program state so that x is bound to the current value
of the expression e. The statement “A ; B” denotes the
sequential composition of A and B. The execution of
the choice statement “A B” executes either A or B,
but the choice between the two is made arbitrarily. The
while loop “{P , I} while e do B end” has the conven-
tional semantics that B is executed as long as the con-
dition e remains true. The loop invariant I is provided
to aid in the verification process; it is required to hold
at the beginning of each loop iteration. The set P of
predicates is used for the automatic inference of loop
invariants.

All variables have arbitrary values in a program’s
initial state. The indeterminism arising from choice
statements and from the program’s initial (arbitrary)
state can be tamed by assume statements: the se-
mantics of a program considers only those execu-
tions in which the condition of each executed as-
sume statement evaluates to true. For example,
the statement “(assume e ; A) (assume ¬e ; B)” is
the deterministic statement commonly written as
“if e then A else B end”.

3.2 Formal semantics

We formally define the semantics of our language using
the strongest postcondition translations

Norm,Wrong : Formula × Stmt → Formula

shown in Figure 3. For an execution of S that starts in
an initial state satisfying the formula Q, the postcondi-
tion Norm(Q, S) characterizes post-states in which that
execution could terminate normally. The postcondition
Wrong(Q, S) characterizes the post-states in which that
execution could go wrong by failing an assert.

The definition of Norm and Wrong is straightfor-
ward. The normal postcondition Norm(Q, x := e) of
an assignment statement with respect to a precondi-
tion Q is ∃x′.x = e(x ← x′) ∧ Q(x ← x′); this formula
holds in the post-state of the assignment provided there
exists some x′ representing the initial value of x such
that Q holds in that initial state and x contains the
results of evaluating e in that initial state. An assign-
ment statement can never go wrong, and thus its wrong
postcondition is false.

The strongest postcondition translation for a while
loop relies on an auxiliary function that desugars loops
into more primitive statements. This desugaring relies
on the loop invariant I which is required to hold at the
beginning of each iteration of the loop; it is defined as:

desugar(“{P , I} while e do B end”) =
assert I ; havoc(targets(B)) ; assume I ;
((assume e ; B ; assert I ; assume false)

assume ¬e)

The function targets : Stmt → 2Var returns the set
of variables assigned in the loop body. The function
havoc : 2Var → Stmt assigns arbitrary values to these
variables; it is defined by

havoc({x1, . . . , xn}) = “x1 := y1 ; . . . ; xn := yn”

where y1, . . . , yn are fresh variables that hold arbitrary
values (from the program’s initial state).

The desugared code ensures that the loop invariant I
holds initially, and then sets the loop targets (the vari-
ables modified by the loop body) to arbitrary values
that satisfy the loop invariant. The code then checks
that if e is true, then the loop invariant still holds af-
ter executing B; if e is false, then the desugared loop
terminates (and execution continues at the subsequent
statement).

An important aspect of this desugaring is that the
invariant need only explicate properties of loop targets,
since properties of other variables that held in the pre-
state of the loop will be known to still hold in the loop
body and after loop termination.

To show that a statement S cannot go wrong from
any initial state, it suffices to prove that the verification
condition1

¬(Wrong(true, S))

is valid, for example, by using an automatic theorem
prover [Nel81].

4 Inferring loop invariants

Verifying a program using the techniques outlined in the
previous section requires that each loop of the program
is first annotated with a suitable loop invariant. Our
experience with ESC/Java indicates that the burden of
specifying loop invariants is substantial. In this section,
we describe an algorithm for inferring such invariants
automatically.

Our inference algorithm processes the loops of a
program in order, since knowing the invariant for one
loop constrains the possible initial states of a subse-
quent loop, and helps infer a precise invariant for that
loop. This in-order processing is facilitated by our use of
strongest postconditions (as opposed to the more com-
mon weakest preconditions). The procedure traverse,
defined in Figure 4, takes as input a statement S, and
returns a modified version of S that includes an inferred
invariant for each loop in S. The procedure also takes
as input a context C, which is the code preceding S,
and hence constrains the initial states for the execution
of S. We assume suitable invariants have been inferred
for any loops in C.

If S is an assert, assume, or assignment statement,
then it does not contain any loops, and traverse returns
S unmodified. If S is a choice statement, then its sub-
statements are processed recursively. Similarly, if S is
a sequential composition A ; B, the sub-statements A
and B are also processed recursively, with A′ (the ver-
sion of A with inferred invariants) being appended to

1ESC/Java actually uses a more efficient algorithm for generating
verification conditions that avoids the exponential blowup associated
with the standard weakest precondition and strongest postcondition
translations [FS01].

