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Abstract 

A summary description (proof of theorems omitted): An adaptive 

pattern representation and recognition strategy for application to mechan- 

ized interpretation of (sampled) pictorial data (other applications are 

appropriate) is described. The system generates its own features which 

are formulae in a subset of the weak (in the sense that only quantification 

over finite sets is permitted) second order predicate calculus. The models 

of such formulae define the "objects" in a description of the data, which is 

hierarchical  both with respect  to features and extensions. The hierarchy 

is automatically constructed, thereby implementing changes in "problem 

representation". Relations between the syntax and semantics of formulae 

in the weak second order predicate calculus are  derived (by extending the 

syntax of the calculus) and utilized. Minimal use is made of the finiteness 

of the input data by the methods employed. That is, in pictorial pattern 

recognitions, the adaptive feature generation (i. e . ,  "learning") algorithms 

are independent of the fineness of grain of the sampling of an input picture. 

Because this approach is used, many difficult problems of a purely mathe- 

matical nature acquire practical importance. Computation is reduced through 

the use of topological methods and the system is at present in a stage of 

development appropriate for programming and use in a variety of practical 

applications. 

1. The Problem 

The problem definition used conforms well to the theoretical framework proposed by 

Banerji (1969, 9-16, 103-175): 

From a finite set of points, U ={Xl,X 2 . . . . .  Xn}, two 1 disjoint collections, K and ~, of 

given subsets of U (called regions) are given, That is, if "R." denotes a region in ~ and 
1 

"R." a region in C, 
] 

={RI'R2 . . . . .  Rn} 

= (%+i'%+2 . . . . .  %+M} 

ViVj(R i ~ Rj) when R i e K and R.] ¢ ff . 

A formula in the weak second order predicate calculus, P(A), {called an ideal predi-  

cate or ideal feature) must be generated which is strongly satisfied by all regions R. in K, 
1 

and by no region R. in ~. We define a formula as being strongly satisfied by a region if it 
J 

i s satisfied by that region and is a proper subset of no other region which satisfies the 

1 
This, of course, is easily generalized to n distinct collections. 
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fo rmu la .  (Of cou r se ,  a f ea tu re  can have only one f r ee  (set) va r i ab le  ("A" in "P(A)"~ ) 

T r iv i a l ly ,  such  a f o r m u l a  can  be a d i s junc t ion  of  the  conjunct ion  of (the m e m b e r s h i p s  of) 

al l  points of U (i. e . ,  " cons t an t s " )  in  each  se t  in  the  co l lec t ion  K. However ,  the " s h o r t e s t "  

poss ib le  f o r m u l a  (Baner j i ,  1969, 103-104) is  sought :  F r o m  a g iven  se t  of una ry  and n - a r y  

a tomic  p red i ca t e s  (all s equences  of points in U which sa t i s fy  each  of t h e s e  is  given),  a 

f o r m u l a  is  c o n s t r u c t e d  in which both  the  n u m b e r  of cons t an t s  (specif ic  points in  U) and 

v a r i a b l e s  (both point and set)  a re  min imal .  (This def in i t ion of " s h o r t n e s s "  somewha t  

r e s e m b l e s  those  developed by Kolmogorev  and d i s c u s s e d  in L~fgren  (1967) and Solmonoff  

(1964a, b). ) Such a subs t i tu t ion  of a f o r m u l a  conta in ing  quant i f ied  v a r i a b l e s  for  a f o r m u l a  

conta in ing  a l a rge  n u m b e r  of cons tan t s  (but no quant i f ied va r i ab l e s )  tends  to r e s u l t  in  the 

s a t i s f ac t i on  of the f o r m u l a  by s e t s  not in any of the co l lec t ions .  Hence,  the  f o r m u l a  is  

sa id  to g e n e r a l i z e  (Baner j i ,  1969; 104, 157, 168, 175 ) the  e x p r e s s i o n  which  involves  only 

cons tan t s .  

Actua l ly  the  p r ed i ca t e  ca lculus  syntax is he r e  ex tended  to include a modif ied quan-  

t i f i e r ,  Q(k)x, which may  be  r ead ,  " for  k .  100 pe rcen t  of x "  ( s i m i l a r l y  to the  r ead ing  of 

"Vx" as  " for  al l  x "  and "]Ix" as  " t h e r e  ex i s t s  an x") .  The d e g r e e  of s a t i s f ac t i on  of a se t ,  

R C U, wi th  r e s p e c t  to a f ea tu re  P(A), when R does not s a t i s fy  P(A), i s  defined as -1 
n n 

p l u s  the l a r g e s t  value of k in  al l  r e p l a c e m e n t s  of a s ingle  u n i v e r s a l  quan t i f i e r  by ~(k) 

in  P(A) such  that  R s a t i s f i e s  P(A) as  a consequence  of tha t  r e p l a c e m e n t .  When R 
n n 

s a t i s f i e s  P(A), the deg ree  of s a t i s f ac t i on  is  the l a r g e s t  value  of k in a l l  r e p l a c e m e n t s  of a 

s ingle  ex i s ten t i a l  quan t i f i e r  by ~(k) such  tha t  R s t i l l  s a t i s f i e s  P(A). A topology for  the 
n 

space ,  U, is  developed so tha t  U can  be mapped into a space ,  S, with  fewer  points ,  in 

such  fash ion  that  the r e s u l t i n g  loss  of r e l e v a n t  i n f o rma t ion  i s  bounded. Tha t  is ,  each  

R C U has  a "degraded  image" ,  R c S, such  tha t  if  R s a t i s f i e s  P(A), t hen  the  deg ree  of 
n n n 

s a t i s f ac t i on  of R wi th  r e s p e c t  to P(A) d i f fe r s  f r o m  tha t  of R by a bounded (and r e l a -  
n n 

t ive ly  smal l )  amount .  If P(A) is  an ideal  f ea tu re  and all  R. c K sa t i s fy  P(A) with a d e g r e e  
1 

of s a t i s f ac t i on  g r e a t e r  than  ze ro  and al l  R. c C fai l  to s a t i s fy  P(A) (i. e . ,  have  deg ree  of 
J 

sa t i s f ac t i on  with r e s p e c t  to P(A) of l e s s  than  zero) ,  then  U may  be mapped into a space  

S whose  s ize  (number  of e l emen t s )  i s  a funct ion of the  d i f f e rence  of such  d e g r e e s  of s a t i s -  

fact ion.  No loss  of r ecogn i t ion  abi l i ty  r e s u l t s  whi le  the  consequen t  economy in compu ta -  

t ion  is evident .  

Also ,  a h i e r a r c h i c a l  t h e o r y  of leve ls  is  u t i l i zed  so tha t  the p rob lem of gene ra t i ng  

an  ideal  f ea tu re  can  be so lved  by s t ages ,  w h e r e i n  at  each  excep t  the f inal  level ,  f e a tu r e s  

which  reduce  the  magni tude  of the  p r o b l e m  a r e  gene ra t ed .  Here  the  "po in t s "  at  e ach  s u c -  

c e s s i v e  level  r e p r e s e n t  the s e t s  which  sa t i s fy  the  f e a t u r e s  at  the  p rev ious  level  and the  

"a tomic  p r e d i c a t e s "  at  each  s u c c e s s i v e  level  d e r i v e  f rom the  f e a t u r e s  at  the  p rev ious  
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leve l .  The method automat ica l ly  advances one l eve l  whenever  the number  of e l emen t s  in the 

regions  to be par t i t ioned (or the number  of such regions)  is the reby  reduced.  The procedure  

at each leve l  i s  iden~cal .  A different  " r ep resen ta t ion  of the p rob lem"  is  thereby exp re s sed  

at  each succes s ive  leve l  (Nilssen, 1971; Amare l ,  1962; Sherma~ and Erns t ,  1969). 

The  ma te r i a l  in this paper is o rganized  as  follows. The syntact ic  methods a r e  

desc r ibed  in the f i r s t  portion. Fea tu res  a r e  defined as formulas  in the weak second o rde r  

predica te  calculus with one f r ee  set  var iable .  The a tomic  predica tes  used specify the pos i -  

t ions of, darkness  of, and other  m e a s u r e m e n t s  at, and re la t ions  between, each of a set  of 

data points cal led the data space.  

These  a tomic pred ica tes  a r e  cal led data independent i f  they do not vary  for  different  

inputs (e. g . ,  the r e l a t ive  posit ions of the data points at which a photograph is sampled  by a 

flying spot scanner  a re  data independent, i . e . ,  data independent predica tes  do not depend 

upon darkness ,  color ,  e tc . ) .  Atomic  predica tes  a r e  cal led data dependent i f  and only if they 

vary  for different  inputs (e. g . ,  the darkness  of a given d a t a  point on a par t icu la r  photograph). 

Set member sh ip  is ,  of course ,  also a p r imi t ive  of the sys tem.  Objects a r e  regions  (subsets) 

of the data space which sa t i s fy  a feature  and which a re  max imal  (i. e . ,  they have no proper  

supe r se t s  which also sa t is fy  the fea ture- - th i s  is cal led s t rongly sat isfying the feature) .  A 

descr ip t ive  basis  consis ts  of al l  fea tures  genera ted  by the learning a lgor i thm at a pa r t i cu la r  

s tage in the operat ion of the sys tem.  A descr ip t ion consis ts  of the descr ip t ive  basis  and a 

l is t  of the e lements  in each  of the objects ,  

All formulae  a r e  put in d is t r ibut ive  fo rm.  In such formulae  the scope of  each quan-  

t i f i e r  is  as  sma l l  as  possible ,  negations occur  only before  a tomic formulae ,  all  subformulae  

within the scope of a un iversa l  quant i f ier  a r e  connected by dis junct ions,  and subformulae 

within the scope of an exis tent ia l  quant i f ier  a r e  connected by conjunctions.  Such a fo rmula  

is  conveniently r e p r e s e n t e d  by a d i rec ted  graph which is  a rooted  t r ee  where in  the subt ree  

below each node r e p r e s e n t s  a subformula  consis t ing of a quantif ier  (if such is  present)  and 

all  subformulae within i ts  scope.  Each branch f r o m t h a t  node r e p r e s e n t s  a subformula  within 

the scope of that quant i f ier ,  and unquantified a tomic  fo rmulae  a r e  the bottom nodes of the  t r e e .  

All  fea tures  have cor responding  computer  p rog rams  which evaluate  that fo rmula  in 

a given space.  If a fo rmula  i s  placed in prenex fo rm and adjacent  like quant i f iers  exchanged 

to genera te  additional prenex fo rms ,  dist inct  d is t r ibut ive  fo rms  may be obtained by ope ra t -  

ing on each such prenex form.  This  se t  of d is t r ibut ive  fo rms  is  cal led the dis t r ibut ive  se t  

of the formula  and each such dis t r ibut ive  fo rm cor responds  to a computer  p rogram which 

can evaluate  the formula .  

A procedure  cal led abs t rac t ion compares  the d is t r ibut ive  set  of one feature  with that 

of another to de te rmine  common subformulae (i. e . ,  common subprograms) .  Such sub-  
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formulae are extracted, are  called derived predicates and are retained by the system. In 

effect, abstraction extracts identical subtrees from the graphs of distinct features. 

Another procedure called relation abstraction exposes the s imilar i ty of structure 

of pairs of t rees  with different atomic formulae. That is, formulae which differ only in that 

they contain different subformulae which, nonetheless, have the same free variables in 

corresponding positions, are  extracted and retained. In these retained formulae, called 

predicate forms, differing subformulae in the features originally compared correspond to a 

dummy predicate, wherein the free variables are  shown, but the identity of the predicate is 

not. Such dummy predicates will later be replaced by a derived predicate with the same 

free variables. 

Derived predicates and predicate forms are compared to produce two hierarchies of 

formulae, the predicate hierarchy and the relational hierarchy,  later  used in the "learning 

algorithm". 

Par t  12 discusses relations between the syntax of the formulae and certain proper-  

ties of those regions (i. e . ,  subsets) of the data space which satisfy the formulae. Such 

regions are called models of the formula they satisfy and are  compared both with those given 

regions we desire to be models of the formula, K = R1,R 2 . . . . .  RN, and those given regions 

we desire not to be models of the formula, ~ = RN+ 1 . . . . .  RN+ M. Measures of the " s imi -  

lari ty" bet~veen the actual models of a formula and the given regions determine various mea-  

sures of success of the features generated, The ease of satisfaction of a formula is defined 

as the probability that a raadomty selected element from the product space over  which its 

f ree variables range satisfies the formula. The overlap of a pair of formulae is the ease of 

satisfaction of the conjunction of two formulae. Mutations map from one feature to another. 

Relaxing mutations take a formula into another which is implied by it (ease of satisfaction is 

increased), res t r ic t ing mutations do the reverse  and neutral mutations connect formulae 

which are not related by implication. Restricting and relaxing mutations (with the exception 

of quantifier exchanges) correspond to the addition or elimination of subtrees from some 

node on the graph of the formula, whereas neutral mutations correspond to replacements of 

subtrees of the graph, All are related to the abstraction procedure. 

Each feature, P., is  broken into a con]unction of two formulae, P! and pD wherein 
1 1 1 I 

P! contains only data independent atomic predicates. We now examine the models of Pi in 
1 

two sets of spaces, one consisting of each of the given regions in K and ~ (some of which we 

wish to be models of P. and some which we do not) and the other consisting of each model of 
1 

pD (in the data space). Because models of a feature must strongly satisfy it, we do not, in 
1 

this case, have the law of the excluded middle (L e. a region which is not a model of P. 
' 1 

need not be a model of "~P~), and we are able to derive results  relating the ease of sat isfac-  
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t ion of a given fea ture  with that  of m~ ideal  fea ture  which we a re  a t tempt ing  to genera te  (i. e . ,  

one of which each  e lement  of K is  a model  and none in ~ is) .  That i s ,  by examining the 

s ize  and number  of models  of a fea ture  in the above spaces  we a re  able to de t e rmine  what 

kind of mutat ion is  r equ i r ed .  

One r e su l t  of the above i s :  if a given reg ion  R. is an e l ement  of K (those we wish  to 
1 

be mode l s  of P.),  then (a) when R. does  not sa t i s fy  P. a r e lax ing  muta t ion  on P.  is  r e -  
1 I 1 1 

quired, and (b) when R. satisfies P. but not strongly, a restricting mutation is required. 
I I 

When R. is an element of ~ (those regions which must not be models of P.) and R. strongly 
1 1 1 

satisfies P., any mutation may suffice (although a restricting mutation is usually preferred). 
1 

These criteria are, of course, averaged for all elements of K and ~. 

Now a more powerful technique of mutation selection is exposed: Suppose R. c K and 
I 

R. does not satisfy P.. In P. each of the nested universal quantifiers ("¥x") is replaced 
i 1 1 

one at a t2me, starting with the outermost (highest on the tree) by the modified quantifier 

"Q(k)x" which computes the fraction of substitutions of x (as constrained by any set member- 

ship atomic predicates, "c(x, A)" within the scope of that quantifier) for which the entire 

formula holds true (such fractions may equal zero). That is, the original universal quanti- 

fier, "Yx", is weakened to mean "for k. i00 percent of x" instead of "for all x". This is 

done independently for each universal quantifier, and such a fractional value is thereby com- 

puted for each nested subformula within the scope of each universal quantifier (i. e., subtree 

on the graph). Clearly this value indicates the amount by which the "ease of satisfaction" of 

the subformula must be increased if the given set is to be a model of the resulting (modified) 

feature. The "degree of undersatisfaetion" of a feature with respect to a given set is defined 

as the largest of the above computed fractional values minus one. After this procedure is 

completed, each of the existential quantifiers ("'~x") are, one at a time, replaced by "Q(k)x" 

and again a fractional value is computed for each nested subformula within the scope of an 

existential quantifier. Now each (except the bottom) node on the tree representing a formula 

has such a fractional value associated with it. 

Now suppose R. ~K and satisfies P. but not strongly. Only the latter of the above 
1 I 

procedures is utilized: each existential quantifier is replaced by "Q(k)x" and a set of cor- 

responding values is determined. The smallest of these fractional values is defined as the 

"degree of oversatisfaction" of the feature with respect to the given set. 

It is then shown that modified calculations of the above fractional values can be used 

to estimate the ease of satisfaction of the various subformulae of a feature when that feature 

is evaluated. Thus, since derived predicates are extracted from features, their ease of 

satisfaction is automatically estimated and stored, These derived predicates are the sub- 

trees which are added and eliminated from the graph of a feature when mutation is per- 

formed. Note that the replacement of universal quantifiers by a "Q(k)x" quantifier is equi- 
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valent  to a re laxing mutation of the formula  consis t ing of the un iversa l  quant if ier  and the 

subformulae within i ts  scope.  Such an a l te ra t ion  of the quantif ier  is then r epa i r ed  by p e r -  

forming  an actual re laxing mutation on the subformula  and r e s to r ing  the un iversa l  quantif ier .  

This  mutation usual ly involves the addition or  e l iminat ion of a subformula (i. e . ,  der ived  

predicate)  whose choice is de te rmined  by i ts  ease  of sat isfact ion,  which should be as cons i s -  

tent  as  possible with the f ract ional  value of the modif ied quantif ier .  Neutra l  mutat ions can 

be s imi l a r ly  (but more  weakly) de termined  by the es t imated  "over lap"  (defined previously) of 

the r equ i r ed  mutations.  

The above procedures  v,~ill not always uniquely se lec t  a mutation. When a fea ture  is  

genera ted  i ts  m e a s u r e s  of success  a r e  evaluated and a cor responding  number  ca l led  a r e i n -  

fo rcement ,  which is  ass igned to that feature  together  with a l l  de r ived  predica tes  and p red i -  

cate fo rms  contained within it,  is appropr ia te ly  a l tered.  Thus al l  fo rmulae  and predicate  

fo rms  have such corresponding indications of the i r  " s u c c e s s "  thus far .  When s e v e r a l  muta -  

t ions of a feature  a re  equally appropria te ,  a se lec t ion  is made as follows: The feature  is 

compared  with each formula  in the l ist  of predicate  fo rms .  That predicate  form with the 

highest  r e in forcement  which will  r esu l t  f rom a mutation of the r equ i r ed  type and amount (of 

change) is chosen. The dummy predica tes  are  e i ther  rep laced  by subformulae of the fea tures  

being mutated, o r  i f  not there in  present ,  such rep lacements  a r e  chosen f rom the l is t  of de -  

r ived  predica tes  (with the r equ i r ed  numbers  of f ree  point and set  var iables) .  The der ived  

predica tes  with the highest  r e in fo rcemen t s  a r e  chosen f i r s t .  Hence the enormous  poss ib i l i -  

t i e s  of mutation choice  a r e  reduced f i rs t ,  by the semant ic  c r i t e r i a  resu l t ing  f rom examina -  

t ion of the models  of the fea ture  being a l t e red ,  and second, by the syntact ic  c r i t e r i a  which 

favor  those predicate  fo rms  and der ived  predica tes  which cha rac t e r i z e  previous ly  success fu l  

fea tures .  

The next part  of the paper deals  with the technique for reducing the s ize  of the prob-  

lem by means of the use of a h i e r a rch ica l  level  theory  (discussed ea r l i e r )  for r ep resen t ing  

the given data by the formulae  in the descr ip t ive  bas is .  That is ,  a technique is given for  

automat ical ly  r ep resen t ing  objects  as col lect ions  of subobjects  which a re  col lect ions  of sub-  

subobjects,  e t c . ,  al l  such objects  being defined by fea tures  which a re  s i m i l a r l y  h i e r a r c h -  

ica l ly  organized.  