Stmt traverse(Stmt C, Stmt S) {
case S of {

“x := e” → { return S; }
“assert P” → { return S; }
“assume P”→ { return S; }
“A B” → {A′ = traverse(C, A);

B′ = traverse(C, B);
return “A′ B′ ”; }

“A ; B” → {A′ = traverse(C, A);
B′ = traverse(“C ; A′”, B);
return “A′ ; B′ ”; }

“{P , I} while e do B end”→ {
〈J, B′〉 = infer (C, S);
return “{P , I ∧ J} while e do B′ end”

}
}
}
〈Formula,Stmt〉 infer(Stmt C, Stmt S) {
let “{P , I} while e do B end” = S;
Stmt H = havoc(targets(B));
AbsDomain r = α(Norm(true, C));
while (true) {

Formula J = γ(r);
Stmt A = “assume e ∧ I ∧ J ”;
Stmt B′ = traverse(“C ; H ; A”, B);
Formula Q = Norm(true, “C ; H ; A ; B′ ”);
AbsDomain next = r ∨ α(Q);
if (next = r) return 〈J, B′〉;
r = next;

}
}

Figure 4: Procedures traverse and infer

the context used when inferring invariants for B. For
the interesting case where S is a while loop, the helper
procedure infer (see Figure 4) is called to infer a suit-
able invariant for that loop.

The required invariant for S could, in theory,
be computed iteratively, by repeatedly applying the
strongest postcondition transformer to the loop body.
However, because the set of possible program states is
infinite, in most cases this iterative algorithm does not
converge.

To solve this convergence problem, we use the pred-
icates P = {p1, . . . , pn} associated with the loop to
abstract the infinite concrete state space to a finite
abstract domain. This abstract domain is the set
of all boolean functions of n boolean variables B =
{b1, . . . , bn}, where each boolean variable bi corresponds
to the predicate pi. An abstract domain element f is
thus a boolean function over B, and represents the con-

crete states described by the concretization

γ(f) = f(b1 ← p1, . . . , bn ← pn)

which replaces each variable bi in f by the correspond-
ing predicate pi.

Conversely, for any predicate Q over the concrete
state space, the corresponding abstract domain ele-
ment is obtained via the abstraction α(Q), which is the
strongest boolean function on B such that

Q⇒ γ(α(Q)).

Section 5 describes an efficient algorithm for comput-
ing α(Q); the remainder of this section describes how
to use the abstraction and concretization operations to
converge on a suitable loop invariant.

The procedure infer takes as arguments a loop con-
text C and a loop S. The procedure keeps track of an
abstraction r of the set of reachable states. The set of
reachable states is initially Norm(true, C), and so r is
initialized with the corresponding abstraction. The pro-
cedure iteratively analyzes the loop body and updates r
until a fixpoint is reached.

At each iteration, a concrete representation of the
current set of reachable states is generated in J . The
statement A explicates assumptions that hold at the
beginning of the loop body. These assumptions include
the loop guard e, the supplied loop invariant I, and
the current approximation J to the invariant being in-
ferred. The resulting context for the loop body B is
then “C ; H ; A”, where H havocs the targets of B.
Suitable invariants for nested loops in B are computed
by recursively calling traverse on B with the new con-
text, yielding a modified loop body B′. Applying
the normal postcondition operator to “C ; H ; A ; B′ ”
yields a predicate Q approximating the set of states
that are reachable at the end of the analyzed loop. We
extend r with the corresponding abstraction α(Q) and
iterate. Eventually a fixpoint is reached, and the invari-
ant J = γ(r) is then a valid invariant for the loop. This
invariant, together with the modified loop body B′, is
returned as the result of infer .

The following theorem states that the loop invariant
computed by infer is correct; that is, it holds on entry to
the loop and also holds after an arbitrary loop iteration.

Theorem 4.1 (Correctness of infer) Suppose the
procedure call infer (C, “{P , I} while e do B end”)
returns the tuple 〈J, B′〉. Let H = havoc(targets(B)).
Then the following are valid:

Norm(true, C)⇒ J
Norm(true, “C ; H ; assume e ∧ I ∧ J ; B′”)⇒ J

Our correctness condition for traverse is that if the
supplied loop invariants in a statement S are correct

(although possibly not sufficient to verify the assertions
in S), then the loop invariants inferred by traverse are
also correct. To formalize the notion of an incorrect loop
invariant, we introduce a function h : Stmt → Stmt
that removes all assertions from the given statement.
Thus h(S) behaves exactly like S, except that it never
goes wrong due to a failed assertion; if h(S) goes wrong,
it must be due to an incorrect loop invariant. Thus,
the loop invariants of S are correct if the verification
condition ¬(Wrong(true, h(S))) is valid.

Theorem 4.2 (Correctness of traverse) Suppose S
is a statement and S′ = traverse(S, “assume true”).
If the loop invariants of S are correct then the loop in-
variants of S′ are correct.

4.1 Inferring quantified loop invariants

The algorithm outlined above infers loop invariants that
are boolean combinations of the given predicates. In
many situations, such loop invariants are insufficient,
particularly for loops that manipulate unbounded data
such as arrays. For example, verifying that a loop clears
an array requires a loop invariant stating that all ele-
ments in the array up to the current index are zero.
Automatically verifying such loops requires the ability
to infer universally-quantified loop invariants.

This section describes how to extend our approach
to infer such universally-quantified loop invariants. We
achieve this by allowing the predicates to refer to skolem
constants , which are fresh variables not mentioned else-
where in the program. We use S to denote the set of
skolem constants, and use SCFormula to denote formu-
lae that may contain references to these constants. The
candidate predicates P accompanying each loop may
now include skolem constants, i.e., P ⊆ SCFormula.

To infer universally-quantified loop invariants, we
first proceed as outlined earlier. The concretization op-
eration of the procedure infer :

J = γ(r);

returns a boolean combination of the predicates, which
now includes references to skolem constants. Since these
skolem constants do not appear elsewhere in the pro-
gram, they are simply variables with some fixed, un-
known value, and we can universal quantify over them
without loss of soundness Thus, we replace the above
assignment with:

J = “∀S.γ(r)”;

This universally-quantified loop invariant is used when
analyzing subsequent iterations of the loop, and it is
also returned as the inferred invariant once the fixpoint

is reached. No other changes are required, and the cor-
rectness arguments of Theorems 4.1 and 4.2 still hold.
This ability to infer universally-quantified loop invari-
ants is often crucial, as illustrated by the examples in
Section 7.

5 Predicate abstraction

The invariant inference algorithm relies on an imple-
mentation of the abstraction operation α(Q), which is
the focus of the present section.

We begin by introducing some useful terminology.
Let P = {p1, . . . , pn} be the given set of predicates,
and let B = {b1, . . . , bn} be the corresponding set of
boolean variables. A literal l is either bi or ¬bi for
some 1 ≤ i ≤ n. A clause d is a set of literals in which
each boolean variable appears at most once. A clause
of size n thus mentions all boolean variables, and is
called a maximal clause. The meaning of a clause is the
disjunction of its literals. The size of a clause is its
cardinality. We extend the usual boolean operations to
clauses.

Recalling the definition of the previous section,
the abstraction operation α(Q) returns the strongest
boolean function f over the boolean variables such
that Q⇒ γ(f). The abstraction α(Q) is computed us-
ing an automatic theorem prover; a sequence of validity
queries are used to identify the relationship between Q
and various boolean combinations of the predicates pi.
A naive implementation of the abstraction operation,
requiring 2n validity queries, is:

α(Q) =
∧
{d | d is a maximal clause and Q⇒ γ(d)}

The procedure Union adapts this algorithm to the
computation of the abstract domain element r ∨ α(Q),
which is required by infer . As an optimization, when
computing r ∨ α(Q), we only need to consider clauses
that are implied by r.

AbsDomain Union(AbsDomain r, Formula Q) {
AbsDomain result = true;
for each maximal clause m {

if ((r ⇒ m) ∧ (Q⇒ γ(m)))
result = result ∧m;

}
return result ;

}
The abstract domain element computed by this algo-

rithm is a conjunction of clauses of length n. Our expe-
rience with predicate abstraction indicates that the re-
quired abstract domain element can often be expressed
as a conjunct of much smaller clauses, where the length
of each clause is typically at most 3. We use this insight

to optimize the above algorithm. In particular, when-
ever we find a maximal clause m such that r ⇒ m
and Q ⇒ γ(m), we try to shrink m to a stronger
(smaller) clause c such that c also enjoys the prop-
erty r ⇒ c and Q ⇒ γ(c). This strengthening oper-
ation can be performed in a greedy manner, by starting
with c equal to m, and iteratively dropping as many lit-
erals as possible from c while preserving this property.
Having derived a stronger clause c, we can conjoin it to
result, and subsequently skip consideration of all maxi-
mal clauses m that are implied by result. The following
algorithm refines the previous one with these ideas.