The following part  of the paper t r ea t s  the topology of the data space as re la ted  to 

techniques for  computat ion reduction.  The most  impor tant  notion is a set  of reduct ion m a p -  

pings which success ive ly  reduce  the s ize  of  the data space  (e. g . ,  the f ineness  of gra in  of 

sampling).  These  mappings a r e  r e l a t ed  to invar iances  with r e spec t  to t r ans format ions  which 

dilate o r  contract  the space.  The way in which resu l t ing  e r r o r s  depend upon such a reduct ion  

mapping together  with a par t icu la r  fea ture  a r e  studied. 
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The final part  desc r ibes  the ove ra l l  sys temat ic  procedure  for solving the problem. 

Various impor tant  open quest ions,  whose solution would vast ly  affect  the power of the s y s -  

t em a re  discussed.  F o r  an i l lus t ra t ive  example  which s imula tes  the procedures  descr ibed ,  

see  Rothenberg (t973b). 

It is important  to note thgt the techniques developed permi t  a human t r a i ne r  to s imply 

and d i rec t ly  inser t  any knowledge o r  intuitions he has about the problem at any t ime  during 

o r  p r io r  to computation. Hence the task of problem solution begins at the l imi ts  of the 

trainerTs knowledge and is less  difficult  than would o therwise  be expected. 

The descr ip t ion  below is gea red  for  p ic tor ia l  pat tern interpreta t ion.  It is  eas i ly  seen,  

however,  that other  pat tern in terpre ta t ion  problems fit  the same  fo rma l i sm 

2. Syntax 

The senso ry  data or  input consis ts  of a digi t ized sampling of a (single) picture.  This 

sampling is at a finite o rde red  a r r a y  of points cal led the data space,  u = { x l , x  2 . . . . .  Xn} , 

which is  the same for al l  p ic tures .  Fo r  each such data point (which c o r r e s  ponds to a r e c e p -  

tor  in the sensory  f ield such as a photosensi t ive cell) ,  the re  is a vec tor  of k values cal led 

its value vector ,  each e lement  of which is  cal led a data value. F o r  i l lus t ra t ive  purposes  we 

will  he re  assume that the f i r s t  two positions in the vector  specify the row and column pos i -  

t ions,  r espec t ive ly ,  (in the o rdered  array)  of the data points. The r ema inde r  of the data 

values specify different  quantized qual i t ies  (i. e . ,  color  or  darkness)  of that data point on a 

par t icu la r  picture (these cor respond  to a quantized energy  densi ty at a par t icu lar  receptor) .  

The a r r a y  of al l  value vec tors  (at all  data points) is  cal led the value mat r ix  and is  denoted 

IIv(k)ll where  k indexes the posit ions in the value vector  (the par t icu la r  f ineness  of gra in  of 

sampling is specif ied by the s ize  of the matrix) .  Fo r  convenience,  each lower case  l e t t e r ,  

J~xWr, ,yWt etc. will  be used to designate a data point (i. e. the f i r s t  two positions of the value 

vector) ,  the k th data value of point x will  be denoted "v(k)(x) ~,, and upper case  l e t t e r s ,  "A",  

'~B t~, etc.  will  denote se ts  of data points. 

Data values de te rmine  the t ruth values of a set  of p r imi t ives  (also cal led atomic 

pred ica tes1) ,  c~ (k' i)(x), which a re  " t rue"  if  v(k)(x) -- i and ~fatse ~ otherwise .  Those for 

which k > 2 a re  cal led data dependent p r imi t ives  because they differ  for  different  input pho- 

tographs.  

Also given are  a set  of n place pr imi t ives ,  ~(Xl,X 2 . . . . .  x n) which specify (geomet r i -  

cad  re la t ions  between data points. A typical  example  would be " < ( x , y ,  z ,w)"  which he re  

t 
Conventionally, the t e r m  ~Iprimitive" r e f e r s  to a specif ied '~property" or  re la t ion  (e. g . ,  

~E ~ for ~'set membersh ip") ,  whereas  "a tomic  p red ica te"  r e f e r s  to the pr imi t ive  together  with 

a specif ic  s e t  of arguments  (e. g. ~ "~(x, A)"). The usage of these  t e r m s  here  ignores  the 
dist inction,  
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means  that data point x is c lo se r  to y than z is to w. This  is  usually der ived  f rom a given 

me t r i c  on the data space (which is a function of v(1)(x) and v(2)(x) - -  the row and column 

positions of point x). Such atomic predica tes  (as well  as ~(l"i}(x)" and a(2' i)(x) ) a r e  cal led 

data independent because they a re  the same  for all input photographs. 

The following definitions c la r i fy  the syntax used. 

(1) Region: Any subset  of a data space.  

(2) Fea tu re :  A formula ,  P(A), in the second o r d e r  predicate  calculus with equal i ty  

such that: 

(a) point var iab les  (x, y . . . .  ) range ove r  data  points,  set  var iab les  (A, B . . . .  ) 

range over  reg ions ,  and all constants  (c 1, c 2 . . . .  ) a re  data points, or  se ts  

of data points (C 1, C 2 . . . .  ). 

(b) all var iab les  a r e  bound except  one se t  var iable ,  A (hence only regions  

can sat isfy a feature) .  

(c) p r imi t ives  include "e (x,A)" (conventionally " x e A " )  and "= (x,y}" 

(conventionally "x = y") 1, both of which a re  cal led e lementa ry  pr imi t ives .  

"card(A) < card(B)"  may also be used. 

(Also included a re  the data independent and dapendent p r imi t ives  (atomic predicates)  defined 

above. ) 

Certa in  other  conditions may be included which guard against  formulae  with t r iv ia l  

in terpre ta t ions  in the pic tor ia l  case .  These  will  not be d i scussed  here  ( see  Rothenberg,  

1973b). 

(3) Object:  A region which sa t i s f ies  a feature  (i. e . ,  is defined as a rea l i za t ion  of 

that feature} and is  not a proper  subset  of any other  rea l i za t ion  of that s a m e  

feature  (i. e . ,  i t  is  "maximal}. Note that while a reg ion  may be an object because 

s t rongly sa t i s f ies  one fea ture ,  it may sa t is fy  another fea ture ,  but not s trongly.  

When an object  sa t i s f ies  a feature  and is maximal  with r e spec t  to that par t icu lar  

feature  i t  wil l  be sa id  to s t rongly sa t is fy  that fea ture  and is  ca l led  a model  of the 

feature  (as dist inct  f rom a realization}. When a set  of points sa t i s f ies  a feature  

but is  not maximal  for  that fea ture ,  i t  wil l  be said to sa t i s fy  that fea ture ,  but not 

s t rongly.  

(4) Descr ip t ive  Basis :  All  fea tures  which have been genera ted  by the learning 

algor i th  m (which genera tes  such  features)  at a par t icu lar  s tage in the adaptive 

development  of the analysis .  

1 
Note that although " =  (x, y)" wil l  be used as an atomic predica te ,  i t  can, in the case  of our 

i l lus t ra t ions ,  be defined as follows: 

=- Vz (~,< ix ,z ,  y, z )A "" < (Y, z ,x ,z  }) (see " =  (x, y, z, w)"definition in Example  1). y) 
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(5) Descr ipt ion:  This contains all fea tures  in the descr ip t ive  basis  and l i s ts  all  

objects  s t rongly sat isfying each of these  fea tures  and the e lements  of each such 

object.  The sa t is fact ion of a feature  by an object which does not s t rongly sa t is fy  

that par t icu lar  fea ture  is a lso indicated. 

(6) Object Class :  A set of objects  all of which s t rongly sat isfy the same  feature  

(also defined as the extension of the fo rmula  for  that feature) .  

(7) Der ived Pred ica tes :  A subformula  of a feature  which is r e c u r s i v e l y  built up 

f rom pr imi t ives  by the use of logical  connect ives  and quant i f lers .  They a re  

denoted "Di~Xl' . . . . . .  ,x  n, A1, .  ,Am)"  where  i indexes the predicate  and its 

argument  includes all  f ree  var iab les .  

(8) Data Dependent P red ica te s :  All  formulae  (including features)  which contain 

data dependent p r imi t ives .  All other  formulae  a r e  cal led data independent. 

Example  1 

Let the primitives be "~ (X, A)", "= (x, y)", and "< (x, y, z,w)", which specifies 

that the distance between data point x and data point y is less than the distance between z 

and w. Also let "D(x)" indicate that a data value (the third position in the value vector at 

data point x) is equal to I. Here we assume that these data values are either one or zero, 

the former indicating a "dark" and the latter a "light" point. Then examples of derived 

1 
predicates are: 

= (x ,y ,z ,w)  - N < ( x , y , z , w ) A  ~" < ( z , w , x , y )  ("ix, y) equals (z,w)") 2 

Ob~,y,~)-  ~ =[x,y]^~--[x,~]^ ~ =[y,~]^ Vw(= [y~w] v <[x,y,x,w] v <[~,y,z,w]) 

(y is "between" x and z) 

D ( A , B ) ~  Vx(e[x  A]'--> ~ [ x , B ] )  ("A is contained in B") 
c 

D (A,B) ~ D (A ,B)AD (B,A) ("A is  the same  as B") 
s e c 

o ~ )  -= ~ 3x (~ Ix, A])  ("A is the null set") 

Dd~) = Vx (~ Ix, A]-->5 Ix]) ("all points in A are 'dark' points"~ 

Dae ,  y) = ~ =Ix,Y] A w  (~Db[X, z , y ] )  ("x is adjacent to y,,)3 

1 
Note that throughout this descr ip t ion  square  brackets  " [ ] "  and round brackets  " 0 "  are  

used interchangeably and a re  a l ternated for  c la r i ty  only. 

2 
Note that "="  when here  used as a four place predicate ,  "=  (x, y, z , w) ", has a different  

meaning than when used as a two place p r imi t ive ,  " =  (x ,y)"  (meaning that x and y a re  the 

same point). 

3 
For  use with a coa r se  (sampling) gr id  it is suggested that Da(X, y) = ~'~ = (x, y) A Vz 

(= Ix, z] V~ <Ix, z, x, y]) ( "There  is no point c lose r  to x than y") be used instead of the above. 



81 

Note that all  y which sat isfy Db(X,y,z) when x and z are  fixed will approximate a 

"straight  l ine" even if the gra in  of the data space is coarse .  As the gra in  becomes infini tely 

fine these points approximate a " t rue"  s t raight  l ine.  

. .  x )" to denote that all  For  convenience 1 we will use the symbol "~/:(xt,x2,. ' n 

var iables  within brackets  denote dis t inct  objects:  

~b(x,y,z) = ~-- = ( x , y ) A ~  = (x,z)A "~ = (y,z) . 

Hence D b ( '~etweenness")  in Example t may be rewr i t ten  

D y, z) : y, z)^ vw(= [y, wl v < Cx, y,x, w] w ] )  

Note that a large number  of formulae are  tautologous un less  the i r  free var iab les  

a re  dist inct .  

3. Semantics  (Il lustrations) 

The t rans la t ion  from formulae to programs is s imple.  Quantif iers become "do 

loops" whose ranges are  de termined by the membersh ip  predicates ,  e .g .  

VX 1 [,~e{Xl,A)VP(Xl . . . . .  Xn}] = A P(Xl ' ,Xn) 
X l ( A  " . .  

3x I [p(x I ..... Xn)- ] _- V P(Xl ' X l ~ U  . . . .  x n) 

3Xl[e{xl ,  A) AP(x 1 . . . . .  Xn)" ] K V P(Xl, ,Xn) 
XleA ' . .  

( 'U"  is the un iversa l  set - -  i. e . ,  the data  space) 2 

Logical connectives are  functions computed by subrout ines ,  and atomic and derived pred i -  

cates become subrout ines  in the main  program express ing  the feature.  

Some exaznples of the r i chness  of the sys tem when the pr imi t ives  of Example 1 

are used are: 

P I(A) =- VxVyVz (e[x, A~ h e  [z,A~ A Db[X, y, z]- '>  e~¢, A~) is data independent and sat isf ied by 

convex sets  only (Db[X,y,z ] is defined as in Example 1). tf PI(A) is a feature,  then, by 

definition, only maximal  regions are  objects. 

Let Dd(A)~- Vx (e [x, A~--> [) [x] ) (asbefore)  . 

Then 

P2(A) :- Dd(A) A PI(A) 

is  a data dependent vers ion  of PI(A) 

1 
Although not descr ibed here,  the language has been general ized to include "syntactic v a r i -  

ab les"  which range over formulae and pr imi t ives  which specify whether these var iab les  a re  

bound or  free. P rogramming  is  thereby facil i tated when the language is used as a compi ler  

(see Pess in  and Rothenberg reference) .  

2 
Quantified set var iables  range over regions.  Methods of reducing sueh computation a re  

d i scussed  in  Rothenberg (1973b) 
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defines a "starlike" region, and a derived predicate which is satisfied only by a boundary 

point, x, of a region, A, is given by 

A feature satisfied only by a connected I region can be constructed in two steps: 

is a der ived  predicate  which a s se r t s  that A is "c losed"  in B under the re la t ion  of adjacency 

and 

P6(A) = V B ~ c  [B,A ] A"~D~ [B]A D2 [B,A~---> Ds [B,A~ ) 

is sat isf ied iff A is  a connected region ("for all  B, if B c A  and B ~ ~ and D 2 [B,A] then 

B = A " - - s e e  Example 1). Other equivalent  formulae  exist .  

Simple connectedness ( 'A has no holes")  is eas i ly  expres sed  by stating that the 

boundaries of both A and its complement  are  connected se ts .  Other i l lus t ra t ions  are  eas i ly  

constructed.  

An example  of a data dependent feature  is P7(A) which accommodates  "noisy"  dark 

areas: 

4. Dis t r ibut ive  Normal  F o r m s  

This  is a form in which al l  quantif iers  a r e  dis t r ibuted as much as possible along 

the t e r m s  of a formula  so that a minimum number  of t e r m s  l ie within the scope of each 

quantif ier .  (It is the opposite of a prenex normal  form and is s im i l a r  to, but not identical  to, 

the "min i - s cope"  of Wang (1960) and somewhat r e s e m b l e s  the "dis t r ibut ive  normal  f o r m s "  

of Hintikka (1953). This  is accompl ished on a fo rmula  by r e v e r s i n g  the techniques for 

placing formulae  in prenex normal  fo rm (Rothenberg, 1971). A formula  is in dis t r ibut ive 

normal  (henceforth abbreviated "dis t r ibut ive")  form iff: 

(1) Negations appear only before  atomic subformulae.  

(2) All subformulae 2 within the scope of a un iversa l  quantif ier  a re  connected by 

disjunctions.  

t 
By "connected reg ion"  is intui t ively meant  that for each  pair  of s t ~ - r e g i o n s  which part i t ion 

the reg ion  the re  exis ts  a pair  of adjacent points, one of which is contained in each sub-  

region.  

2 
A subformula  is e i ther  an atomic predicate  or  der ived  predicate  or  e i ther  of these  quanti-  

f ied and /or  negated. 
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(3) All  sub fo rmulae  within the  scope  of an  ex i s t en t i a l  quan t i f i e r  a r e  connec ted  by 

conjunct ions .  

(4) All  sub fo rmulae  within the  scope  of a q u a n t i f i e r  a r e  e i t h e r  p re f ixed  by a quan t i -  

t i e r  or  a r e  a tomic  fo rmu lae  or  t h e i r  nega t ions .  (That i s ,  they a r e  not b r a c k e t -  

enc lo sed  conjunct ions  or  d i s junc t ions  of o the r  sub fo rmulae .  ) 

(5) All  subfo rmulae  within the  scope  of a quan t i f i e r  conta in  the  quant i f ied va r i ab l e  

as  an  a rgumen t .  

(6) If two o r  m o r e  like quan t i f i e r s  a re  ad jacen t  (e. g . ,  "VxVy" or  "~x  ~y ' ) ,  a l l  

sub fo rmulae  within t h e i r  scope mus t  con ta in  such  adjacent ly  quant i f ied v a r i a b l e s  

as  a r g u m e n t s .  

Example  2. 

Cons ide r  the  f o r m u l a  

It has  only one d i s t r i bu t i ve  f o r m  (in gene ra l ,  t h i s  is  not the  c a s e - - t o  be d iscussed}:  

F o r  convenience  we he re  i n s i s t  tha t ,  wi th in  the  scope  of e ach  quant i f i e r ,  Ca} s e t  m e m b e r -  

ship  p r i m i t i v e s  p recede  a l l  o t he r s ,  (b) quant i f ied t e r m s  be p laced  las t ,  and (c) those  t e r m s  

whose  a r g u m e n t s  contain  fewer  v a r i a b l e s  p recede  t e r m s  whose  a r g u m e n t s  conta in  a g r e a t e r  

n u m b e r  of v a r i a b l e s .  

Note tha t ,  because  of (1) - (6) above,  a d i s t r i bu t i ve  f o r m u l a  may  be e a s i l y  r e p r e -  

s en t ed  by d i r e c t e d  g raph  which  is  a roo ted  t r e e  w h e r e i n  the  s u b t r e e  below each  node r e p r e -  

s en t s  a s u b f o r m u l a  cons i s t ing  of a quan t i f i e r  (if such  is  present}  and al l  subfo rmulae  within 

1 
i t s  scope.  E a c h  b r a n c h  f r o m  tha t  node r e p r e s e n t s  a s u b f o r m u l a  within the  scope  of tha t  

quan t i f i e r ,  and unquant i f ied a tomic  fo rmu lae  (and t h e i r  negat ions} a r e  the  nodes  wi th  no 

s u c c e s s o r s .  The n u m b e r  of d i s t inc t  bound v a r i a b l e s  in the f o r m u l a  c o r t e s  ponds to the  num-  

b e r  of edges  in  the  longes t  path down the  t r e e .  C i r c u l a r  nodes  wil l  be used  to conta in  quan -  

t i f i e r s  of point v a r i a b l e s ,  two concen t r i c  c i r c l e s  will  conta in  quan t i f i e r s  of s e t  v a r i a b l e s ,  

and r e c t a n g u l a r  nodes  wil l  conta in  a tomic  p r ed i ca t e s .  The  point  v a r i a b l e s  wil l  be indexed 

in t h e i r  o r d e r  of quant i f ica t ion  ( s t a r t ing  at the  top of the  t ree} by i n t ege r s .  Set v a r i a b l e s  

will  be s i m i l a r l y  indexed by Roman  n u m e r a l s .  F r e e  point v a r i a b l e s  wil l  be denoted by 

1 
When the  e n t i r e  f o r m u l a  i s  not quant i f ied  but i s  i n s t e ad  a logica l  combina t ion  of f o rmu lae  

which a r e  quant i f ied,  the top nodes  of the g r a p h  c o r r e s p o n d  to connec t ives  " ^ "  or  " V "  

ins t ead  of quan t i f i e r s .  The  g r a p h  r e p r e s e n t a t i o n  is  h e r e  used  only for  i l l u s t r a t i v e  pu rposes .  



84 

01 '  02 . . . .  e tc .  in  the  o r d e r  in  which they appea r  in a tomic  p r e d i c a t e s .  F r e e  se t  v a r i a b l e s  

wil l  be s i m i l a r l y  denoted  ~1'  ~2 . . . .  e tc .  When a f ea tu re  is  r e p r e s e n t e d ,  t h e r e  will  be only 

one f r ee  v a r i a b l e ,  the  se t  va r i ab l e ,  ~. 