AbsDomain Union(AbsDomain r, Formula Q) {
AbsDomain result = true;
for each maximal clause m {

if ((result
⇒ m) ∧ (r ⇒ m) ∧ (Q⇒ γ(m))) {
c = m;
for each literal l in m {

d = c \ {l};
if ((r ⇒ d) ∧ (Q⇒ γ(d))) { c = d; }

}
result = result ∧ c;

}
}
return result ;

}
As a final improvement, we replace the iterative al-

gorithm that shrinks m to a stronger clause c such
that r ⇒ c and Q ⇒ γ(c) with a divide-and-conquer
algorithm. This algorithm splits m into two clauses m1

and m2 such that m = m1 ∨ m2. If m2 satisfies
the properties r ⇒ m2 and Q ⇒ γ(m2) then we ig-
nore m1 and proceed to extract c from m2. However,
if m2 does not satisfy these properties, then we first
recursively extract from m1 a stronger clause c1 such
that r ⇒ c1 ∨ m2 and Q ⇒ γ(c1 ∨ m2); we then re-
cursively extract from m2 a stronger clause c2 such
that r ⇒ c1 ∨ c2 and Q⇒ γ(c1 ∨ c2), thus yielding the
resulting clause c = c1 ∨ c2 with the desired property.
Although this algorithm may require O(n.2n) theorem
prover queries in the worst-case, in practice it performs
quite well (see Section 7.4).

Our implementation of this algorithm uses a dual
representation for the abstract domain. Each abstract
domain element is represented as a binary decision di-
agram (BDD) [Bry86], thus allowing the implication
tests on abstract domain elements (“result
⇒ m”,
“r ⇒ m”, and “r ⇒ d”) to be performed efficiently. In
addition, we also represent abstract domain elements
as conjuncts-of-clauses. The procedure union naturally
computes its results as a conjunct-of-clauses. By pre-
serving this structure, we can present the inferred in-
variant for each loop as a conjuncts of (typically small)

clauses, each of which can be comprehended as a sepa-
rate invariant by the programmer. This presentation is
more comprehensible than the BDD representation for
all the inferred invariants we have inspected.

5.1 Related work

We know of two other predicate abstraction algorithms.
The first method [DDP99] uses a binary decision tree
where each vertex at depth k represents a clause of
size k. The clause at a vertex is a superset of the
clause at its parent. The ordering of the variables in
the decision tree is fixed using some heuristic. While
computing α(Q), if there is a clause d at a vertex such
that Q ⇒ γ(d), then the clauses at the descendants
of that vertex can be ignored. Thus, this algorithm
also tries to find small clauses, but its ability to do so
is strongly constrained by the fixed variable ordering.
This procedure may require O(2n+1) theorem prover
queries.

The second method [SS99] generates all clauses in
increasing order of size. Again, if Q ⇒ γ(d) for some
clause d, then the algorithm ignores all clauses d′ such
that d ⊂ d′. This algorithm also searches for small
clauses that are implied by Q but this search may re-
quire enumerating excessively many clauses (up to 3n

clauses). Thus, this algorithm may require O(3n) theo-
rem prover queries.

Our algorithm does not suffer from the ordering
problem of the binary decision tree algorithm to the
same extent. At the same time, it reliably finds small
clauses that are implied by Q without enumerating too
many clauses. We show experimental results on several
examples in Section 7.4 demonstrating that our algo-
rithm performs fewer queries than the two algorithms
discussed above.

6 Heuristics for generating predicates

The previous sections reduce the problem of specifying
correct invariants to the simpler problem of specifying
potentially useful predicates. However, providing such
predicates can be still tedious, particularly for large
programs. This section presents heuristics for guessing
many of these predicates automatically.

When desugaring each loop, ESC/Java first com-
putes a set of loop targets , which are the data loca-
tions possibly modified by the loop body. A target
is expressed in terms of variables that are in scope at
the beginning of the loop. Each target is either pre-
cise or imprecise. A precise target is an l-value: either
a variable x, a field reference e.f, or an array refer-
ence e1[e2], and specifies a unique location. An im-
precise target denotes a set of locations and is of the

form *.f, e1[*], *[e2], or *[*], where either an ob-
ject reference or an array index is unknown. These loop
targets are havoced on entry to the loop; we would like
to infer invariants that capture relevant properties of
the havoced targets.