Here  an example  of a f i r s t  o r d e r  f ea tu re  is shown (for a g r a p h  of a second  o r d e r  

f ea tu re  see  Example  5): 

Example  3 

Cons ide r  the  f ea tu re  P10(A), which  is s a t i s f i ed  by reg ions  which  a r e  " s t r a i g h t  

l i n e s "  conta in ing  more  than two points :  A d i s t r i bu t i ve  n o r m a l  fo rm of th i s  f o r m u l a  is  

A g raph  c o r r e s p o n d i n g  to th i s  f o r m u l a  is  

Thus ,  to decode the above graph ,  we m ay  begin  at  the  bot tom quant i f ie r :  Let  A = ~, x = x 1, 

y = x 2, z = x 3, w = x 4 and we obtain the  following s u b f o r m u l a  which we wil l  denote 

" D l ( x , y , z , A ) " ( w h e r e  x , y , z  and A a r e  the f r ee  v a r i a b l e s ) :  

v w ( :  ~ ,  w] v < <x, % x, w ~ ,  < ~,  ~, y, w]) _ , l ~ ,  y, %,)  

If we include the  note  above i t  we obta in  

Vz ( - ~ , c ~ , A ?  VD 1 ~ , y , z , A ~ )  _ D2(x ,y ,A) .  

Now if we w r i t e  the  f o r m u l a  c o r r e s p o n d i n g  to the  node to the  left  of the one jus t  

cons ide red :  

Moving up a node on the  g r a p h  we obtain:  

~y(e~z,A]  ~ D2[X, y , A ]  A D 3 [ x , y , A ] )  = D4(x,A) . 

P r o c e e d i n g  to the top node we obta in  
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3x (o ^,4 -- P10(A} 

which is  an alphabetic var iant  of the formula  for  P10(A) given at the beginning of the exam-  

pie. 

Note that this graph representa t ion  ensures  that the min imum number  of var iables  

is  used (Rothenberg, 1973b). In general ,  prenex norma l  formulae  have more  than one d i s -  

t r ibut ive  form; also, a given dis t r ibut ive formula will often have more  than one p r e n e x  

form (e. g . ,  when two branches  from the same node contain differing quantif iers  and all  

branches  from that node contain quant i f iers ,  e . g . ,  Vx (Vy[p(x,Y)3~/3y[q(x,y)]) c a n b e  put 

into the prenex normal  forms YxVy3z(p[x,  y ] v q [ x ,  z3) and Vx3zVy(p~x, y~Vq[x, z~). ) 

Note that the prenex form has more  quantified var iables  than the dis t r ibut ive  form. 

This  is often the case. 

We are  here  in teres ted  in the dis t r ibut ive set  of a formula .  This  is defined as the 

set  of formulae obtained by placing a dis t r ibut ive formula  in prenex form,  obtaining all p re -  

nex forms resul t ing  f rom the exchange of adjacent  like quant i f iers ,  placing each of such 

prenex forms in dis tr ibut ive form and e l iminat ing the identical  formulae which resu l t  (more 

economical  methods exist}. 

Another  form of in te res t  here  is called the nested form.  This  corresponds  to a 

prenex formula  wherein the quantif iers  are  imported 1 into the subformulae  within this scope 

unti l  a fur ther  such importat ion would resu l t  in a c i rcu la r  node on the graph having two c i r -  

cular  nodes as immediate  sueees so t s .  Such a formula  is  obtained from a dis t r ibut ive  fo r -  

mula,whenever two or more quantified subformulae (i. e. subt rees  on the graph) a re  the 

immediate  success  ors  of a quantif ier  (c i rcular  node on graph), by consolidating such sub -  

formulae within the scope of a s ingle quantif ier .  A nested form of the formula  in Example 

3 is (also see Example 5): 

P10(A) = ~ x ~ e ( x , A ) A 3 z ~ [ z , A ~  AVy E~e(y,A) 

~/(~b ~ , y , z  3 AVw C: (y,w) v <  (x ,y ,x ,w)  v < (z, y, z, w)])J ) J  . 

Note that both conjunctions and dis junct ions now appear within the scope of the 

quantif ier  of the var iable ,  y. Nested formulae may be graphed by including nodes containing 

disjunctions and conjunctions. The graph of the nested form of P10(A) above is 

1 
That  is,  prefixed to a subformula  ra ther  than the ent i re  formula  in i t ia l ly  within its scope. 
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) 

0 

Although formulae, if in distributive normal form, translate into efficient com- 

puter programs (nested form is more efficient when it contains no more variables than the 

distributive form), the principal motivation here is the necessity for such form in the pro- 

cedures which follow. Also, the "learning" algorithm generates and operates upon formulae 

in their distributive form. 

5. Compression and Decompression of Formulae 

In order to compare different formulae which contain identical derived predicates 

as subformulae, it is necessary to guarantee that such will not be concealed by their form. 

Hence, we define the following procedures: 

Compression: This operation consists of replacing an innermost phrase of a 

formula by an abbreviation, Di(X 1. . ,Xn, A 1. .. Am), with the number of arguments equal 

to the number of free variables (see Example 3 ~ove) .  If this predicate is a derived predi- 

cate which has already been generated (to be discussed), substitute its abbreviation. This 

is called one layer of compression. This may be repeated until all phrases are exhausted. 

When formulae for {all) existing derived predicates are replaced by their abbreviations, 

the resulting formula is defined as in collapsed form. 

Example 4 

PI(A) -: Yx (,re ~ ,  A] V~y ~(y,A) VDl(X,y, A)]) 

_ (~e ) 

Decompression: This is the revers e of compression where each derived predicate 

has its definition substituted for its abbrevation in the formula being decompressed. This 

is done one derived predicate at a time, working from the innermost outward. Each such 
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substi tut ion is  defined as one l aye r  of decompress ion .  This  may be repea ted  until  only 

pr imi t ives  remain ,  in which c a s e  the resul t ing  formula  is cal led the complete  formula.  In 

Example  3 above, we would substi tute 

- ~ ( x , y , z ) V ~ w ( ~ [ y , w ~ A ~ < ~ x , y , x , w ~ A ' x , < ~ y , z , w , z ~ )  for ~'Db(X, y, z) . 

6. Simple Abstract ion 

This  is  a procedure  whereby the col lapsed (distributive) fo rms  in the d is t r ibut ive  

se ts  of P. and P. (or the graph of these forms)  a r e  mechanica l ly  compared  and common 
1 l 

subformulac of maximum length (i. e . ,  with maximum number  of contiguous symbols) a r e  

ex t rac ted  and form der ived  predica tes ,  Each compar i son  proceeds f rom t e r m s  of the inne r -  

1 
most  phrase  outward to the remaining phrases .  Whichever  of P. o r  P. has fewer  dist inct  

t i 

co l lapsed fo rms  is  chosen,  say P.. Each  such fo rm is compared  with any col lapsed form of 
t 

P. and ,~P..  The longest subformulae which a re  common to both formulae  a re  ex t rac ted  
1 1 

and labeled as der ived  predica tes .  Permuta t ion  of t e r m s  within a phrase  in o rde r  to ex t rac t  

a longer  formula  is permit ted.  Also permi t ted  a re  exchanges of var iab les  in p r imi t ives  

where  the extension remains  unchanged thereby  ( e . g , ,  < ( x , y , z , w )  - < ( y , x , z , w ) ) .  Sub- 

st i tut ions of equivalent  p r imi t ives  may also be used, e . g . ,  ~, < (x, y, x, z) = < (x, z, x,  y)V 

= (x, y, x,  z). When compar i son  is  made,  i f  a d is t r ibut ive  (collapsed) fo rm deviates  f rom 

nes ted  (collapsed) fo rm because a quantif ier  has been dis t r ibuted through brackets ,  an addi-  

t ional  compar i son  is made af ter  nested form has been r e s t o r e d  (see Example  5 below). 

Notice that the use of col lapsed fo rms  guards  agains excess ive  computation by not 

manipulating formulae  for exis t ing der ived  predicates  (which resu l ted  f rom simple  a b s t r a c -  

tion previously  performed).  

Example 5 

Here  we compare  (the dis t r ibuted fo rm of) a formula ,  Pg(A), which is s t rongly s a t i s -  

fied by the union of all  boundary points of dark c i r cu l a r  regions  (i. e . ,  those regions  which 

satis~ derived predicate D I I{A) -- 3x:3y3z(~ Ix, y~ A [~ {z, A) <---> < (x, z, x, y}]) with feature, 

PI0{A}, of Example 4 (for convenience ~b{x,y,z) and ~(x,y,z) will not be decompressed): 

,,,,y V<[x,y,x,w-j v < y, z,w])])] .  

1 
That is ,  those s t r ings  of symbols  (start ing f rom the r ight  of the dis t r ibut ive  formulae)  

which a r e  common to both formulae  and which contain no proper  substr ings  common to both 

a r e  extracted.  
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Although P10(A) is in distributed form, it does not conform to nested form Hence we con- 

solidate all te rms quantified by "Vy" within the scope of a single such quantifier: 

pl0~l-  3x Fc(x A~  ̂3z(o Ez, a ^ vy F~~(y A/ 

V(~ Ix, y, z] (y, w) v < (x, ~,x,  w~ v < (z, y, z, ~)])])] h ~¢w [= 

P9(A) has another distributive form, but we here take the negation of the above form and 

l~tbel our variables so that their order in the innermost phrase is s imilar  to the order of 

variables in the innermost phrase of P10(A): 

V~y~  Ix, z, y] A Yw[ :  (y,w)V < (x,y,x,w)V < (z,y, z , w ) ] ) ] ) ]  

A graphical representat ion of 'vP9(A) is 

,,,E(1)I)" ] _ 

Comparison (from right to left) yields the common maximum subformula 

Db(X,Y,Z) = ~'(x,y,z) hVw [ = (y,w) V<(x,y,x,w) g<(z ,y , z ,w) ]  

and we see that 

P10(A) - ~ 3 z ( c [ x , A ]  Ac ~,A-] AVy ~(y,A) -~ Db(X,y, z)]) 

and if we substitute Da(X , y) for ~ (x, y) AVz (~-,D b [,% z, y] )  ("x adjacent to y", see Example 

1), 

P9(A) = Vx3B(c Ix, A] -->c [x, B] A D11 [B] ADd []3] h 3y I ' v e ( y ,  B)  A Da(X,y)]) 

This procedure is more easily seen by extracting common subtrees of the graphs of ,vP9(A) 

and P10(A) (see previous section). 1 

1Although not done in the diagrams above, for mechanized execution of the abstraction pro-  
cedure, variables should be indexed in reverse  order of quantification (i. e. starting from 
the bottom of the tree). 
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Comparison of even the simplest formulae often yields derived formulae. See 

Rothenberg (1973b) for examples. 

In e s s e n c e ,  the f o r m u l a s  obtained by abstraction (and by "relation abstraction", to be 

discussed) are those "properties" of features we consider in this system. 

7. The Predicate Hierarch~y 

Complete abstraction is the application of the techniques of simple abstraction to 

complete formulae (i. e., formulae which have been decompressed till only primitives re- 

main--see Section 5). This is performed at critical points in the flow of the system, such 

as when computer memory is becoming exhausted. Then all derived predicates retained by 

the system are eliminated and complete abstractionis performed with all pairs of features 

in the descriptive basis (i. e., "properties" of features are found). The derived predicates 

obtained are retained by the system (for purposes to be described in Section 15) and each 

pair of these is again compared to extract maximal common subformulae which again be-  

come derived predicates (i. e . ,  "properties of properties" of features are found). This 

procedure continues until only primitives remain, and the resulting set of derived predi- 

cates is called the l~redicate hierarchy. In this manner an economical representation of the 

structure of the descriptive basis may be obtained. 

8. Relation Abstraction 

Here we compare two formulae (again in compressed form), which although they 

possess no common subformulae, have identical logical form (i. e . ,  identical relations be-  

tween their subformulae), or which have subformulae of identical logical form. Consider 

P15(A) = VxVy(¢[x,A~ hOa~X,y~"->~ ~,A~) 

which expresses closure under the relation of adjacency, and 

PI6(A) ~ ~¢xVy(e~,A] A D5~x,y~--->e~y,A~) 

which defines a region closed under another binary relation, D5(x, y). When relation ab- 

straction is here performed a dummy predicate K(x, y), replaces the differing binary 

predicates in the two formulae, and a predicate for m results:  

This variable predicate expresses closure with respect to some unspecified binary relation 

K ~X, y]. 

The procedure for comparing P. and P. is as follows: Compress whichever of P. 
1 3 1 

and P. has the most variables until both formulae contain the same number of variables. 1 
l 

1 
See Example 4 for il lustration of how the number of variabIes is reduced by compression. 
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If the substitution of k (at f i rs t  k = 1) distinct dummy predicates in each of P. and P. 
1 j 

makes them identical, such result ing formula is a predicate form and is retained by the 

sys tem.  (This compression makes use of the negation of a formula and the other devices 

used in simple abstraction. ) When such a substitution does not render  P and P. identical,  
1 J 1 

both formulae are  compressed one layer and the comparison procedure is  repeated. 

Subformulae of a phrase may be permuted or combined, and a dummy predicate may 

be inser ted where no subformula is present  if needed to avoid combining two subformulae 

(one of which is in the other formula) into a single formula. (That is, if Pi(x, y) A Pj(y, z) 

A Pk(y, z, w) is part  of a phrase being compared with Pi(x, y) A Pk(y , z, w), the la t ter  be-  

comes P.(x,y)A K(y, z) A Pk(y, z,w) and K(y, z) is  also substituted for P.(y, z) in the fo r -  
1 ] 

mer. ) 

Example 6 

Compare a predicate which is strongly sat isf ied by the boundaries of all dark convex 

s ets 

P17(A) =--. Vx ~(x ,A)  > "3BE~(x, B)A P2(B) A 3 y  (,-,-,((y, B) A Da(X,y))"]) 

with a predicate which defines the boundaries of all dark sets with property P3(A): 

P18(A) ~ Vx ~(x ,  A)---~ 3B ~(x,  B)A Vx (~(x, B)----> D(x)) AP3(B)/~3y (,vc(y, B)A Da(X, y ) )~  

Putting both in distributive normal form: 

PI7(A) - Vx (Ne(x,A)V 3B [,(x, B)A P2(B)A3y (-v~(y, B) A Da(X,y))~ ) 

P17(A) has fewer variables than P18(A), Hence compression of P18(A) (indicated 

by bracket under above formula) yields:  

The next to innermost phrase above has a g rea te r  number of subformulae than the next to 

innermost phrase of P17(A). Hence subformulae of P18(A) are  combined (as indicated by 

bracket under above formula} to yield: 

1 
The entire procedure may be repeated for k = 1o 2 . . . . .  n (n is chosen to conform with 

the availabili ty of computer memory and to avoid excessive iteration. Hence it will usually 

be small .  ) 
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It is now easy to see that comparison of the compressed sets for PIT(A) and PlS(A) 

above will yield the following predicate form: 

which defines the boundaries of all regions, B, which satisfy K(B), 

Again, the above procedure can be performed by comparison of the graphs of PI7(A) 

and P I8(A) for similarity of structure (exclusive of the different atomic formulae}. 

Relation abstraction is executed whenever simple abstraction is, and predicate forms 

are also retained by the system I (for uses to be described in Section 15). When complete 

abstraction is performed and the predicate hierarchy is restructured, relation abstraction 

is also performed on complete formulae and, in similar fashion, a hierarchy of predicate 

2 
forms (called the relational hierarchy) is constructed, At each successive level in this 

hierarchy the predicate forms acquire additional dummy variables. None are retained with 

more than n such dummy variables, 

9. An Elimination Procedure for the Set Membership Primitive 

For our purposes we define a feature, P(A) as a tautology iff P is satisfied by all 

subsets of the data space or only by the entire data space. P(A) is defined as a contradic- 

tion iff P is sat isf ied by no subset  of the data space. 

Now we e l iminate  vacant predicates  and tautologies which der ive  from the use of the 

pr imi t ive ,  "e(x, A)". Contradict ions and tautologies a re  charac ter ized  by: YA (P ~k]) and 

~3A (P [A]). These formulae have a similar significance: Ca) Vx(e[x,A]) and (b) 

~-~x(e  ~,A]~ or  Vx ( ~ , c ~ , A ] ) .  (We are  not in te res ted  in the empty set  or  i ts  comple-  

ment.  ) Hence the following par t ia l  decis ion procedure:  (1) Examine a formula  and its 

negation (both in complete and dis t r ibut ive form). (2) If a t e rm  of form (a) (or (b)) occurs ,  

label it "T" (or "F").  (3) If "T" (or "F") occurs  as part  of a conjunction or a quantified 

conjunction, label the conjunction "T" (or " F ' ) .  (4) If the ent i re  formula  becomes 

labelled "T" (or "F") ,  the formula  is  tautologous (or contradictory).  The r e v e r s e  is t rue  

for i ts  negation. Hence, 

PI9(A)-- VxVy3z (c[x,A] A ¢ [y,A] A Db[X,z ,Y ]~C [z,A]) 

which has the following dis t r ibut ive form of its negation 

is  tautologons (examine i ts  last  term} and will not be generated by the system.  

1 
All  nes ted forms of a predicate  form are  re ta ined by the system.  

2 Actually,  re la t ion  abst ract ion is also performed on derived predicates as well  as 

fea tures .  
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Simi la r  procedures  can often be developed to e l iminate  tautologies and and con t ra -  

dictions resul t ing  f rom the use of o ther  p r imi t ives ,  (The above is,  in e s sence ,  the f ami l i a r  

technique of '~quantifier e l iminat ion" .  ) This of course ,  depends upon the choice of p r i m i -  

t ives  in the par t icular  application. 

Other pecul ia r i t ies  of the sys tem permi t  the e l iminat ion of other  use less  formulae.  

Notice that because  al l  objects  a r e  maximal  regions,  i f  

is  a data independent fea ture ,  an object which s t rongly  sa t i s f i e s  it also sa t i s f ies  

Notice that if  a formula  for  a feature  is used as part  of auother feature  it becomes  a 

der ived  predicate  and the maximal i ty  condition no longer  applies.  In such case  ~'4 >" must  

be substi tuted for "- -->" in the f i r s t  of the above formulae  if i ts meaning is to r ema in  un- 

changed. 

Consider  a feature  with a col lapsed fo rm 

(9. 1) P(A) - Yx ~(x ,A)  VDF(X) ] =_ Vx ~'ve(x,A)--->DF(X) ~ 

where  DF(X) contains no nested phrase  of the form 

(9, 2) Vy E~c(y,A) VDB<Y) ~ o r  ~y ~(y,  A) h Dc(Y) ~ 

DF(X) can be sa t i s f ied  and s t i l l  x cA.  Hence P(A) wii1 be s t rongly sa t i s f ied  only by 

the ent i re  data space.  Also,  if  the eol lapsed fo rm of the feature  is P(A) -- 3x  [-~e(x,A) 

ADE(X)~ its negation will  be of fo rm (9.1). Again, DE(X) can be sa t i s f ied  and s t i l l  x e A .  

Hence P(A) will  be s t rongly sa t i s f ied  only be sets  consist ing of the ent i re  data space minus 

one point. Fea tu res  which are  s t rongly sa t i s f ied  only by sets  with a fixed number of points 

a re  of no in te res t  here  (except when "eard(A)" is a pr imit ive) .  Hence we ins is t  that all 

1 
formulae  contain at leas t  one phrase  of form (9.2). 

Other e l iminat ion methods re la ted  to this d i scuss ion  a re  desc r ibed  in I lothenberg 

(t973b). 

1 
The formulae  in (9, 2) intuit ively specify conditions for member sh ip  of aAooint in A (i. e . ,  

VyL~(Y,A)---->DB(Y) j ) -  -- or  for non-membersh ip  of a point in A (i. e . ,  Vy ~'DE (Y) --> ~ (y, A)~ ). 

The exis tent ia l ly  quantified formula  in (9.2) may resu l t  f rom a negation of the universa l ly  

quantified formula .  
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10. Models 

A formula  is evaluated in the product set  over which the vector  of i ts  free var iab les  

ranges .  Thus if S CU is t empora r i ly  our universa l  set,  P(A) is evaluated in 2 S (i. e . ,  the 

power set of s ) land  D(x, y, A, B) is evaluated in SXsx2Sx2 S. (Note that formulae are  never  

evaluated in the ent i re  data space, U (to be discussed),  ) 

A model of the formula,  Fi ,  is  an e lement  of the product space (denoted by S), over  

which the vector  of i ts  free var iables  ranges ,  such that the subst i tut ion of each component of 

that e lement  for the free variable  sat isf ies  the formula,  The model is denoted by M!S)(F.) 
j 1 

where j indexes all  such models (the order ing  is a rb i t ra ry) .  When F. functions as a feature, 

- - - i  S)(F.) it is denoted by P. and a model of it M!S)(P.) (as distinct from a "realization", M! ) 

, .1 1 M (S) (F.) J 1 
must  s t rongly sat isfy P. in S = 2 S (see Section 2). is  the set  of all  models of a 

' 1 1 

formula  (called its extension) and M(S)(P.) denotes the extension of feature,  P.. 
1 2 1 

The ease of sat isfaction,  E(F.) ,  of a formula  F i, is defined as 
1 

E(F.) = 
1 card(S~ 

("card" denotes the number  of e lements  in the set  within brackets) .  

The ease  of sat isfact ion of a feature,  P.,  is  always defined in  t e rms  of sat isfact ion,  
1 

not s t rong sat isfact ion ( i . e . ,  E(P i) = E(F i) ). 

The overlap of a pair  of formulae,  F. a~d F.,  is defined as E(F. A F.). 

The following applies only to features:  Pi  ) is the set  of points of S in the j 

2 8" model of P. in S = Let n(P.) = card(~S)(P_.) ) .  Then we define 
1 1 

n(P i) 

j=l 

Restat ing our problem, we are  given two disjoint  c lasses  of regions 

{RI 'R2 . . . . .  RN} 

~ = {RN+I, RN+ 2 . . . . .  RN+M} 

and we wish to generate  an ideal feature,  ~, such that (see Section 1} 

Yk3j ([Mf)(P)I = R k )  where R k e K  

i 
A in  P(A) is allowed to range  only over  subsets  of S. Points  not in  A and sets  other  than 

A, however,  may l ie  anywhere i n  U. (In pract ice,  in  most  cases ,  for purposes of compu-  

tat ion reduction,  points not in S a re  res t r i c t ed  to the boundary of the complement  of S in U. 

2 
Note that E(FI) is genera l ly  defined with S = U. 
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AND 

V~Vj ([MIU)(l~)1 ~ :R~) where R~e 

Note that K c M(U)(P), When this inclusion is proper, P is said to generalize K. 

We a rb i t r a r i l y  ass ign  the subscr ip ts  of each given region, R.. Now the subser ip ts  of all  
1 

M!U)(P.) are assigned such that 
j 1 

(10.1) ~" ~ ard  jnlM ])/card% 

is maximum for all possible indexings (any such maximal indexing suffices). 

l_l. 

R. EC. 
] 

1 

Measures of Success 

Let us denote formula (i0. I) as ~(Pi,~) when all R. cK and as ~(Pi,~) when all 

Let R c. be the complement of R. in U and let ~CJbe set of R. c for all j suchthat ] J. :} 

Define 7(Pi, K) = ¢(Pi' ~) - ~(Pi' ~e) and let 

0(P.,1 [ '  ~) = T(Pi '  ~) - 'Y(Pi'  ~) 

be defined as the measure  of success  in segmentat ion.  It will meas ure  how well a feature 

approximates  an ideal feature.  Another such measure ,  called the su0cess  in part i t ioning is 

defined as 

eard(  M eard(  
(P., K, C) = 

i card(K) card(C) 

Other measures  are also ut i l ized (see Rothenberg, 1973b and Section 18), 

Whenever  feedback occurs,  a set  of weightsj cal led re inforcements ,  on all features  

and derived predicates  are  accordingly al tered.  These are  inc reased  (or decreased) by 

adding, for example,  ~(Pi ,K,  C) - .  5+[0(P . ,K,  ~ ) - .  57/k (where k is an integer) 1 to the 
i 

weights which are  ini t ia l ly set  at zero. This  is done for all  derived predicates  2 and p red i -  

cate forms which toge ther4orm a successful  (or unsuccessful)  feature.  Thus derived pred i -  

cates and predicate forms accumulate re inforcement  f rom a variety of features.  

12. Mutations 

We generate  our features by s tar t ing  with an a rb i t r a r i l y  generated feature,  P.,  arid 
i 

success ively  a l ter ing its syntax by means of mutations which are functions which take one 

i 
An optimal choice of k may b e e s t i m a t e d  by exper imentat ion with the program.  Actual ly 

any method of weighting ~(Pi '  K, C) more  heavily than O(P., K, C) will suffice. 
2 i 

The negations of derived predicates  are  also t reated as der ived predicates  and accumulate  

re inforcement  accordingly.  
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feature into another (L e . ,  fn(Pi) = Pk ). We specify three c lasses  of mutations: res t r ic t ing  

(iff M(U)(P k) ~ M(U)(Pi)), relaxing (iff M(U)(P i) ~ M(U)(P k) ), and neutral (otherwise). 

Relaxing mutations (said to "re lax"  a formula) demonstrably include (Rothenberg, 

1973b). 

(1) Adding a subtree (i. e. derived or atomic predicate) below a node (on the graph 

of a distributive formula) which contains a universal  quantifier. 

(2) Eliminating a subtree below a node containing an e x i s t e n t i a l  quan t i f i e r .  

(3) Replacing a universal  quantifier by an existential  quantifier (and res tor ing d i s -  

tr ibutive form). 

(4) Replacing " 3 ~  Y" by '%ry3x" and res tor ing distr ibutive form. 

(5) Replacing a subformula (i. e. subtree) by one which it implies.  

(6) Replacing "Vx (e [x,A~ V D ~ ,  . . . ~ ) "  by "~x(e[x ,A~ AD[x . . . .  ~ ) "  when the 

former  formula is  not vacuous .  

(7) Replacing "Vx(c[x ,A 7 VD[x . . . .  3) " by "~x ( 'vE[x,A~ hD[x . . . .  ~ ) "  when the 

former  formula is not sat isfied by the universal  set. 

The inverses  of the above are  res t r ic t ing  mutations (said to " res t r i c t "  a formula). 

A neutral  mutation consists  of the replacement  of a subtree on the graph of the distr ibutive 

form of a feature by another subtree with the same free variables such that neither subtree 

r ep r e sen t s  a formula which implies the other. This includes permutations and exchanges 

of variables  in a subformuta. Other "composite" mutations are  discussed in Rothenberg 

(19735). 

13. Mutation Choice 

Here,  among others,  we will develop the following c r i t e r i a :  if given region R. is an 
J 

element of ~ ,  then (a) when R. does not satisfy P. a relaxing mutation on P. is required,  
] I i 

and (b) when R. sat isf ies  Pi but not strongly a res t r ic t ing  mutation is required. When R. 
J _  J 

is  an element of C and R. strongly sat isf ies  P., ei ther mutation may suffice (although a 
] I 

res t r i c t ing  mutation is usually preferred) .  These c r i t e r i a  are ,  of course,  averaged for all  

elements of K and C. 

Assuming we have a feature, P., we now consider how to choose an appropriate 
1 T 11% 

mutation: Let P. be decomposed into a conjunction of two formulae, P.~ and P~ such that 
i pD I I 

i 
P_ is data independent and . contains data-dependent atomic predicates and only those data 

1 l 

independent predicates which are inseparable from this portion of the formula (Rothenberg, 

1973b). 

(13. i) p. = p! ^ pD. 
1 1 1 
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The fea tures  a re  genera ted  in fo rm (13.1). Suppose we wish reg ion  R . ¢ K  to be a model  of 

2Rj. 1 J 
P. (note: s t rong sat isfact ion is required) .  Now let S. = Let "p [A]" r e p r e s e n t  the 
I . . . . .  ~::J - -  

probability of event A. It has been proved (Rothenberg, 19735) that if R. is a randomly 
J 

se lec ted  region,  

( s j )  I "  
(t3.2) E(P~) ~< E(pI)---> p ~ard ( M ~ I ' I  (p~)) > card (M " (Pk))17 > t/2 . 

T~ 
This holds only because al l  e lements  of M J(P.) a re  maximal  rea l iza t ions  (i. e . ,  

1 

models)  of P.. (13.2) can be intui t ively seen  if we cons ider  the number  of maximal :  2 (1) 
1 

c i r c l e s ,  (2) convex regions  and (3) " s t a r l i k e "  regions  that may be contained in a reg ion  con-  

s is t ing of the in t e r io r  of an a r b i t r a r y  ink blot. C lea r ly  the numbers  dec rea se  f rom (1) - (3) 

while the ease  of sa t is fact ion of the formulae  (features) c o r t e s  ponding to (1)-(3) inc rease .  
isJ . 

L " j , ,, I et M r (P.) denote the largest (i. e. most points) model of P. in S.. Then the following 
~u 1 1 ] 

also holds: 

(13 .3 )  

( 1 3 . 4 )  

(13 .5)  

(13.6) 

I r i s . )  I "  r ( s . )  _ 

. ( s , )  . .  . .  ( s . )  . .  

E(P~) E(pI)--=-> (S.) /7 (Sj) 1 I\7 

( s . )  i s  ) 

The above indicates  that if  more  than one object  sa t i s f ies  P. in S. or ,  if  the l a rges t  
t j 

model  of P. in S. is  s m a l l e r  than des i red ,  a re lax ing  mutation of P. is appropr ia te .  Now 

I ) M(U) (PD) [ I i 

we cons ider  the case  where  S. = 2 J i I for al l  j ( i . e . ,  we evaluate  P! in the space of 
.th J D_ 1 

al l  subsets  of the j model of P : ) .  
1 

for some j, Mj(U)(PiD) ~ R j  tR . . j  Then PDI will  be re laxed  until, for Suppose 

all  j 

(U) D 
(13.7) R. C [M j J  (Pi) 1 

and such that 

1 
For  brevi ty  in notation, w h e n m o d e l s  of features  are  denoted, the " - - "  over  the super  

scr ip t  will  be omit ted (e. g . ,  M(U)(P.} will  be denoted by M(U)(P.) ). 
2 1 1 

If we omi t  "maximal" ,  c l ea r ly  the o rder ing  is  the other  way around. 
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n(p.) 

i s  as s m a l l  as p o s s i b l e .  No te  t ha t  i t  i s  p o s s i b l e  t ha t  oard( s , _  esj)_ > l  ("1" m e a n s  

"such that"), i . e . ,  there are several RiC S.. Consider P. and ~ which is ideal feature. 
j 1 

Let . ( .~ = . =S.  (note: R .C MU)(P ) ). Then it can be shown that (Rothen- 
j 1 j l l 

berg, 1973b): 

. (s.) 

(13.8) oardCM ' (P~))< card(Hs ~ / a  s C Sj>---> p[E(P~)> E(~')] > lie 

(13.9) 
] 

iS.} ])~ 

That is, if there are two many models of pI relax pI. if there are two many points to a 
i i ' 

I restrict  pI given model of Pi'  i" 

(U) D 

recognition system (intuitively, a system wherein the magnification of a geometric figures 

does not alter the features wMeh it satisfies or fails to satisfy), the probable proportion of 

models in a space S. does not alter with the size of the space (after a certain minimal size). 
J 

Hence (13.8) still holds (although (13.9 and (13.10) do not___). Hence a comparison of how well 

(13.8) and (la. 9) agree, i . e . ,  the probability that 

(13. 11) 
. i s . )  i s . )  

card(M J (P~))< card(Ric[~iR£¢ Sj)< > card(iM L] (P~)l) > eard(R.)] 

inc~Cates how well IM~U}(~D)I and M~U)(pD)] match. Because of(13.7), E(~ D) c a n  o n l y  

be too large. Hence' J ' a  failure of (13. ll)J ~'indicates that pD should be restricted in accordance 
1 

with (13.9), but without violating (13.7). 

When pD is usually composed of one place atomic predicates (i. e . ,  "gray scales"}, 
1 

mutations of pD are simpler than those on P! and are performed first (when there is such a 
1 I 

choice}. 

Other techniques similar to the above exist (Rothenberg, 1973b). Since probabalistic 

considerations are involved in the above, (13.8) and (13.9) should be averaged over all j 

(there are N such) and normalized; i . e . ,  examine both 

1 
Except at the boundary of U. 
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N (S) 

X =  N ]_± "~ 1 Z ~ c a r d ~ M  ] ( P ~ ' b - c a r d ( R ~ e K t R ~  ¢ S , ~ / c a r d ( R # e K I R ~ C S j }  ) 

and 

N (S.) b Y=~ 
j=± \~ 

and apply the s t r a t eg ies  previous ly  outlined according to whether  X and Y a re  g rea t e r  than 

zero. 

We have assumed that each R. is  randomly se lec ted  f rom subsets  of U. This  is  
J p !  ., 

not reasonable .  However,  s ince models of s t rongly s at isfy pI  a region,  R., which is 
1 3 ¥ 

not a model  of P.~ need not be a model  of "vP a.. Hence by applying our c r i t e r i a  for  mutation 
1 - -  1 

choice to both formulae ,  pI. and ,~pI. (both of which for this purpose a r e  t r ea ted  as fea -  
1 1 

tures) ,  i t  appears  that we may ame l io ra t e  our  assumpt ion  of the randomness  of R. (i. e . .  
] 

"models  of P!  a re  as random as models  of ~ p I , , ) !  Thus the d i sag reemen t  of c r i t e r i a  when 
1 i 

applied to both p I  and ~pI.  (e. g . ,  both P and ~- P. r equ i re  re lax ing  mutations) indicates 
I 1 1 i 

the need for a neutral mutation. Notice that both measures of success (Section ii) are re- 

flected in the above. (Details are discussed in Rothenberg (1973b),) 

14. Modified Quantif iers 

Now a more  powerful technique of mutation se lec t ion  is descr ibed;  note that al l  

quantified point var iables  in a formula  P(A) range over  e i ther  the set  A (e. g . ,  a re  r e -  

s t r i c ted  by "e (x ,A)"  within the scope of the quantifier)  o r  the complement  A e of A, o r  

range ove r  the un iversa l  set  (when no set member sh ip  a tomic  predicate  r e s t r i c t s  i ts range).  

Thus when, on the graph of a formula ,  a node containing a quant if ier  has no branch contain-  

ing a set  member sh ip  a tomic  predicate ,  the quantified var iab le  ranges  ove r  the un iversa l  

set  (or i ts  power set  i f  the var iable  is  a set  var iable) .  (Note that in subformula  

v x ranges over and in subformula V . . . .  J ) ,  

x ranges  o v e r  A . However ,  when the subformula  is -qx , A] A F Ix . . . . .  x ranges  
¢ )  

o v e r  A, etc .)~.  

Let  Y denote the set  over  which var iable  x ranges  (where q indexes the var iab les  
q 3 q 

in a nes ted  fo rm --  see  Section 3). Since we a re  deal ing with a s ize  invar iant  sys tem (see 

1 
That is,  i f  this randomness  with r e spec t  to the above c r i t e r i a  does not hold, it appears  t ha t  

in these  cases ,  we will  know it  because of opposite indications.  

2 
Note that 

x e A  x e A  

etc. 

3 
r always is one of A, A e, U, 2 A, 

A c 
or  2 . 

q 
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previous  section) we here  cons ider  the f ract ion of x in F (rather  than the f rac t ion of x 
q q q 

in U) for which a fo rmula  is  sat isf ied.  (Similar  r e m a r k s  apply to set  var iables .  ) 1 

The following notation will  be ut i l ized:  a l l  d is t r ibut ive  fo rms  in the d is t r ibut ive  set  

will  be a rb i t r a r i l y  indexed and p!k)" will  indicate the kth such dis t r ibut ive fo rm of feature  
1 

P.. It can be shown that an a r b i t r a r y  indexing of quant i f iers  in a prenex form f rom which 

the dis t r ibut ive set de r ives  (see Section 4) will  ,result  in a cor responding  o rde r ing  of the 

quant i f iers  in each dis t r ibut ive  form.  This  follows f rom the following, which a re  conse -  

quences of the definition of the d is t r ibut ive  set  and of d is t r ibut ive  fo rm (see Section 4). 

(a) If, in placing a prenex formula  into a d is t r ibut ive  form,  one quantif ier  

in the prenex formula  becomes  more  than one quantif ier  (using the same 

in the d is t r ibut ive  fo rm (e. g . ,  Vx --(FI(X) h F2(x) )_ variable)  becomes  

Vx ~FI(X) ) A Vx (F2(x))) ,  this  occurs  in al l  d is t r ibut ive  fo rms  in the d i s -  

t r ibut ive  set .  

(b) If two or  more  quant i f iers  using dist inct  var iab les  in a prenex formula  

become quant i f iers  using the same var iable  in a dis t r ibut ive form (e. g . ,  

Vx'qY(Fl(X) hF2(Y) ) becomes  VX(Fl(X) ) h ~x (F2(x ) ) ) ,  the  number  of 

quant i f iers  in the prenex fo rm and in the dis t r ibut ive  form a re  equal.  

Note that in (a) above the number  of quantif iers  i nc reases  and the number  of v a r i -  

ables r emains  unchanged. In (b) the number  of var iables  is reduced,  but the number of 

quaat i f iers  r emains  unchanged. 

Hence al l  d is t r ibut ive  fo rmulae  in a d is t r ibut ive  se t  have the same  number  of 

quant if iers .  All  nes ted formulae  (see Section 4) have the same  number  of quant i f iers  as  the 

prenex formula  (but possibly fewer  var iables) .  However,  each of the dis t r ibut ive  formulae  

may have more  quantif iers  than the prenex formula  (even when the dis t r ibut ive  formulae  

have fewer  var iables) .  Hence two o r  more  quant i f iers  using the same  var iab le  in a d i s t r ib -  

utive fo rmula  may have the same index (as de r ived  f rom the indexing of quantif iers  in the 

prenex formula).  Such quant i f iers  will  be ab r i t r a r i ly  ordered .  That same order ing  will  be 

maintained in a l l  d is t r ibut ive  formulae ,  each of whose quantif iers  will  be subscr ip ted  by this 

order ing.  

th kth 
Let  Q(k) denote the r quant if ier  in (i. e . ,  the dis t r ibut ive  fo rm of I).), 

r 
(k) (k F (k) 1 

x r denote the variable  quantified by~,_Qr ) and r denote the subformula  within i ts  scope 

(i. e . ,  i ts subt rees  on the graph of P!~)). Simple methods exis t  (Rothenberg, 1973b) which 
1 

guarantee that the subscr ipt ing of two or  more  quantif iers  of the same var iable  is consis tent  

a c r o s s  a l l  d is t r ibut ive  fo rms  in the sense  that,  i f  they  have the same  subformula  within 

1 When f" = U -  S.; for computational economy, x is allowed to range only over  points in 

the boundaqry of th~ complement  of S. Note that no__.~ormula is e v e r  evaluated in U. 
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the i r  scope,  they have the same subscr ipt .  Note that each var iable ,  x "°" is  subscr ip ted  

according to i ts  ctuantifier 's  subscr ip t ,  and hence the same var iable  may  have different  sub- 

sc r ip t s  when separa te ly  quantified (i, e . ,  such quant i f iers  a r e  on the same  leve l  of the 

graph of P!~)." If x (k}'" and x (k}" a re  two such va r i ab les  we will  denote the i r  equivalence by 
1 p r 

"x  tKj = x tKt''. (Note that such var iab les  a r e  not separa te ly  quantified in nes ted  formulae .  ) 
p r 

[,(k) will  denote the set  over  which x (k}~" ranges  (if x (k}'" is not a point var iable ,  F "(k) 
P p p p 

(k) 
denotes the power set  over  which x ranges) .  