If the loop targets include the imprecise tar-
get e1[*], then we would like to infer universally-
quantified loop invariants that explicate properties of
the modified array e1. For this purpose, we introduce a
skolem constant sc of type int, together with the pred-
icates 0 <= sc and sc < x, where x ranges over integer
variables in scope. We also guess predicates about the
skolemized target expression e1[sc], as described be-
low.

For each (precise or skolemized) target expression t
(of the form x, e.f, e1[e2], or e1[sc]), we proceed
based on the type of t. If t is of reference type, we guess
that t is not null. If t is an integer, we then guess the
predicates t <= \old(t), t >= \old(t), and t < sc,
where the ESC/Java syntax \old(t) refers to the value
of t on entry to the loop.

To illustrate these heuristics, we briefly describe
their application to a loop that clears the array a:

(for int i=0; i<a.length; i++) a[i] = null;

For this loop, the heuristics will generate the pred-
icate i >= \old(i), which is also a loop invariant.
Since \old(i) = 0, this invariant, together with the
loop guard i < a.length, is sufficient to verify the ab-
sence of array bounds errors. In addition, the heuris-
tics generate three crucial predicates: 0 <= sc, sc < i,
and a[sc] != null. Predicate abstraction subse-
quently combines these predicates into the invariant
that all array entries below i have been cleared:
(\forall int sc; 0 <= sc && sc < i ==> a[sc] == null)

This invariant is crucial in allowing ESC/Java to verify
that after the loop terminates the array contains only
nulls.

These heuristics are targeted towards generating
predicates that are useful for the typical proof obliga-
tions in ESC/Java. If ESC/Java is used to prove more
compilcated properties, these heuristics will have to be
augmented. Currently, we do not infer loop invariants
stating properties of all elements in a list or a tree, be-
cause ESC/Java does not allow convenient expression
of the set of objects reachable from an object reference.

7 Implementation and evaluation

We have implemented our method, described in earlier
sections, as part of ESC/Java. In this section, we de-
scribe the application of our technique to two small il-
lustrative examples, as well as to a substantial program
containing over 44K lines of code.

Cell partition(Cell l, int v) {
Cell curr = l, prev = null, newl = null;
Cell nextCurr;
while (curr != null) {

nextCurr = curr.next;
if (curr.val > v) {

if (prev != null)
prev.next = nextCurr;

if (curr == l)
l = nextCurr;

curr.next = newl;
L: //@ assert curr != prev;

newl = curr;
} else {

prev = curr;
}
curr = nextCurr;

}
return newl;

}

Figure 5: Method partition

7.1 List partition

Figure 5 shows a list partitioning example adapted from
a paper describing the SLAM project [BMMR01]. Each
list element is an instance of the class Cell, and con-
tains two fields—an integer val and a reference next
to the following cell in the list. The method partition
takes two arguments, a list l and an integer v. It re-
moves every cell with value greater than v from l and
returns a new list containing all those cells.

The SLAM tool can verify, using their predicate ab-
straction algorithm, that at the control point L the vari-
able curr is not aliased to prev. We explicate this
property as an assertion in the program.

To verify this assertion using our technique, we sim-
ply need to provide the two predicates:

/*@ loop_predicate prev == null, prev.val > v */

Using these predicates, our technique infers the loop
invariant:

/*@ loop_invariant prev == null || !(prev.val > v) */

The correctness of the assertion follows from this loop
invariant and from the two conditions (curr != null
and curr.val > v) on the path from loop entry to L.

In contrast, because SLAM performs predicate ab-
straction for each individual statement, it requires the
following two additional predicates to track the values
of the two conditions.

curr == null, curr.val > v

/*@ requires a != null;
ensures (\forall int x, y;

0 <= x && x < y && y < a.length
==> a[x] <= a[y]);

*/

void sort(int[] a) {
int i = 0;
while (i < a.length) {

int k = i, w = a[i], j = i + 1;
while (j < a.length) {

if (a[j] < w) {
k = j;
w = a[j];

}
j = j + 1;

}
a[k] = a[i]; a[i] = w;
i = i + 1;

}
}

Figure 6: Method sort

Since deriving predicates may still require manual inter-
vention (both in our system and in SLAM), this need
for extra predicates results in an increased burden on
the programmer. In addition, by abstracting only when
necessary, our approach requires many fewer theorem
prover queries. In particular, using all four predicates,
we require only 27 queries to verify the non-aliasing as-
sertion whereas SLAM requires 263 queries.