P 

Let  "Q(k)sQ(k)" denote that ~ ( k ) i s  a s u c c e s s o r  node of Q ~ ) i n  p!k) (i .e.  , Qr (k) 
p r ~p 1 

is within the scope of Q(k)),p ,,Qp = V" and "Qp = "4" will  indicate,  r e spec t ive ly ,  that Qp 

is a un iversa l  quantif ier  and that Qp is an extent ial  quant if ier  (note that the supe r sc r ip t  is 

unnecessa ry  because of the cor respondence  in indexing ac ros s  d is t r ibut ive  forms of a f o r -  

mula). Superscr ip t s  will  hencefor th  be included only when re levan t  o r  useful for  purposes 
t t ~  / 1 

of c lar i ty .  Given a region,  Rq, and a feature ,  Pi ,  note that  "R = IM J(P )]" (subscript  is 
q 1 i 

omit ted because  i r re levan t )  denotes s t rong sa t i s fac t ion  of Pi  by R in space,  S., and 
ct J , ( s )  

"R = IiM J(F i) " denotes satisfaction but not necessarily strong satisfaction, i 
q 

Now consider a feature, Pi(A), and two given regions R e ~ and R t c ~. Suppose 

q 2 
we wish to alter P. so that R strongly satisfies the altered feature and R t does not. 

i q 

From the preceding section we see that, in general: 

M(Sj)(Fi ) (a) if  R ~ (i .e.  R fai ls  to sa t i s fy  P,) q ' q 1 

a re laxing mutation is requi red ,  

• (5) (5) , (h) ISRq=IM "(F i) but a ÷ M (Pi)l 
q 

(i. e . ,  R sa t i s f ies  P. but not 
q 1 

strongly),  

a r e s t r i c t i ng  mutation is r equ i red ,  

e i ther  aneutra~ mutation or  a mutation according to (a) o r  (b) above is  required .  

R t c ~ --  to be d iscussed in Section 15. ) 

Combinations of (a), (b) and (c) will  also be d iscussed  in the next section.  

1 
Note that i t  is  he re  assumed that R C S.. 

q J 

2 As in the previous sect ion,  

expl ici t ly  noted here) .  

(Note: 

P! a re  independently mutated (although tMs is  not 
1 1 
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F i r s t  we cons ider  case  (a) above Let  A = R (A is  the f ree  se t  va r iab le  in P.(A)}. 

q p(k) 1 
Note that  A is no longer a f ree  var iab le  A r b i t r a r i l y  se lec t  a d i s t r ibu t ive  form,  . . 

Now se lec t  p such that  Qp =V and such that for  al l  quant i f iers  Q{~)r (in a l l  d i s t r ibu t ive  

fo rms ,  P!~) 
1 

(14. 1) ~ c a r d ( Q  (D (~) ^(~) . . . .  (~) .... ~ : \  r (Qr SUp J / ~ r  = V ) )  

is  maximum (i. e . ,  such that  Qp has the maximum number  of s u c c e s s o r  nodes which a re  

un ive rsa l  quant i f iers ,  summed over all  d i s t r ibu t ive  fo rms  in the d is t r ibu t ive  set  of P.). If 
1 

two or more  quant i f iers  a re  equivalent  in this  r e spec t ,  an a r b i t r a r y  se lec t ion  wil l  suffice.  

Now rep lace  Qp by the modif ied quantif ier ,  Qp, which computes  Kp, which is de -  

fined as  that  f rac t ion of the x ' s  in [~ for  which P. is  t rue  (i. e. for  which R = 
p p 1 ' q (sj) 

IM " (Fi)l; which definit ion is e la r i f i ed  by the following procedure-  eve ry  subformula  of P. 
1 

is  of the fo rm Q Xp(Fp[-X 1 _  . . . . .  xo-])~ (although it may be n e c e s s a r y  to r e - index  the quant i f iers  

in the d is t r ibut ive  form so that  only va r i ab le s  in F a re  indexed- -see  Section 4). Let each 
P 

e lement  of I ~ be denoted by e ( k )  where  k indexes a l l  e lements  of r . Define 
n n n n n 

K(Cl(kl) ,  c2(k 2) . . . . .  Cp_l(kp.1) ) as  the f rac t ion of subst i tut ions of the e lements  of f~p for  Xp 

f o r w h i e h  Pi(A) i s t r u e w h e n  (x . . . . .  x 1 ) = (c~(k  1) . . . . .  e l (k 1)). F o r a l l  n < p - 1 ,  if  

Qn = V, define K(Cl(k 1) . . . . .  Cn_l(kn_ 1 n~in l (k l )  . . . . .  Cn(kn)); ff Qn = 3, then 

K (Cl(k 1) . . . . .  Cn_l(kn_l) ) = max(K~ct(kt )  . . . .  n, Cn(kn) >. W h e n n  = 1, by definition, K = K .  
kn \ \ 1  1 p 

1 
However,  if when K = 0, R s t i l l  fa i ls  to sa t i s fy  Pi '  by definit ion K = -co. Note that  

P q P 
is the same r e g a r d l e s s  of the d is t r ibu t ive  fo rm chosen (i. e . ,  r e g a r d l e s s  of the k in F(k)). 

P P 
Actually,  the procedure  will  opera te  on a prenex fo rm (it is  bes t  to use nes ted  form).  

~(k) 
Now we rep lace  Qp by another  modified quantif ier ,  which s imi  l a r ty  computes  

~(k),  which is defined as that  f rac t ion  of the x(k) 's  in F '(k) Up , F (k) p for which is sa t i s f ied ,  
p p 

averaged  over  a l l  subst i tut ions of eonstants  for the f ree  va r iab les  in Note that  
r l  

the d is t r ibu t ive  form chosen is now re levant  and the s u p e r s c r i p t  of K (k~) is  n e c e s s a r y .  
P ~(k) 

(Superscr ip ts  of x (k) if(k) and ~(k) a r e  included for  c la r i ty .  ) That i s ,  i s  such that  
p ' p P 

fea ture  P. is  sa t i s f i ed  and ~(k) t~p F (k) is  such that  subformula  is  sa t i s f ied .  Hence always 
p P 

~(k) >_ 0. 
o 

Note that Q and {k) . , - Qp,_ a re  c o r r e c t l y  in t e rp re t ed  as for  Kp. 100 percent  of x " and as  
p P 

"for ~ k ,  100 percent  of x ~K)", r e spec t ive ly  ( s t r ic t ly  speaking,  the supe r sc r ip t  of x (k) is  un- 
P P (k - P^ (k) 

n e c e s s a r y .  Also note that  E(P.) and E(F ~ a r e  i nc r ea sed  by r ep lac ing  Q by Q and Q , r e -  
- --(k) 1 p P p ^ o  

- (k )  spect ively .  Kp and Kp a re  ca l led  the values of the i r  r e spec t ive  quant i f lers  (Qp and Qp ). 

1 
This  can be built  into the above algori thm. 
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Now define Dp = Kp- 1. Restore  the original  quantif ier ,  Qp, and select  another 

universa l  quantifier,  Qr '  according to condition (14. 1). Again, replace Qr by Qr and ~(k)r 

and compute the corresponding values of K , ~(k) and D . Restore  Qr and repeat  the pro-  
( . . r  r r 

cedure t i l l  a l l  un iversa l  quantif iers  in  p:k) a re  exhausted. (This can be done in a single 
1 

computation (Rothenberg, 1973b). ) 

Suppose for some p, K = -co. Using Q is defined as equivalent to replacing F (k) 
P P P 

by a tautology. A value of "1" in the numera tor  of K ( i . e . ,  K = 1/card(W )) is equivalent 
P P 

to replacing Qp by an exis tent ia l  quantifier.  When K = -oo we may conclude that no re lax-  

(Sj) . P'I (Sj) I 
ing mutation within F (k) will resul t  in R = M (Fi) I (or, of course ,  in R = M (Pi) ). 

P q q 
(Hence modifications of (tuantifiers which a re  successors  of Qp on any t ree  of any d i s t r ib -  

utive form in the dis t r ibut ive set  may be avoided. ) Note, however, that replacing a un ive r -  

sal  by an exis tent ia l  quantif ier  may inc rease  E(F (k)) {and hence E(F.) ) l ess  than a mutation 
p 1 

(k) -- -- 
which adds a subformula  within F . Therefore  when K = 0 (i. e. -co < K < i /card(f"  ) ) 

P P P i~  l~  P 
we may not without some hazard avoid considering the modification of Qr ~(Q~ _ i s Q~ i). 

Now consider case (b) where R satisfies P. but not strongly. The procedure is 
q i !k) 

s imi la r :  Again, a rb i t r a r i l y  select  a dis t r ibut ive form, P and let  A = R . Select p such 
1 q 

that Qp = 3 and such that (s imilar ly  to (14.1)) 

r r p r 

is maximum. 

Replace Qp by Qp, and compute K which is defined as previously except that if 
(k) P 

for all k~ no replacement of F by a contradiction (i. e., a formula which is always false) 
P 

= which com- reqults in Rq ~ M(Fi), 1 by definition, K~p co. We then replace Qp by Qp 

putes _K wbieh is defined s imi l a r ly  to K exeept that we now ins i s t  that R = M(P.) (strong 
p p q 1 

satisfaction) instead of 1t = M(F.) (sat isfaction but not s t rong satisfaction).  Note that K 
q 1 p 

and K are  not neeessa r i Iy  equal when K = co. 
P P "~ ^ k  . . . .  (k) . ( ) 

New we again replace Qp by the modified quant lher  Q which computes K 
(k), P (k) (k) p 

which is  defined (as previously) as the fract ion of the x s in W for which F is s a t i s -  

fied, averaged as before ~ / c a r d ( f '  )< < 1 . Note that E(P i) and E(F ) a re  de-  

by the modified quant i f iers  (here, always, Kp _> 1/card(Fp) ). c reased  by replacing Qp 

Now define Dp = Kp. Restore  the or iginal  quantif ier ,  Qp, select  another 

existent ial  quantif ier  according to (14.2) and repeat  the above procedure unt i l  all  exis tent ia l  

quantif iers  in "Pl.~) a re  exhausted. (Again this can be done in a single computation (Rothen- 
1 

berg,  1973b). ) 

1 (s.) 
The superscr ip t  of "M ] (El)" is henceforth omitted in such equations when Rq r'Sj. 



103 

Note that when ~ = co or  K = co, we may conclude that no r e s t r i c t i ng  mutation 
P P 

within F xk'~ for any k (i. e . ,  any dis t r ibut ive  form) will  r e su l t  in R = M(F.) or  R = M(P.) 
p q 1 q 1 

respec t ive ly .  When K = 1 (or K = 1 o r  ~(k) = 1) we are ,  in effect ,  rep lac ing  an e x i s -  
P P P 

tent ia l  by a un iversa l  quantifier.  Note, however ,  that rep lac ing  an exis tent ia l  by a un iversa l  

quantif ier  may dec rease  E(F (k)) less  than a mutation which adds a subformula within F (kJ." 
P P 

Hence, in this case,  we may not without some hazard  avoid consider ing the modif icat ion of 

Q 3~( (~)sQ (~) 
r Qr ~p 

). 

With appropriate modifications the above procedure will operate on quantifiers of 

set (as well as point) variables, 

We now define the degree of satisfaction, D(Pi, Rq), of Rq with respect to feature, 

P, ~ a s  
1 

o4. 3) "(Pi 'aq) = m~x(Sp~IA = aq 
p 

("A" is the f ree  var iable  in "P.(A)'9 
1 

When D(Pi, R q) is  negative (universal  quantif iers  have been modified because  

R ~ M(F i) ), D(P i ,Rq)  is cal led the degree  of undersat is fact ion of R with r e spec t  to P.. 
q q 1 

When D(Pi ,R q) is posit ive (existential  quantif iers  have been modified because Rq = M(F.)I ) 

but R ~ M(Pi), D(P i, Rq) is cal led the degree  of oversa t i s fac t ion  of R with r e spec t  to 

p. 1 q ........... q 

1 

In our probe lm here  we w i s h  to genera te  a fea ture ,  P i '  such that Rk~K --> 

R k = M(P i) and R i E ~ >R l ~ M(Pi). Accordingly we define the sa t i s fac t ion  gap, G{Pi), 

of P. as  
1 

(14.4) °(Pi)  = rain_ 
R k ~ K  R~ eC 

Note the cor respondence  between G(P.) and our " m e a s u r e s  of s u c c e s s "  (Section 11). 
1 

Although we are  seeking strong sa t is fact ion while G(P i) deals  with sa t is fact ion which is  not 

neces sa r i l y  s t rong (appropriate adjustements  can be made in the definition of G(P i) ), it wil l  

be seen  that G(P.) has uses other  than measur ing  the success  of P. --  see  Section 17. Note 
1 I ~  1 

also that modified quant i f iers  of the F ~kj in P. cor respond  to mutations of such subformulas  
p 1 

both in kinds and amounts of a l tera t ions  in ease  of sat isfact ion,  E(P.) and E(F(k)). Also,  
p 

the a l te ra t ions  in formulae  due to quant if ier  modif icat ion a re  r e l a t ed  by impl ica t ion just  as 

a r e  the a l te ra t ions  due to mutations.  

t 
Note the intuitive in te rpre ta t ion  of these  not ions--e ,  g . ,  of two concave (i. e . ,  non-convex) 

regions  (e. g . ,  ~ and ( ~ ) ,  one may be "more  concave"  (the fo rmer )  than the other.  Ex -  

per imenta t ion  will  r evea l  that the above techniques p r e s e r v e  such intuition (e. g . ,  ~ and 

( ~  are  approximately  "equal ly eoncave" ) - - see  Rothenberg (1973b). 
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15. Ease  of Satisfaction; Mutation 

It is eas i ly  seen that, when ~(k) is  evaluated for all R. eK and all  R.e ~ and I~ (k) is 
1 3 P 

defined as  an average  of al l  such ~(KT, 
P 

* (k) (" ~ "  means "approximate ly  equal to") E(F(: )) ~ Kp 

" ~ '"  is used instead of " = "  in the above because the probabil i ty of such equivalence depends 

upon and sharply  inc reases  as the number  of regions  (R. and R.) for which ~(k) i s  evaluated 
1 3 P 

and averaged inc reases .  

All  modif ied quantif iers  a r e  es t imated  in a single evaluat ion of P. by cons ider ing  al l  
1 

substi tutions for  the var iab les  in the formula  ( regard less  of whether the var iab les  are  quan- 

t i f ied by universa l  or  exis tent ia l  quantif iers) .  Such methods (which resu l t  in e s t ima tes  for 

E ( F p  ) ) "  r a the r  than exact  values) a r e  essen t ia l  to reduce  computation to feas ib le  proportions.  

Hence, when P i  is evaluated, we obtain an es t imate  of the ease  of sa t i s fac t ion  E ( F !  k)) of al l  

i ts  subformulae,  F (k). Some such sub t rees  (on the graph of P.) become der ived  predica tes  p 
P 1 

a f te r  the s imple  abs t rac t ion  procedure  is applied. When these  der ived  predica tes  a re  s tored,  

the i r  avai lable es t imated  eases  of sa t i s fac t ion  a r e  also retained.  

Each of the K (and ~ ) a re  also averaged 1 for al l  R. e K (in cases  (a) and (b)) o r  
P P _~ ~ 

for  a l l  R. c ~ (in case  (e) - to be discussed) .  Let  K (and Kp) r e p r e s e n t  such averages ,  
J P 

Then a mutation of subformula  F (k) (of P.) which resu l t s  in another  subformula,  ~(k) such 
"" * p 1 p ' 

h ~ (k) 2: = 
t at E(F ) = K (or K , if  appropriate)  may resu l t  in t r ans fo rming  P into an ideal f ea -  

P P P (k) i 
tu re ,  No other  mutat ion of F" " can achieve this resu l t .  Hence mutat ions a r e  chosen so 

P (~(k)) 
that new subformulae  (k resu l t  where ,  as c losely  as possible ,  E(F  )) = K For  this 

P P p" 
purpose,  the F (k) in P. a r e  compared  with the der ived  predica tes  previous ly  ext rac ted  and, 

p 1 

in genera l ,  in much s impl i f ied  form,  the procedure  is :  

(1) De te rmine  whether  a re laxing,  r e s t r i c t i ng  or  neutral  mutation (to be discussed)  

is  requi red .  

(2) Examine that d is t r ibut ive  ibrm,  p(k). , of the fea ture ,  P. ,  to be mutated (usually 
1 1 

that fea ture  with the highest  m e a s u r e  of success )  which, when compared  (by the s imple  a b -  

s t ra t ion procedure) to other  fea tures  previously  generated,  yields a der ived we4caie ~ e  

formula  i s  the longest of those of der ived  predica tes  so obtained (k i s  thus chosen to f ac i l i -  

ta te  the compar i sons  (in the abs t rac t ion  procedures)  of the new fea ture  genera ted  with p r e -  

viously genera ted  features) .  When we evaluate P. (A) we thereby compute K and ~'(k) for 
1 p p 

a l l  p. At f i r s t  the col lapsed form (see Section 5) of p(k) is examined.  
1 

1" 
More  ref ined methods than averaging a re  used; see next section.  
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(k) 
(3) C o m p a r e  each  subfo rmula ,  F , which  would r e s u l t  f r om each  muta t ion  of the  

P 
r e q u i r e d  type (on a c o r r e s p o n d i n g  subformtf la  F (k) of  P.)  with  each  of the de r ived  p r e d i -  

p 1 

ca res  which  ha s  bee~ stored.  C o m p a r i s o n  p r i o r  to muta t ion  avoids  the  examina t ion  of many  

pos s ib i l i t i e s  (see Ro thenberg ,  1973b). Also ,  of mu ta t ions  which  add subfo rmulae  wi th in  the  

scope  of a quan t i f i e r  (see Sect ion t2) only the  addi t ion of such  sub fo rmu lae  as  a r e  inc luded 

in the l i s t  of de r ived  and a tomic  p r e d i c a t e s  a r e  cons ide red .  

(4) Select  tha t  muta t ion  which  p roduces  a sub fo rmula ,  ~(k) (of the  new fea ture) ,  
P 

which  is  iden t ica l  to a de r ived  p red ica t e  whose  e a s e  of s a t i s f ac t i on  mos t  c lose ly  a p p r o x i -  

required (i. e., E(F~))~Kp;_ see above discussion). 1 If there are several such m a t e s  tha t  

muta t ions ,  s e l ec t  tha t  which r e s u l t s  in  the  mos t  r e i n f o r c e d  (i. e. wi th  the h ighes t  ( r e i n -  

f o r c e m e n t "  - - s e e  Section 11) de r ived  p red ica te .  If none such  ex i s t s ,  d e c o m p r e s s  (see 

Section 5) "P(k) one l aye r  and t r y  again.  If r epea t ed  d e c o m p r e s s i o n  fa i l s ,  t r y  ano ther  d i s -  1 

t r i bu t ive  fo rm of P. .  If th is  a lso fa i l s :  

(5) Compare  the  f ea tu r e s  to be a l t e red ,  P i '  wi th  each  of the p red ica te  f o r m s  (see 

Sect ion 8) which have been  s to red .  Select  a p red ica t e  fo rm (if such exists} which r e s e m b l e s  

P. (or one of i ts  subformulae)  in  the  s e n s e  tha t ,  if  c o r r e s p o n d i n g  subfo rmulae  of P. (which 
1 1 

mus t  have the s a m e  f r ee  v a r i a b l e s  as the dummy pred ica te )  r ep l ace  the  dummy p red i ca t e s ,  

a f o r m u l a  r e s u l t s  which cons t i tu tes  a muta t ion  of P. of the r e q u i r e d  type.  If such  r e s u l t i n g  
1 

f o r m u l a  conta ins  ano the r  dummy p red ica t e ,  r ep l ace  it by the mos t  r e i n f o r c e d  de r ived  p r e d -  

ica te  (or a tomic  predicate} with the s a m e  f r ee  v a r i a b l e s  --  s ee  l a s t  par t  of Example  6 be -  

low. If a choice  of p red ica t e  f o r m s  ex i s t s ,  s e l e c t  tha t  with  the  h ighes t  r e i n f o r c e m e n t .  If 

no such  p red ica te  f o r m  ex i s t s ,  a muta t ion  of the  r e q u i r e d  type is  chosen  at r a n d o m  and the  

footnote below appl ies .  

C r i t e r i a  r e s t r i c t i n g  such  r a n d o m  choice  ex i s t .  The de ta i l s  (Rothenberg ,  t'973b) of 

the  above p r o c e d u r e s  a r e  cons t r uc t ed  so tha t  i t  i s  e x t r e m e l y  unl ikely  tha t  r a n d o m  choice  

wil l  be  n e c e s s a r y  (except  e x t r e m e l y  r a r e l y )  a f t e r  the  in i t ia l  s t ages  of the  l e a r n i n g  p r o -  

c e d u r e  (note tha t ,  a l m o s t  a lways,  some  muta t ion  wil l  b e t t e r  approx ima te  the  r e q u i r e d  e a s e  

of s a t i s f ac t i on  of a s u b f o r m u t a  of P. than  ano ther ) .  It i s ,  of cou r se ,  poss ib le  (in some  
1 

appl ica t ions)  to cons t ruc t  ( from c e r t a i n  a tomic  p red i ca t e s )  i n h e r e n t l y  two-va lued  p r e d i c a t e s  

(such as  tha t  a se t  m u s t  conta in  an  even n u m b e r  of points)  so tha t  quan t i f i e r  modi f ica t ion  

cannot  guide the muta t ion  p rocedure .  In th i s  case ,  t echn iques  which develop those  of Sec -  

t ion  13 mus t  be used  and much  g r e a t e r  use  of r a n d o m  choice  r e s u l t s .  

1 
If the ease  of s a t i s f ac t i on  of a de r ived  p red ica te  (or s u b f o r m u l a  r e s u l t i n g  f r o m  a poss ib le  

mutat ion)  is  not ava i lab le  by the methods  desc r ibed ,  i t  may be e s t i m a t e d  by va lua t ions  of 

the f o r m u l a  in r andomly  chosen  s m a l l  s p a c e s  (as wel l  as  by o ther  e s t i m a t i n g  t e c h n i q u e s - -  

s ee  Rothenberg ,  1973b). 
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Example  6 

Suppose we wish to r e l ax  P21(A), which a s s e r t s  that  the region subst i tuted for  A 

has  a point which is  "between"lno two other  points in the region  (i. e . ,  a "cusp" if the region 

is connected). Let D14(x,y) ~ Vz E~c(z ,A)V ,V Db(Y,X, Z) ~ and let  Db(Y,X,Z) (previously  

defined} be in our l i s t  of der ived  pred ica tes  so that  the col lapsed form of our chosen d i s -  

t r ibut ive  form of P21(A) is 

Q1 Q2 

Suppose we wish a re lax ing  mutat ion and our l i s t  of de r ived  p red ica te s  contains Da(X, y) 

(previously defined) and 

DI5(X) - Vy E,~(y,A) VDa(X,y) VDl4(x,y~ 

and E(DI5(X ~ ~ K 2 (which corresponds to Q2 in the distributive form above). Then our 

mutation (of type 1 -- Section 12) yields a new feature, 

-- 3xE a.A) w y  [y. v,aCx, y? vD14[x.y?) 

Suppose we could not find D15(x) or  any other su i t ab le  der ived  pred ica te .  We then decom-  

p re s s  P21(A} one l aye r  to obtain 

Q1 Q2 Q3 

Suppose we now find among our der ived  p red ica tes  

D16(x,y) = Vz E , ,¢ (z ,A)v  "~Dbly, x , z )  VDa(X,Z) ~ 

, 

and E (D16(x,y}) ~ K3" The r e su l t  of our  mutat ion y ie lds :  

(which formula  has the same s ignif icance as that  resu l t ing  f rom our f i r s t  mutation). If in -  

s tead of D16(x,y),  we found among our der ived  p red ica tes  

, 

and E (D17(x)) = K2' our mutation of type 5 --  Section 12 y ie lds  

1 
Use definit ion of "be tweeness"  in Example 1, p. 8 3 
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P(.k} ~ :Ix ~C{X,A) V'Vy(~,,c[y,A-~ VDa[x,y  ] VVz [-,~(z,A} VDb(Y,X,Z) VDa(X,Z)]~ . 

Suppose no suitable derived predicate is found after examining decompressed forms of the 

various distributive forms of P21' but we discover among our predicate forms 

S10(A, KI[X,y], K 2 ~ , y  ) : "~X ~c(X,A) VVy('v~ ~ ,A]  VK 1 Ix, Y3 VK2 ~,y-J) ~ 

We f i rs t  note that D14(x, y) has the same variables as K2(x, y) and hence D14(x, y) replaces  

K2(x, y). Then, if Da(X, y) is the most reinforced derived predicate with two free variables,  

Da(X, y) replaces Kl(X, y) and our mutations will yield the same resul t  as our f i rs t  mutation 

in this example. (The reader  may find it amusing to find models of the formulae result ing 

from the above mutations. ) Possible  mutation operations are  too numerous for extensive 

i l lustrat ion here --  see Rothenberg (1973b}. 

We now consider ca se (e) of the previous section where R t ~ ~ strongly sat isf ies  P"I 

We wish this not to be the case and hence we consider a relaxing mutation if R ~ K fails to 
q 

sat isfy P. and a res t r ic t ing  mutation if R sa t is f ies ,  P.. If R strongly sat isf ies  P. both 
i q I q I 

strategies are unlikely to be successful. In all these cases a neutral mutation should be con- 

and R t fail to satisfy P..1 When modified quanti- s idered.  This also applies when both Rq 

f ie fs  are  evaluated, in all  cases  both universal  and existential  quantifiers a re  modified and 

values of K and ~(k) are  computed for all  such quantifiers. Suppose a neutral mutation of 
P P 

P. is appropriate,  and within the scope of ~(k) (with subformula F (k)) there  is  another 
i Up p 

quantifier, ~q-(k) (with subformula F (k})q such that Qp is a universal  quantifier and Qq is 

existential  (or vice versa) .  Then, if t~ ~ K , a neutral  mutation of F (k} which does not 
P q P 

a l ter  the ease of satisfaction of F ~k~ is appropriate.  In general ,  a comparison of K and 
P P 

will indicate the degree to which (if any} and in which way a neutral  mutation should a l ter  
q I1~ 

the ease of satisfaction of F ~1. The extent to which such a mutation may a l ter  the overlap 
P 

v 

(see Section 10) of P. and the feature,  P. (which resul t s  from the mutation}, without d is turb-  
1 1 

ing E(P i} (i. e . ,  such that E(P.)~I E(P.}}I is indicated by min(Kp, Kq). In place of a neutral  

mutation, a "composite mutation" which combines a relaxing and res t r ic t ing  mutation may 

be used. These will not be discussed here (see Rothenberg, 1973b), but some indications 

as to the general  scheme are  shown: The required overlap of P. and P. when a neutral or 
1 1 

composite mutation is performed may be determined by examination of the measure  of suc-  

cess ,  0(Pi,K, ~} (see Section 10}. Neutral mutations are  chosen by comparison with pred i -  

cate forms (somewhat as in s tep (5) above}: If the o rder  of var iables  in a dummy predicate 

in a predicate form (which matches P. as in step (5)) differs from the order  of variables 
1 

in a corresponding subformula of P~ to be mutated, the o rder  of variables in that subformula 
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is a l t e red  to match those of the dummy predicate .  If a predica te  fo rm di f fers  f rom P in 

the identi ty of a corresponding subformula (to the subformula to be mutated), the subformula 

of P. is rep laced  by that of the predicate  form,  
1 

k ^ 
Note that when, for some feature P . F ( ) - F(k)^ F (k) K will  e s t imate  

E'F(k)A F (k)~ while ¢.(k) ~ .~(k) .. . 1  • P . (k~. r . (k). p 
j Ix ann r~ win estimate E(Fq ) and E(F r ) respectively. If F (k) 

qF r q r 
and (k) become derived predicates, we will be able to estimate the "overlap" of F (k) q and 
F(k) r q 

r " This is  useful in se lect ing neutral  mutations of a feature  which rep lace  a subformula 

which is identical  to F (k) by one which is  identical  to F (k) in such fashion as to control  the 
q r 

over lap between the or iginal  and mutated feature .  

In genera l ,  we compute a I~ and K for each quantif ier  of a feature and for each 
P P 

R i e I~ and R. c ~.  Hence these values  of modified quant i f iers  should p roper ly  be denoted ] 

"Kp(Rq)" and "Kp(Rq)'= where Rq r e p r e s e n t s  the region substi tuted for  the f ree  var iable ,  

A, in P.(A) when these values  a r e  computed. When select ing a mutation, p roper t ies  of the 
1 

Kp(R a)_ p(Rq) ¢ K and over  al l  R 6 C a re  considered distr ibut ions of and K over  all  Rq q 

(averages  a r e  seldom used- - the i r  use was mainly for i l lus t ra t ive  purposes) .  Of par t icu lar  

importance is min(I~plRqeI~ ) and max(KpIRqeC ) when Qp is universal and max(KIRqeK ) 

and min(Kp Rq c C) when Qp is existential. We are attempting to make the satisfaction gap, 

G(P i), as large as possible. Particular properties of the distributions of Kp(Rq) and 

Kp(Rq) corollate with our measures of success and with G(Pi). Although the detailed strat- 

egy for mutation choice is too detailed for description here (see Rothenberg, 1973b), many 

of its properties can be deduced by the reader from the preceding discussion. Note also that 

Kp(Rq) differs from Kp(Rq) in that it is based upon strou~ satisfaction. The condition for 

success  that Rq< C may sat isfy P i '  but not s trongly,  e lucidates  the use of I~p(Rq) in the 

mutation choice procedure .  Also of use in select ing neutral  mutations is  that i t  has been 

shown (Rothenberg, 1973b) that: 

(15.1) A neutral  mutation on a compres sed  formula  (for a feature) is  more  l ikely to reduce 

the over lap  be tween the feature  and i ts  mutant then a s imi l a r  mutation on a subformula which 

is exposed by decompress ing  the formula  one (or more) l aye r s .  

t6. Init ial  Fea tu res  

The sys tem re ta ins  three l i s t s  (of fixed maximum length) of fo rmulae :  (1) fea tures ,  

(2) atomic predica tes  and der ived predica tes  and (3) predica te  fo rms .  Those with lowest  

re in forcement  (except atomic predicates)  a r e  e l iminated when the computer  memory  a l loca -  

tion for these l i s t s  fill (except when complete  abst ract ion is  pe r fo rmed  and the predicate  

h i e ra rchy  is  rebuilt) .  
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In most  applicat ions the t r a i ne r  wil l  i n se r t  any p r io r  knowledge he has of the problem 

by the d i rec t  inser t ion Cat any t ime in the learning procedure)  of der ived  predica tes  and /o r  

features .  

When no init ial  fea tures  o r  der ived  predica tes  a r e  provided by the t r a ine r ,  the init ial  

fea tures  a r e  generated as follows: an a tomic predicate  is se lec ted  Cat random) and is  c o m -  

bined with quant i f iers  and set  membersh ip  p r imi t ives  to form formulae  which both sat isfy the 

syntactic r equ i r emen t s  for fea tures  and survive  the el iminat ion procedure .  If a single p r i m -  

i t ive does not suffice,  a conjunction o r  disjunction of s eve ra l  i s  used. As few p r imi t ives  as  

possible a re  used. Using the pr imi t ives  for Example 1, such init ial  features  might be: 

Pt9(A> = 3x~y(~ ,y - ]  AVz ~<(z.A)v<Cx, z,x,y)-j) 

P20CA) = ' ~ x 3 y ~ [ x , y - j  AYz E~,¢(z,A)v,< ( z , x , z , y ~ )  

(strongly sat isf ied by c i r cu l a r  

regions) 

Cstrongly sat isf ied by l inear  

part i t ions of U) 

At the s ta r t  of the generat ion procedure  g(x, y . . . .  ) is used for al l  va r i ab les  (as above) 

to prevent  cont radic tory  or  tautologous fea tures  o r  fea tures  with excess ive ly  high o r  low 

eases  of sat isfact ion.  

Consider  fea tures  which a re  of the following compres sed  form wherein D(x) contains 

no set  membersh ip  p r imi t ives :  

PICA) -- Vx [~(x,A) YD(x)] (~ Vx [,~c(x,A) --> D(x)]) 

P2(A) =_ Vx ['~eCx, A) YD(x)] ( - Vx [¢(x,A) --> D(x)]) 

P3(A) -- 3x [e(x,A)A D(x)] 

P4(A) -- ~ [-,,e(x, A) A D(X)] 

Notice that all realizations of P2(A) also satisfy PI(A) because of the strong satis- 

faction requirement. 1 PICA), however, is strongly satisfied by all data spaces. (Note that 

it may no__!t be satisfied by subsets of a data space and is hence not a tautology. ) P3(A) is 

strongly satisfied by the null set or an entire data space. P4(A) is strongly satisfied either 

by the null set or by an entire data space with one point removed. 

Clearly, at the beginning of the feature generation procedure, we wish to avoid 

features with very high or low ease of satisfaction (so that some measure of success is prob- 

able). Hence we choose features with compressed form similar to P2(A) when generating 

initial features. More refined restrictions can be deduced (see Rothen berg, 1973b) 

1 
The above s ta tements  may be intuit ively i l lus t ra ted  by in terpre t ing  "D(x)" as being s a t i s -  

fied only by points on the boundary of the data space. 
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In general ,  if  a mutation resu l t s  in a tautology, the tautology is  r e s t r i c t ed ,  and if  the 

1 
mutation resu l t s  in a contradict ion,  i t  is re laxed .  In ini t ial  feature generat ion,  the following 

o rde r  of mutations is used, which approximates  an o rder ing  by the probabili ty of dec reas ing  

the ove r l ap  of a fea ture  and i ts  mutant:  

Res t r i c t ing  Mutations 

f i r s t :  add ~@(xl . . .  x )" to the formula  by a conjunction (to the innermos t  
n 

phrase) where  ~x 1. . .Xn} includes al l  bound point var iab les .  

second: add"E(xi,A)" or  " ~ e ( k i ,  A)" to a phrase  by a conjunction. This is  one 

phrase  at a t ime f rom the innermos t  phrase  outward (i takes  on appropr ia te  

values) - - s e e  example in Section 19. 

Relaxing Mutations 

f i r s t :  e l iminate  "~(Xl..._ xn ) f rom the formula .  

second: add " , ~ ¢ { x l . . .  __xn)" to the innermos t  phrase  of the formula  by a disjunction 

(where ~ X l . . . X n }  includes al l  bound var iables) .  

third:  add "¢(xiA)" or  "~-c(.x.,  A) to a phrase  by a disjunction. This  is  done one 
1 

phrase  at a t ime,  f rom the innermos t  phrase  outward. 

Neutra l  Mutations 

f i r s t :  negate a subformula ( f rom the innermos t  phrase  outward). 

second: permute  the var iab les  in a subformula.  

Also,  in the ini t ial  generat ion of fea tures ,  a select ion weighting function ass igns  s o m e -  

what higher  probabi l i t ies  of select ion to mutations which inc rease  the length of formulae.  

(Such select ion weighting function l a t e r  prevents  the generat ion of formulae  with an excess ive  

number  of va r i ab le s . )  As soon as more  than one successful  feature is obtained, s imple  and 

re la t ion abs t rac t ions  a r e  per formed.  