7.2 Selection sort

The next example illustrates that our method works on
programs with nested loops and is able to infer complex
loop invariants. The method sort, shown in Figure 6,
takes an array of integers a and sorts it in place. The
method contains two nested loops. The outer loop uses
the integer variable i to iterate over the elements of a.
The inner loop finds the smallest element of a at or after
the index i, which is then swapped with the element
at i.

The outer loop ensures that the i-th prefix of a is
sorted. Based on the annotations

/*@ skolem_constant int x, y;
loop_predicate i >= 0, 0 <= x, x < i, x < y,

y < a.length, a[x] <= a[y]; */

our technique infers the required invariants for the outer
loop:

/*@ loop_invariant (\forall int x, y;
0 <= x && x < i && x < y && y < a.length

==> a[x] <= a[y]);
loop_invariant 0 <= i; */

The second loop invariant is needed to prove that there
are no array bounds violations in the loop.

The inner loop computes in k and w the index and
the value respectively of the least element with an index
in the range [i, j). Based on the annotations

/*@ skolem_constant int z;
loop_predicate w == a[k], i <= z, z < j, w <= a[z],

i <= k, k < j, j <= a.length; */

our technique infers the required invariants for the inner
loop:

/*@ loop_invariant w == a[k];
loop_invariant (\forall int z; i <= z && z < j

==> w <= a[z]);
loop_invariant i <= k;
loop_invariant k < j;
loop_invariant j <= a.length; */

7.3 The Java front-end toolkit

The examples presented so far illustrate various as-
pects of our technique, but are too small to provide
compelling evidence that our technique is practical on
large, realistic programs. Therefore, we next consider
the application of our technique to a significantly larger
program. The benchmark we use is the front-end to
ESC/Java called Javafe, which consists of 44,388 lines of
code, with 2418 routine definitions and 520 loops. This
code was already annotated with appropriate ESC/Java
lightweight method specifications, but did not include
any loop invariants. Instead, the code was checked by
first unrolling each loop some small finite number of
times, typically 1 or 2. Although this unrolling tech-
nique is clearly unsound, it significantly reduces the
annotation burden of using ESC/Java. Using this un-
sound loop analysis, ESC/Java can verify all of the rou-
tines in the benchmark.

In comparison, when using the sound loop desugar-
ing of Section 3 (without providing or inferring any loop
invariants) ESC/Java is unable to verify 326 of the 2418
routines in this program, including most of the routines
containing non-trivial loops. Manually providing suit-
able invariants for all of these loops is a daunting task.
We have been unwilling to invest this effort on our own
code base, and do not expect software engineers to do
so either.

However, using the techniques presented in this pa-
per, we have extended ESC/Java to perform a sound
analysis of loops, without significantly increasing the
annotation burden. To achieve this sound loop anal-
ysis, we did not provide any additional annotations,
such as loop invariants or loop predicates. Instead,
we first used the heuristics of Section 6, which sug-
gested an average of 3.6 predicates for each loop al-
though it suggested many more predicates for complex

loops. We subsequently used predicate abstraction to
infer universally-quantified loop invariants over these
predicates, which produced an average of 2.6 invariants
per loop although again producing many more invari-
ants for complex loops. Using these inferred invariants,
ESC/Java verifies almost all (98.7%) of the routines in
the program.

An inspection of the remaining 31 failing routines
showed that they all require subtle loop invariants. For
these routines, the appropriate invariants or component
predicates must still be provided manually. However,
the techniques of this paper reduce the number of rou-
tines for which such manual annotation is necessary by
order of magnitude, from 326 to 31. In addition, our
technique decreases the cost of such manual annotation
by reducing the problem of specifying correct loop in-
variants to the problem of writing possibly useful pred-
icates.

We believe the overhead of providing these annota-
tions is justified by the increased rigor of the sound loop
analysis, which is capable of detecting additional errors.
In particular, during our inspection of the 31 failing rou-
tines, we uncovered several routines that could actually
crash due to array bounds violations. The driving goal
of ESC/Java is to identify such possible defects; how-
ever, ESC/Java’s initial, unsound treatment of loops
caused it to originally miss these defects.