Note also that init ial  der ived  predica tes  of any given number  of f ree  var iab les  (when 

such a re  requ i red  by the mutation procedure  and a re  scarce)  may be genera ted  by combining 

atomic or  der ived predica tes ;  e° g . ,  Dl(x,  y, z) = Da(X, y) A Da(Y, z); D2(x, y) = 3Z(Db[X, y, z~) 

17, Topology 2 

Because  of the use of quantified var iab les  in fea tures  ( ra ther  than constants- - i ,  e . ,  the 

proposit ional  calculus),  each feature  has many models  (i. e . ,  "genera l iza t ion"  -- see Section 

1 
This  applies to tautologies and contradict ions which surv ive  the e l iminat ion procedure.  

2 
The author wishes to express  his grat i tude to Prof .  John Myhill of Leeds  Univers i ty  and to 

Prof.  Bernard  Jaulin of the Univers i ty  of Pa r i s  for their  suggest ions that a topological 

approach would prove fruitful .  
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1, occurs ) .  Func t ions  m a y  ex i s t  which  m ap  mode ls  of the  s a m e  f ea tu re  into each  

o the r  - -  i . e . ,  the da ta  space  mus t  conta in  c e r t a i n  s y m m e t r i e s .  In gene ra l ,  i t  i s  d e s i r a b l e  

tha t  the  s a t i s f ac t i on  of f o r m u l a e  by r eg i ons  of the  da ta  space  be i n v a r i a n t  wi th  r e s p e c t  to 

the  t r a n s f o r m a t i o n s  of such  r eg ions  by " t r a n s l a t i o n " ,  " ro t a t i on" ,  " r e f l e c t i o n " ,  "d i l a t ion"  

(i e . ,  "magni f i ca t ion" ) ,  and " c o n t r a c t i o n "  (i. e , " reduc t ion" ) .  It i s  conven ien t  to i m p o s e  a 

topology on the  data  space  so tha t  th i s  wil l  hold and so tha t  the  above t r a n s f o r m a t i o n s  m a y  be 

defined.  Also,  con t r ac t i on  (the i n v e r s e  of dilation) can  vas t ly  r educe  the  n u m b e r  of points  in 

the data  space (and each  of i t s  reg ions) .  The appl ica t ion  of our  t echn iques  to such  a space  

with a r educed  n u m b e r  of points can  r e s u l t  in  e n o r m o u s  computa t ion  reduc t ion  and, in  fact ,  

the  p rac t i ca l i t y  of the p r o c e d u r e s  developed r e s t  upon the u t i l i za t ion  of such  " reduc t ion  m a p -  

p ings"  (to be defined).  The topology d e s c r i b e d  below also  r e l a t e s  the f ini te  spaces  h e r e  

employed  to the  infini te  spaces  which they approx ima te  and with which model  t h e o r y  c u s -  

t o m a r i l y  dea l s :  (See appendix (p. 124) for  the mot iva t ion  for  the def in i t ions  below. ) 

(S, n s) e ff (i. e . ,  is  a g raph ic  s p a c e  iff (S = space ,  n s = ne ighborhood 

sy s t em)  

(a) S is  a V - s p a c e  (A F r e c h e t  space  - see  Sierp insky,  1952) w i t h  > l 

e l e m e n t  
(b) Each point has  a m i n i m u m  neighborhood 

(e) Each  m i n i m u m  neighborhood has  >2 points (a consequence  of (d))  

(d) ~ and S a r e  the  only c losed(o r  open)se t s  ("~" h e r e  denotes  the  null  se t )  

Let  each  point be def ined as  " a d j a c e n t "  to a l l  points  in  i ts  m i n i m u m  neighborhood.  Th i s  

induces  a m e t r i c ;  i . e . ,  the  g r a p h  m e t r i c  de r i ved  f r o m  the n u m b e r  of edges  in the  s h o r t e s t  

pa th  (along ad jacen t  points  in  the  graph)  f r o m  one point  to ano ther .  Wr i t e  "xy < zw",  e tc .  
G 

for  tha t  m e t r i c .  (Note tha t ,  because  of (d) above,  S is  connec ted ,  but not n e c e s s a r i l y  

f ini te .  ) ^ 

(S, n s) c I"I (is a g r a p h a b l e  space)  iff  

(t7.1) s) np)Cr) ̂  (s :  ( NINcn p ,, N is minimal?) ̂  

VNi'5 CnP) i 5--  Ni i t 

Given an  o rde r ing ,  -~0' of a l l  e l e m e n t s  of S 2 and of p2 ,  we define (where  ¢ is  an  e l emen t  

of S x S )  

1 
The l a t t e r  condi t ion is  added in o r d e r  to p r e s e r v e  the  in tu i t ive  notion. Also,  poss ib ly  

conve rge  by ne ighborhoods  r a t h e r  than  m i n i m u m  neighborhoods  is  suff ic ient .  Note tha t  

" P "  he re  denotes  a space ,  not a f ea tu re  ( fea tures  a r e  always subsc r i p t ed ,  e .g .  " P  ") ~ ° 
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x y - z w  < 0 ¢ - : - xy<  0 zwV3v  [(xv< 0 zw/k vy <0¢)/x (xy <0ZVAWV < 0 c)~ 

1 
and so 

x y - z w  >0 c -- xy >0 zWA Vv [(Xv< 0 zw-->vy  >0C)A (Xy <0ZV"-~WV >0C)] 

(P, np,_< 0) e %(e)  (is a uniform graphic  space)  iff (P, n )  e F  and (Vx, y, z,  u e P) 

(xy - z u  >0 e-->xY>O zu) 

(and so xy 50  zu ^ xy >0 zu---> 3v [(xv ~0 zu n vy ~0 ¢) v (xy -~0 z v ^  uv -~0 e)~). 

(P, n ) is a bas i s  for  S (given _~0 ) iff (where 6 is  an e lement  of S × S): P , S  s a t i s -  
P 

t ies  (17. 1) for some ~ and 

(17, 2) (3~: S--~ P)(36)(~¢x, y, z , w c  S) [ (xy-  zw >0 6) ' -~ (~px,~y) > G (~bz, ~v)~ 

(17.3) ~ : S - - > P c R d  (is an c - reduc t ion  map) iff 
E 

(a) ~ is continuous (i.e., ~b(E')c ~b(E) U(~(E))' for all E c S, 

where E' is the derived set of E) 2 and onto 

(b) Se F (e) 
U 

(c) P i s a b a s i s  for  S ( i . e . ,  17. 2 holds with the same ~ and 

with 6 = e) 

(d) Card P < ca rd  S 

The following observa t ions  a re  ge rmane  in graphable  spaces  (all r e f e r e n c e s  a r e  to 

Sierpinsky,  1952): 

(a) "x is a l imi t  point of A"  means  that  x is  adjacent  to an e lement  of A (p. 3). 

E '  (the de r ived  set) cons is t s  of add non- i so la ted  points of E, plus the ne ighbor -  

ing points of E (p. 3), 

(b) Only the whole space is  c losed  or  open but r e l a t ive  c losure  and openness  makes  

sense  (pp. 4, 6, 15): E C F is c losed  in F if it  is s epa ra t ed  f rom the r e s t  of 

F by a "white band". Rela t ive  open is the same as re la t ive  c losed.  

(e) "Dense in i t se l f "  he re  means  no i so la ted  points (p. 13). 

1 Note that our definit ion can be weakened to include the case  where , (xy<zw YXo<ZW) 

(see Rothenberg,  1973b): xy -~w -~0 e = xy -~0 zw v ~ ¢  [(xy K_a zwA vy ~0 e~ V 

(xy ~ zv A wv -~0 C)V (vy _<.0 ZWA XV ~ C) V (xy -~0 vw a vz ~0 C~], 

2 
Condition (a) may be deducible from the other conditions (see T22, p. 25 of Sierpinsky, 

1952, and definition 17, i here). 
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(d) "Sca t te red"  means  only isolated points (p. 13). 

(e) Two sets  a r e  " separa ted"  if  a white band separa tes  them (p. 16). 

(f) "Connected in the topological sense  coincides  with the geomet r i ca l  sense  (p. 16). 

(g) " F r o n t i e r "  of A is points of A adjacent  to points not in A, plus points not in A 

next to points in A (page 19 - hence coro l l a ry  on same page). 

(h) "Continuous mapping" ( f rom one d i sc re te  space to another) means  two neighboring 

points go into neighbors  or  into the same point. 

(i) "Bicontinuous map" (bomomorphism) means  "x  next to y iff f(x) next to f(y) 

(p. 28). 

Reduction maps a re  continuous maps and all  p roper t ies  p r e se rved  under continuous 

maps a re  p r e se rved  by reduct ion maps; i . e . ,  connectedness  (but not disconnectedness)  

boundary connected (i. e . ,  s imply connected),  f ron t i e r s  a r e  p r e s e r v e d  (but boundaries  a r e  

not), e tc .  

The t ransformat ions  of "contrac t ion"  and "dilat ion a r e  defined by reduct ion maps and 

their  inverses .  "Rotat ion",  " t rans la t ion"  and " re f lec t ion"  a r e  defined (together) by a b i -  

unique mapping f rom a space S to a t r ans formed  space,  P ,  such that (a), (b) and (c) (but 

no__~.t (d)) of (17.3) a re  sat isf ied.  The following have been proved (Rothenberg,  1973b) where  

¢~: S ---> P e Rd and where  each feature ,  P. ,  is  const ructed using the atomic predicate ,  
C 1 

"<(x,  y, z ,w)" :  

, • [M(Pi)] ," then P = , I'[M(P::')[- where P~' is the same formula as P. except  that If S 
1 1 

i ts degree  of sat isfact ion has been a l te red  by a bounded amount which is a function, f, of e 

and of the syntax of P. - - i . e . ,  in genera l  (see (14.1): 
1 

(17.4) [D(Pi, S) - D(Pi, P)i <-- f(e, I1) (note again that P is  a space,  

not a feature  l ike P.) 
1 

where n depends upon the number  of occu r rences  of the atomic predicate  "<(x,  y, z ,w)"  in 

the subformula of P'l within the scope of the re levant  (to D(P l, P)) modified quantif ier .  

Actual ly f depends upon other  factors  as  well ,  but minimal ly  so when the p re image  of each 

point p ic  P is  chosen so that ¢ is  min imal  ove r  a l l  of S 4. (In this case  note that i f  S is 

homogeneous,  the number  of points in the p re image  of each Pi ¢ p is  de te rmined  by e. ) 

When S is ,  for  example,  a bounded rec tangle  in Eucl idean space,  and P is finite, 

f = K/card(P)  where K is a function of n and specif ic  m e t r i c  p roper t ies  of S, and card(P) 

is  a func t ionof  ¢. (Note :ase- - -~  0, f--~) 0.) 

Let  S be finite.  Suppose R C S and R is the image of R in P under the above 

reduct ion mapping (henceforth cal led the degraded image of R). Let  each pj ~ ~(R) such 
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that  the  p r e i m a g e  of pj conta ins  e l e m e n t s  both of R and S - R  be ca l l ed  a dubious point 1 

denoted by "pj c d(R)". Then 

(17.5) ]D(Pi, R) - D(Pi ,~ I < g(E, n, m) 

where  m = e a r d ( p j  lp jc  d (R) ) /ca rd(p j [  P i eR)  and the above r e m a r k s  (in (17.4)) about  f a lso  

apply to g. L a r g e r  va lues  of m r e s u l t  in l a r g e r  va lues  of g. (Note: if  R is a r andomly  

chosen  connected  reg ion  in a un i fo rmly  sampled  place,  m is  app rox ima te ly  equal  to i t s  

c i r c u m f e r e n c e  divided by i ts  a r e a . )  

S imi l a r  (but t ighter)  bounds ex i s t  when ~ execu tes  a t r an s l a t i on ,  ro ta t ion  o r  r e f l ec t ion .  

Note the  s i m i l a r i t y  be tween  the tef t  hand por t ions  of the fo rmulae  (17.4) and (17.5) and 

the def ini t ion (14. 2) of the sa t i s fac t ion  gap of P . ,  G(P.) .  Hence the following appl ica t ion  of 
1 l 

(17.4) and (17.5) is  a p p r o p r i a t e :  

2 
NormMly  the data  space,  U, i s  un i fo rmly  sampled  - a long a squa re  gr id .  The 

image  of U under  a reduc t ion  map  is  s i m i l a r ,  but i s  a s m a l l e r  (i. e . ,  fewer  points) space .  

When G(P . )>  0 we may ( f rom G(P.)) d e t e r m i n e  an 6 (and se l ec t  a c o r r e s p o n d i n g  reduc t ion  
1 1 

mapping) such tha t  the appl ica t ion  of P. to the degraded  r eg ions  in P s t i l l  r e s u l t s  in 
1 

G(P.) > 0 (see r e m a r k s  following (17.4)). F o r  such  c no i n fo rma t ion  r e l a t i v e  to the  s a t i s f a e -  
1 

t ion of P. is  los t  by appl ica t ion  of the r educ t ion  map.  Since f ~ K / e a r d ( P )  (see above) and 
1 

ca rd(P)  d e c r e a s e s  with ¢, a r educ t ion  map  with a s m a l l  E ( i . e . ,  c a r d ( P )  is  large)  will  

r educe  G(P i) by a sma l l  amount .  However,  the amount  of ca lcu la t ion  reduc t ion  tha t  can 

r e s u l t  f r o m  the appl ica t ion  of such  a reduc t ion  mapping  i s  e n o r m o u s ,  tn addi t ion to u se s  

when G(P.) > 0, the evMuat ion of P. in a r e l a t i v e l y  l a r g e  space  may  be avoided by c o n -  
1 1 

f ining such evaluat ion  to r eg ions  which a r e  p r e i m a g e s  of r eg ions  in s m a l l e r  spaces  where  

mode ls  of P. have been  found. (Tha t  is ,  the eva lua t ion  of a fea tu re  in a s m a l l e r  space  p r e -  
l 

cedes  tha t  in a l a r g e r ,  the f o r m e r  with a lower  r e q u i r e d  degree  of s a t i s f ac t ion  than the 

l a t t e r .  Evalua t ion  in the l a r g e r  space  is  then p e r f o r m e d  in tha t  r e s t r i c t e d  subspace  which  

i s  the p r e image  of a model  found in the s m a l l e r .  ) 

Other  methods  of computa t ion  reduc t ion  a r e  used.  Reg ions  of the s ample  space  which 

sa t i s fy  (or  fail  to sat isfy)  c e r t a i n  p r e d i c a t e s  have t h e i r  iden t i f i ca t ions  s to red  toge the r  with 

the p red ica te  abb rev i a t i ons .  Then "do loops"  in fo rmulae  r ange  only ove r  those  r eg ions  

which a r e  a l r eady  known to sa t i s fy  s u b p r e d i c a t e s  included within these  loops,  F u r t h e r  

I 
Data  dependent  una ry  a tomic  p r e d i c a t e s  (e. g . ,  D(x) in Example  t) can  be included by 

extending the def ini t ion of dubious point  to include any P ie  ¢,(R) whose  p r e i m a g e  conta ins  

e l e m e n t s  wi th  d i f fe r ing  vMues of the una ry  a tomic  p red ica t e .  Then (17.5) s t i l l  app l ies .  

2 
Note:  a sampl ing  along the c e n t e r s  of a cover ing  of U by r e g u l a r  hexagonal  t i l e s  would 

permit a smaller choice of c in a reduction map. 
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computation reduct ion is  accompl ished by the use of implicat ions between fea tures  (these 

a re  known ac ross  al l  but neutral  mutations -- see Section 12) to avoid unnecessa ry  test ing.  

A s imi l a r  technique may be employed to min imize  sea rch  and s torage when data independent 

p r imi t ives  a re  re la ted  by implicat ion ( " t r ee  sea rches"  a r e  used). 

Note also that the data independent port ions of fea tures ,  p I  i '  a r e  always evaluated in 

M (U) 
~ f  

e i ther  some R. o r  (P~)I (see  Section 13), neve r  in the en t i re  data space.  In this 
J J ............ 

manner  enormous  computations a r e  avoided. F u r t h e r m o r e ,  P. is  evaluated in S by ut i l iz ing 
1 

the p roper t i es  of nested normal  fo rm to r emove  points f rom the space until a model  (i. e . ,  

s t rong satisfaction) is  encountered.  Roughly (see Rothenberg,  19735), i f  S 5 ~ Iyf (U) (pi)] 
, j 

then S = ' ']M~ U). (NF j )  l . '  Then points a r e  removed ,  one at  a t ime so that ~,P is viola ted as  

soon as  possible .  

18. Hie ra rchy  of Representa t ion  

Here  the s ize of the problem is  reduced (and its represen ta t ion  changed) by the use of 

h ie ra rch ica l  l eve ls  wherein objects  a r e  expressed  as col lec t ions  of subobjects,  e t c . ,  al l  

such objects being defined by fea tures  which a re  s imi l a r ly  h ie ra rch ica l ly  organized.  At each 

such h ie ra rch ica l  level  the techniques previously  d iscussed  a re  independently applied. 

All "a tomic  pred ica tes"  ( "pr imi t ives" ) ,  " f ea tu res" ,  "points" ,  "ob jec t s"  and "object  

c l a s se s "  (see Section 2) will  now have " f i r s t  l eve l"  prefixing thei r  names .  Also the following 

r e s t r i c t ions  a re  added to our syntax: 

(18.1) (a) Fo r  each f i r s t  l eve l  feature,  Pi(A), which begins with a s t r ing of 

exis tent ia l ly  quantified set  va r iab les  (e, g . ,  " 3 B 3 C  3I) . . . .  "), those set  

va r iab les  (B, C, D . . . .  ) a re  allowed to range only over  models  of other  

fea tures  a l ready in the descr ip t ive  basis  (i. e . ,  objects) .  

(b) Fu r the rmore ,  the above set  var iab les  may no_it be identical  with the region 

that is substituted for the f ree  var iab le ,  A, in Pi(A) above (i. e . ,  

" ( A  = B)A ~, (A = C)A ~ (A = D) . . . ) .  

Also the following, ca l led  the identif ication measu re  i s  added to our m e a s u r e s  of success  

(see Section 10) and is used when generat ing fea tu res :  

(18,2) 0(P.,I~,C) = T(P . ,K)+7(P . ,C)  • 
1 1 1 

Whenever  we advance a l eve l  ( f rom the n th to the n+ 1st level) the following operat ions  a r e  

pe r fo rmed  (see Example  7 which follows). 

(18.3) (a) All n th level  objects ,  A 1 , A 2 . . . A  r become n+ 1st l eve l  points, 

P l '  P2 . . . .  ' Pr" 
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(b) All n th level f ea tu res ,  PI(A), P2(A) . . . .  P (A) become n + l s t  level 
m 

pr imi t ives  (atomic predicates) ,  V:l(X), ~2(x) . . . .  ~m(x). 

(c) If P.(A) is  an n th level feature which begins with a s t r ing  of ~ i s t e n t i a l l y  
1 

quantified set  var iables ,  i . e . ,  

P.(A)I = 3B1 . . . . .  3 B j  ~'(A,B 1 . . . . .  ~) ']  

then F(A,B 1 . . . . .  Bj) becomes an n + l s t  level pr imit ive  f?(Xl,X 2 . . . .  xj+l).  

th .... 
(all sets  of n level objects which together  sat isfy  F a re  known (see (18.1). 

Hence the values ("true" or "false") of F(A, B 1 . . . .  B.) are  known for all  
3 

arguments  and so a re  the corresponding values of fi(x 1,x 2 . . . .  X]+l). This  

procedure permi ts  both re la t ions  between objects and between other re la t ions  

to be expressed at success ive  l eve l s - - see  i l lus t ra t ion  below and Rothenberg 

(1973b). 

(18.4) 

Whenever the following conditions a re  met we advance a level:  

For  each R.t ~ ~ there  exists  a set  of objects (A1,A2 . . . .  A n~ such that 

n 

(a) U A k = R. 
1 

k=l 

and (b) n < card  (R.) 
1 

and (e) There  does not exist  an R. c ~ and a set  of objects (B  1, B 2 . . . .  Bm} such 

that both ~1 B£ = Rj and al l  such B~ (and n- tuples  of B~) sat isfy the same 

next level latomic predicates as the A k (and n- tuples  of A k) in an 

( A 1 , A  2 . . . .  An}  sat isfying condition (a) of (18, 4) above. (Note that these 

atomic predicates  include all features  and re la t ions  constructed therefrom (as 

in  (18.3) above) at the level being examined.  This condit ion a s su r e s  that there  

exist  no R. cK and R. E~ which consis t  of unions of indist inguishable (by 
1 j 

features  satisfied) objects . )  

The above resu l t s  in a change of h ierarchica l  level whenever a reduct ion in the data 

to be represen ted  resu l t s  thereby.  (Provis  ion for t r a i n e r  in tervent ion when des i red  exists  

(see Rothenberg,  1973b). ) 

The definition of descr ipt ive  basis  r ema ins  the same as in Section 2 except that all  

features  at all  levels are  included, n th level objects a re  defined in  t e rm s  of n th level 

points ( i . e . ,  n -  1st level  objects) exactly as f i r s t  level objects are defined in t e rm s  of 

th 
f i r s t  level points, Similar ly ,  the definit ions of n leve ! f ea tu res ,  object  c lasses ,  e t c . ,  

a re  defined as before in t e r m s  of the other ent i t ies  at the same level.  However, the defi-  

ni t ion of n th level pr imit ive  is extended to include the atomic predicate,  c (i" k)(x(k-i),x(k)) 
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wherein k and i are  fixed (of course ,  k -  i < k < n+  1 where n is  the h ie ra rch ica l  level). 

This  atomic predicate is called r ecu r s  ive containment and a s se r t s  that there  exists  a 

sequence of points at the indicated (by the superscript} levels such that, if we put x (k - i )  in 

front of the sequence and x (k) at the end, each t e rm  in the sequence is an element  of the 

next (there are  i + 1 t e r m s  in such a sequence}. (This allows s ta tements  about f i rs t  level 

points in second level (and higher level features  --  see Rothenberg, 1973b). ) 

Example 7 

Suppose we wish to dis t inguish photographs (from above} of any number  of stacked 

discs f rom pictures of any other objects.  Then the R. ~K will consist  of d iagrams of the 
1 

following form: 

. - ~ f  

(1) ~ (5) 
(4) 

(3) etc. 

R. c ~ will consist  of d iagrams which cannot be formed by a finite number  of overlapping 
] 

c i rc les .  Suppose we have thus far generated feature Pi(A) = Dd(A) A 

"4x ~rVz (c (x, A)--> ~, < Ix, y, x, z~) (see Example 1, Section 1) which is s trongly sat isf ied by 

dark c i rcu la r  regions and P2(A) = ~ B 3 x ( ~ x , A ]  h c [x ,B] ) .  (Note that 0 (P2 ,~ ,~} ,  see 

(18.2), is very high in this example.  ) Note that conditions (18.4) are  now met.  Hence we 

advance a level  as follows (see (18.3)): (1) All  f i rs t  level objects become second level 

points, P l '  P2 . . . . .  Pr" (2) PI(A) becomes a second level atomic predicate,  al(X) (sa t i s -  

fied by second level points}. (3) P2(A) is t ransformed by el iminat ing the exis tent ia l  quan-  

t i f ier  at the left of i ts  formula  to form F(A, B) = 3x(¢ Ix, A] A ~ Ix, B']) which is sat isf ied by 

pai rs  of f i r s t  level objects (which are  now second level  points}. F(A, B) now becomes a 

second level  atomic predicate,  ~(x, y). We may now, at the second level,  const ruct  the 

second level  feature, P~IZ)(A)'"_ = Vx(~ [ x , A ~ - ' - ~ I ( x )  h Vy [e(y, A) --'-> ~ (x, y ) ] )  which is sa t i s -  

fied only by R. c K. 
1 

The following definitions should also be added to those of Section 2: 
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Description: This is a list of all features at all levels used in the descriptive basis 

and lists all objects strongly satisfying and satisfying each of these features and the elements 

1 
of each such object, 

Fi l ter  predicates: (optional) These are formulas of the same form as f i rs t  level 

features which must be satisfied by regions of the sample space called infra-objects in order  

for sub-regions of these infra-objects to be candidates for becoming first  level objects. 

These may be used to substantially reduce the number of regions which must be considered 

for satisfaction of a f i rs  t level feature. Typically, f i l ter predicates might include formulae 

whose satisfaction guarantees that all points in a region have data values in a specified 

range and/or that such regions form connected sets. Fi l ter  predicates might also be used 

to eliminate the need for data dependent features. 

19, Flow of the System 

Features are evaluated by whether they axe strongly satisfied by the required 

regions and perform required partitions (as initially specified). Other c r i te r ia  (in the 

absence of initially specified objects and partitions) include feedback to a human trainer  

wherein objects in the description of a picture are projected on a cathode ray tube for com- 

parison with the input picture. Also, at the request of the t rainer ,  such objects may be 

successively replaced by other regions which satisfy (and strongly satisfy) the same fea-  

tures as these objects, so that the t ra iner  may "see"  what the system does not "see"  as 

well as what it does "see"  (see Rothenberg, 1973b)). The trainer  thereby evaluates the per -  

formanee of the system, which he indicates by means of positive or negative "feedback". 

Note again that the t ra iner  may include any prior  knowledge he has of the problem by direct 

insertion at any time of derived predicates and/or features. The system, in a practical 

application, thereby begins "learning" as if it had already "learned" all such knowledge pro- 

vided by the trainer.  

When feedback is absent and success has been obtained, the system nonetheless 

continues to compute, attempting to increase the satisfaction gap, to lessen the number of 

quantifiers in features and to eliminate unnecessary objects; i . e . ,  those which are in the 

description, but which are not relevant to the problem as defined initially (i, e . ,  do not 

correspond to any element of K or ~) or by the t ra iner ,  

Very briefly, the overall  flow of the system is as follows (trainer interaction is 

not included): 

1 
In some applications, if two features at the same level have identical data dependent ex-  

pressions in their formulae and if an object which strongly satisfies one feature is properly 

contained in an object which strongly satisfied the other feature, the former object is 

omitted from the description. 
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(1) Init ial  fea tures  a re  e i ther  provided by the t r a ine r  or  const ructed as in Sec. 16. 

(2) Simple and re la t ion  abst ract ion a re  per formed.  (When the l is ts  a r e  full 

r econs t ruc t  the predicate  h ie ra rchy  and if  there  a r e  s t i l l  too many formulae ,  

those with lowest  r e in fo rcement  a r e  e l iminated.  ) 

(3) That  feature  with the highest  r e in fo rcement  is se lec ted  for  mutation.  

(4) The mutat ion is chosen as in previous sec t ions .  If the new feature  mee ts  

syntact ic  r equ i r emen t s  and has a higher  measu re  of success  than some  o ther  

feature  (and if the l i s t  of fea tures  i s  full), the feature  with the lowest  m e a s u r e  

of  success  i s  e l imina ted  and the new feature  i s  added to the l i s t  of fea tures .  

(5) Is the sa t i s fac t ion  gap > 0 ? If so, pe r fo rm reduct ion  map. 

(6) Is the sa t i s fac t ion  gap large  enough to stop computing? (P rede te rmined  by 

t r a ine r .  ) 

(7) Are  the c r i t e r i a  for advancing a h i e r a r ch i ca l  leve l  m e t ?  If so, advance the 

level ,  and re tu rn  to s tep (1) at the next level .  If not, 

(8) Return  to s tep (2). 

The procedure  is,  of course ,  ex t r eme ly  complex in detai l  1 -  see  Rothenberg (1973b). 

20. Open Questions 

A charac te r iza t ion  of the semant ics  of predica tes  which can be const ructed f rom a 

given set  of p r imi t ives  is requi red .  A par t ia l  dec is ion  procedure  which, as far  as possible ,  

avoids the genera t ion  of fea tures  which a re  conjunctions of cont rad ic tory  predica tes  is  

needed. The generat ion of predica tes  with no finite model  should also be avoided where  pus-  

s ible  (e. g . ,  P. (A) =- Vx~Vy-qz (~ [x, A] A ~ [x, A]-- ->  [e (z, A) h D b (x, z, y)])  is sa t i s f ied  by con-  
1 

vex sets  only when the data space is inf in i te- -o therwise  it is vacant). It would be useful 

to know in advance the min imum depth (of nested phrases)  of the most  deeply nested p red i -  

2 
cate  needed to separa te  a l l  inequivalent regions  in a data space.  The rep lacement  of 

"ease  of sa t is fact ion"  by an eas i ly  computed measure  which re ta ins  the order ing  of formulae,  

F. (by E(F.)) ,  when the data space is  infinite is des i rab le .  
1 1 

Also significant  is  the quest ion of whether  the f rac t ion  consis t ing of the number  of 

logica l ly  inequivalent formulae  with n quant i f iers  divided by the total  number  of formulae  

with n quant i f iers  i nc rea se s  o r  d e c r e a s e s  as n i nc rea se s .  This  indicates  the chances of 

skipping and not recap tur ing  a needed feature  in a "depth f i r s t "  s ea rch  on the t r e e  of  f e a -  

1 
Actual ly,  a s t a t e - space  s ea rch  procedure  is  used- - see  Nilsson (1971). 

2 
Note that a maximum mus t  be se t  on the number of quant i f iers  in a fea ture ,  both for 

prac t ica l  r e a s o n s  and to avoid t r i v i a l  solutions (L e , ,  no general izat ion) .  
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tu res  and is re levant  to s ea rch  s t ra tegy  (i. e . ,  to proceed by l a rge  mutations which change 

the number  of quant i f iers  o r  by sma l l  mutations ?), 

The extension of  the sys tem to include r e s  t r i c t ed  t h i r d - o r d e r  quantification Cover 

fea tures  in lower levels  of the descr ip t ive  basis)  i s  being considered.  This would enable 

the sys tem to desc r ibe  objects  of s imi l a r  kind (with r e spec t  to the desc r ip t ive  basis) and 

would impar t  to it  some se l f -desc r ip t ive  power of a l imi ted  sor t .  However ,  p roblems 

a r i s e  due to the potential  incomple teness  of the descr ip t ive  basis  at any t ime during the 

learning procedure .  

Another important  prac t ica l  problem is the e l iminat ion of fea tures  which a re  

t r iv i a l  (as well  as vacant  o r  tantologous) in a par t icu la r  application (e. g . ,  P. (A) = 
1 

-~x3y ( e ~ , ~ ]  A c [ y , A ]  A~[x ,y ] )} .  Such methods have a l ready been der ived,  but the need 

for additional techniques will  doubtless become evident during ear ly  exper iments  using the 

program.  

It appears  that for cerLain choices  of p r imi t ives  (such as those in the examples  

here)  the use of Skolem functions (Schoenfeld, 1967) may resu l t  in e l iminat ing exis tent ia l  

quant i f iers  and hence in substantial  s impl i f ica t ion  of the mutat ion procedure .  

Of g rea tes t  s ignif icance,  however ,  is  that i t  appears  that the en t i re  sys tem can be 

reduced to a f i r s t  o rde r  sys tem by (a) an appropr ia te  choice  of p r imi t ives  (see Beth def ine-  

abi l i ty theorem (Schoenfeld, 1967; Reyes ,  1969)) o r  (b) the development  of a p rocedure  for  

rep lac ing  some second o r d e r  formulae  by f i rs t  o r d e r  predica tes  r e c u r s i v e l y  defined. Fo r  

example,  a second o rde r  formula  asse r t ing  that "point x is connected to point y"  may be 

rep laced  by 

F(x,y) = ~Da(X,Z)  A Da(z,y) ] V [Da(X,Z) h F(z,y)]) 

The computation expended in the procedures  descr ibed  inc rea se s  rapidly as the 

number of p r imi t ives  used inc reases .  Hence, the choice of the s m a l l e s t  number of p r i m i -  

t ives  which a re  appropr ia te  to a problem and which re su l t  in a sufficiently express ive  lan-  

guage is  of cent ra l  impor tance .  (Note that the p r imi t ive  used in our i l lus t ra t ions ,  

< ( x , y , z , w ) ,  is  ex t r eme ly  power fu l - - e . g . ,  " x y + y z  = x z "  can be defined by using Db(X,y,z) 

and then we may define "xy +vw = pq" by using x y + y z  = xz, = (V, z, v, w) and = {x, z, p, q), 

etc.  ) When many p r imi t ives  a re  requi red ,  i t  is advisable  to dis t r ibute  them among the 

h i e r a r ch i ca l  levels  used-- i ,  e . ,  so that p r imi t ives  not at the f i r s t  level  a r e  introduced at the 

second ( e . g . ,  "card(A)") ,  etc,  Fur the r  work on this quest ion could prove to be of  cons i -  

derable  prac t ica l  value. 

It should also be noted that although this has not been done in the examples  here ,  it 

appears  profitable to exper iment  by using the s y s t e m  with p r imi t ives  specifying (optical) 

spec t ra l  o r  holographic information.  
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Appendix to Section 17 (Topology) 

Al l  r e f e r e n c e s  a r e  to S i e r p i n s k i ' s  (1952) G ene ra l  Topology, f i r s t  chap t e r  (which dea l s  

with  F r e c h e t  spaces ) .  F i r s t  we draw a t t en t ion  to s e v e r a l  r a t h e r  pecu l i a r  p r o p e r t i e s  of 

F r e c h e t  s p a c e s  which a r e  no___t.t topological  s pace s :  

(1) In a F r e c e t  space  the  sum of two c losed  s e t s  need  not be c lo sed  (p. 11, bot tom).  Hence  

the  i n t e r s e c t i o n  of open s e t s  need  no_._~t be open. [Note tha t  c lo sed  se t s  a r e  s e t s  which  con ta in  

a l l  t h e i r  l im i t  e l e m e n t s ,  p. 6 (4.) ,  and open se t  is  def ined as  the  complemen t  of a c losed  se t ,  

p. 11 (6.) ,  and tha t  the  condi t ion " e v e r y  ne ighbourhood  of an  e l e m e n t  of K is an  open s e t "  i s  

n e c e s s a r i l y  t r ue  only when K sa t i s f i e s  the  def in i t ion  of  a topologica l  space  (p. 38, middle) .  

See a lso  p. 12, T h e o r e m  5.~ 

(2) In a F r e c h e t  space  the  condi t ion tha t  "a  ne ighbourhood  conta ins  an  e l e m e n t "  does  not  

imply  tha t  " the  ne ighbourhood is  a ne ighbourhood  of tha t  e l e m e n t " .  Tha t  i s ,  a ne ighborhood  

may  conta in  an e l emen t  of which i t  i s  not a ne ighborhood (i. e . ,  x c N(y) and N(y) ~ N(x) ). 

Note a lso  tha t  condi t ions  ~/ and 5 on p. 38 m ay  not be  s a t i s f i ed - - i ,  e . ,  d i s t inc t  e l e m e n t s  

may  not be  conta ined  in d i s t inc t  ne ighborhoods .  

Befo re  a t t empt ing  to expla in  the mot iva t ion  for  the  axiom "The  only c lo sed  s e t s  a r e  

the  nul l  se t  and the u n i v e r s a l  s e t " ,  we p r e s e n t  an i l l u s t r a t i o n  of such  a F r e c h e t  space :  

Le t  our  space ,  S, c o n s i s t  of n ine  points :  S = { a , b , c , d , e , f , g , h , i } .  F o r  convenienc 

convenience, picture them in a rectangular array: 

a . b . c .  

d . e . f .  

g . h . i .  

Le t  the m i n i m u m  ne ighborhood  of a point c o n s i s t  of a l l  points  which  a r e  n e a r e s t  to i t  in the 

above r e c t a n g u l a r  a r r a y  (i. e . ,  t hose  points  d i r e c t l y  above,  below, to the  r i gh t  of and to the  

lef t  of i t  (if t h e r e  a r e  such  points) ). Thus our  m i n i m a l  ne ighborhoods  a r e :  

: {a,b,d} 

N(b) = {a,b,c,e} 

N(C) = {b , c ,  f}  

N(d) = {a, d, e, g} 

N(e) = {b, d, e, f, h} 

N(f) = { c . e , f , i }  

N(g) = {d, g, h} 

= { e , g , h , i }  

N(i) = {f .h. i}  

F o r  a l l  x,  the  ne ighborhoods  of x wil l  be a l l  s e t s  which include N(x). 
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Note tha t  a l l  s e t s  except  the null  and the e n t i r e  se t  a r e  n e i t h e r  open no r  c losed.  F o r  

example ,  let  E = (c ,  e,  f, g, h , i } .  Let  E '  denote i t s  de r ived  set  of E (i. e . ,  the  se t  of a l l  i t s  

l im i t  e l emen t s ) .  Let  F denote the c o m p l e m e n t  of E ( i . e . ,  S - E )  and F '  denote  the  de r ived  

s e t o f  F. Then  F = { a , b , d  t .  N o t e t h a t  b e E ' .  Hence ~ ( E ' a E )  and E i s  not e losed.  

Note a l so  tha t  e e  F ' .  Hence ~ ( F ' c  F) and F is  not  c losed .  

The s a m e  a r g u m e n t  can  be r epea t ed  for  a l l  o t h e r  n o n - e m p t y  p r o p e r  s u b s e t s  of S. 

Also ,  S can  be made  as  l a r g e  as  we wish  by adding- e l e m e n t s  to the rows  and co lumns  of the  

r e c t a n g u l a r  a r r a y .  If the m i n i m a l  ne ighborhoods  a r e  s i m i l a r l y  def ined a l l  n o n - e m p t y  p r o p e r  

subse t s  of S wil l  be n e i t h e r  open no r  c losed .  

Obse rve  tha t  the  impos i t ion  of the condi t ions  on a F r e c h e t  space  tha t  " each  point  have  

a m i n i m a l  ne ighbourhood and tha t  ~ and S be the only c lo sed  s e t s "  is  cons i s t en t  wi th  the  

def in i t ion  of a m in ima l  ne ighborhood  of a point in a f ini te  space  as  conta in ing  those  points  

" ad j acen t "  to tha t  point. The condi t ions  a lso  p reven t  the  sh r inkage  of ne ighborhoods  to the 

t r i v i a l  c a se  whe re  they conta in  only one point. This  is as  might  in tu i t ive ly  be expec ted  in a 

f ini te  space ,  and the p r e s e r v a t i o n  of condi t ions  (a) - (i) of Section 17 is  a lso  in a c c o r d a n c e  

with intui t ion.  Also,  we a r e  a s s u m e d  tha t  ou r  e n t i r e  space  is  connec ted  so tha t  a g raph  

m e t r i c  may  be imposed  (Section 17). 

Note tha t  condi t ion 5 on page 38 of S ie rp insk i  does  not  hold,  and hence  we do not 

have  a topological  space .  

Ano the r  a l t e r n a t i v e  was ava i l ab le :  The condi t ion tha t  "~ and S a r e  the only c losed  

s e t s "  might  have  been  r ep l aced  by ' tal l  s e t s  a r e  both open and c losed" .  Then  we could have  

defined the min ima l  ne ighborhoods  in our  above i l l u s t r a t i o n  non-unique ly :  

Nl(a)  = { a , b }  N2(a) = ( a , d }  

Nl(b) = ( b , a }  N2(b) = { b , e }  N3(b) = ~ b , e }  

NI(C) = ( c , b }  N2(c) = ( c , f }  

Nl(d) = ~ d , a }  N2(d) = ~ d , e }  N3(d) = { d , g }  

Nl(e) =<e,b}  N3(e) : 6 ,  d} N3(e) : 6 ' f t  

etc .  

N4Ie) : {e,h} 

Now each  e l emen t  would be the  i n t e r s e c t i o n  of a l l  i t s  ne ighborhoods .  But now condi t ion 

fl on page 38 of S ie rp insk i  would not  be sa t i s f i ed  and we s t i l l  would not have  a topological  

space .  Of g r e a t e r  im por t ance ,  how would we now obta in  the  n e c e s s a r y  g r a p h  m e t r i c .  

Also,  the impos i t ion  of th i s  type of ne ighborhood  s y s t e m  on a f ini te  space  s e e m s  

c o u n t e r i n t u i t i v e .  
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In s u m m a r y ,  the  purpose  of the  topologica l  s ec t ion  of th i s  paper  i s  to impose  

condi t ions  on the given s t r u c t u r e  <S,  ..<o > so tha t  i t  could be  mapped  into a s t r u c t u r e  with 

1 
fewer  e l e m e n t s ,  < P . . . < c > ,  such  tha t  i f  a subse t ,  A, of S i s  a model  of a fo rmula ,  F,  the  

image ,  f(A), of A (in P) is a model  of a f o rmu la ,  ~,  which is obta ined f rom F by the sub -  

s t i tu t ion  of a modif ied  quan t i f i e r  for  a u n i v e r s a l  o r  ex i s t en t i a l  quan t i f i e r  in  F. 

1 
x y ~  zw = x y - z w ~  c 
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