7.4 Experiments

The results presented above have focused on the effec-
tiveness of our invariant inference technique; we next
discuss the computational cost of this technique. We
analyzed the Javafe benchmark using three different but
equivalently-precise predicate abstraction algorithms:
our new algorithm (FQ), and the two existing algo-
rithms of Das, Dill and Park (DDP), and Säidi and
Shankar (SS).

Figure 7 compares these algorithms and describes
how the performance of each algorithm varies according
to the number of predicates in each loop. For loops with
six or fewer predicates, all algorithms perform compa-
rably well. However, as the number of predicates in-
creases, we begin to see significant differences in the
behavior of the three algorithms. The data point for 14
predicates is somewhat of an outlier. There is only one
loop in Javafe for which our heuristics generate 14 pred-
icates, and all algorithms perform well on this loop be-
cause its invariants are particularly simple. Apart from
this loop, the data suggests that our new algorithm
scales better than earlier algorithms to large numbers
of predicates. This scalability is an important charac-
teristic of our predicate abstraction algorithm. In par-
ticular, it gives us the freedom to introduce additional

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16

Queries

Predicates per loop

FQ �

� � � �
� �

�
�

� �

�

�

�

DDP ×

× × × × × ×
×

×
×

×
×

×

×

SS �

� � � � � �

� �

�

�

�

�

�

Figure 7: Comparison of the three predicate abstraction algorithms (FQ, DDP, and SS) on Javafe

Benchmark Number of Queries
predicates FQ DDP SS

partition 4 27 28 41
sort (outer) 6 44 54 111
sort (inner) 7 37 32 40
find 8 111 110 129
create 15 358 1191 2012

Figure 8: Comparison of the three predicate abstrac-
tion algorithms (FQ, DDP, and SS) on the micro-
benchmarks

predicate-generating heuristics, should such additional
heuristics become necessary when examining other pro-
grams.

We performed these experiments using a 667MHz
EV7 Alpha processor. Over the entire Javafe bench-
mark (44,380 LOC), our algorithm performed 11901
queries, which required roughly 40 minutes of theorem
proving time (an average of 0.2 seconds per queries).
The entire loop invariant inference process took a little
under an hour, proceeding at a rate of roughly 13 lines
per second. We expect further progress in automatic
theorem proving to significantly improve this rate.

As a second experiment, we also applied our method
to to verify a Java model of the procedure create from
the file system Frangipani [TML97]. This procedure
contains a loop that ensures that the newly-created file
does not duplicate the name of an existing file in the
same directory. Due to the sophistication of the file

system’s data structures, the verification of this loop
requires 15 moderately complex predicates. The per-
formance of the the three predicate abstraction algo-
rithms on this benchmark, and on the three other micro-
benchmarks (find, partition, and the two loops in
sort) is shown in Figure 8.

8 Conclusions

The ESC/Java project has shown that extended static
checking can find a variety of errors in large programs.
But the perceived burden of annotating programs has
been a big hurdle to the use of static checking in pro-
gram development. Although programmers are willing
to document exported methods, they are not willing to
specify every method and write invariants for every loop
in the program.

This paper helps make extended static checking
more acceptable to programmers by reducing the an-
notation burden of loop invariants. We present heuris-
tics for generating appropriate predicates for each loop.
Using these predicates, our loop invariant inference al-
gorithm infers (universally-quantified) loop invariants.
Our algorithm abstracts only when necessary, thus re-
ducing the number of predicates required. Finally, our
invariant inference algorithm exploits a new predicate
abstraction algorithm.

The combination of these techniques reduces the an-
notation burden of loop invariants by an order of mag-
nitude. In particular, we can now perform an auto-
matic yet sound analysis of the loops in over 90% of
the 396 loop-containing routines in Javafe. For the re-

maining 31 routines that require predicates not gen-
erated by our heuristics, our approach still reduces the
problem of specifying correct loop invariants to the sim-
pler problem of writing possibly-useful loop predicates.

Acknowledgments

We gratefully acknowledge the contributions of Chandu
Thekkath, who helped us to model the method create
of Frangipani in Java, and the ESC/Java team whose
work provided the infrastructure that enabled us to im-
plement and evaluate our ideas.

References

[BBM97] N.S. Bjørner, A. Browne, and Z. Manna. Automatic
generation of invariants and intermediate assertions.
Theoretical Computer Science, 173(1):49–87, 1997.

[BLS96] S. Bensalem, Y. Lakhnech, and H. Säidi. Powerful
techniques for the automatic generation of invariants.
In R. Alur and T.A. Henzinger, editors, CAV 96:
Computer Aided Verification, Lecture Notes in Com-
puter Science 1102, pages 325–335. Springer-Verlag,
1996.

[BMMR01] T. Ball, R. Majumdar, T. Millstein, and S. K. Ra-
jamani. Automatic predicate abstraction of C pro-
grams. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Im-
plementation (PLDI), pages 203–213, 2001.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, C-35(8):677–691, 1986.

[BvW98] R.-J. Back and J. von Wright. Refinement Calcu-
lus: A Systematic Introduction. Graduate Texts in
Computer Science. Springer-Verlag, 1998.

[CC77] P. Cousot and R. Cousot. Abstract interpretation:
a unified lattice model for the static analysis of pro-
grams by construction or approximation of fixpoints.
In Proceedings of the Fourth Annual Symposium on
Principles of Programming Languages. ACM Press,
1977.

[CGJ+00] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction refine-
ment. In E.A. Emerson and A.P. Sistla, editors, CAV
2000: Computer Aided Verification, Lecture Notes
in Computer Science 1855, pages 154–169. Springer-
Verlag, 2000.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery
of linear restraints among variables of a program. In
Proceedings of the 5th Annual Symposium on Princi-
ples of Programming Languages, pages 84–96. ACM
Press, 1978.

[DDP99] S. Das, D. L. Dill, and S. Park. Experience with
predicate abstraction. In N. Halbwachs and D. Peled,
editors, CAV 99: Computer Aided Verification, Lec-
ture Notes in Computer Science 1633, pages 160–171.
Springer-Verlag, 1999.

[Dij76] E.W. Dijkstra. A Discipline of Programming.
Prentice-Hall, 1976.

[DLNS98] D. L. Detlefs, K. R. M. Leino, C. G. Nelson, and J. B.
Saxe. Extended static checking. Research Report
159, Compaq Systems Research Center, December
1998.

[FS01] C. Flanagan and J. B. Saxe. Avoiding exponential ex-
plosion: Generating compact verification conditions.
In Conference Record of the 28th Annual ACM Sym-
posium on Principles of Programming Languages,
pages 193–205. ACM, January 2001.

[GS97] S. Graf and H. Säidi. Construction of abstract state
graphs with PVS. In O. Grumberg, editor, CAV 97:
Computer Aided Verification, Lecture Notes in Com-
puter Science 1254, pages 72–83. Springer-Verlag,
1997.

[GW74] I. Greif and R. Waldinger. A more mechanical heuris-
tic approach to program verification. In Proceedings
of the International Symposium on Programming,
pages 83–90, 1974.

[GW75] S.M. German and B. Wegbreit. A synthesizer of in-
ductive assertions. IEEE Transactions on Software
Engineering, SE-1(1):68–75, 1975.

[KM76] S.M. Katz and Z. Manna. A logical analysis of pro-
grams. Communications of the ACM, 19(4):188–206,
1976.

[LSS99] K. R. M. Leino, J. B. Saxe, and R. Stata. Check-
ing Java programs via guarded commands. In
Bart Jacobs, Gary T. Leavens, Peter Müller, and
Arnd Poetzsch-Heffter, editors, Formal Techniques
for Java Programs, Technical Report 251. Fernuni-
versität Hagen, May 1999.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic
of Reactive and Concurrent Systems: Specification.
Springer-Verlag, 1992.

[Nel81] C. G. Nelson. Techniques for program verification.
Technical Report CSL-81-10, Xerox Palo Alto Re-
search Center, 1981.

[Nel89] C. G. Nelson. A generalization of Dijkstra’s calculus.
ACM Transactions on Programming Languages and
Systems, 11(4):517–561, 1989.

[SI77] N. Suzuki and K. Ishihata. Implementation of an
array bound checker. In Proceedings of the 4th An-
nual Symposium on Principles of Programming Lan-
guages, pages 132–143. ACM Press, 1977.

[SS99] S. Säidi and N. Shankar. Abstract and model check
while you prove. In N. Halbwachs and D. Peled, ed-
itors, CAV 99: Computer Aided Verification, Lec-
ture Notes in Computer Science 1633, pages 443–454.
Springer-Verlag, 1999.

[TML97] C.A. Thekkath, T. Mann, and E.K. Lee. Frangipani:
A scalable distributed file system. In Proceedings
of the 16th ACM Symposium on Operating Systems
Principles, pages 224–237, October 1997.

[Weg74] B. Wegbreit. The synthesis of loop predicates. Com-
munications of the ACM, 17(2):102–112, 1974.

