
Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products

Jonathan Katz1,�, Amit Sahai2,��, and Brent Waters3,���

1 University of Maryland
jkatz@cs.umd.edu

2 UCLA
sahai@cs.ucla.edu
3 SRI International

bwaters@csl.sri.com

Abstract. Predicate encryption is a new paradigm generalizing, among
other things, identity-based encryption. In a predicate encryption scheme,
secret keys correspond to predicates and ciphertexts are associated with
attributes; the secret key SKf corresponding to a predicate f can be used
to decrypt a ciphertext associated with attribute I if and only if f(I) =
1. Constructions of such schemes are currently known for relatively few
classes of predicates.

We construct such a scheme for predicates corresponding to the eval-
uation of inner products over ZN (for some large integer N). This, in
turn, enables constructions in which predicates correspond to the eval-
uation of disjunctions, polynomials, CNF/DNF formulae, or threshold
predicates (among others). Besides serving as a significant step forward
in the theory of predicate encryption, our results lead to a number of
applications that are interesting in their own right.

1 Introduction

Traditional public-key encryption is rather coarse-grained: a sender encrypts a
message M with respect to a given public key PK, and only the owner of the
(unique) secret key associated with PK can decrypt the resulting ciphertext and
recover the message. These straightforward semantics suffice for point-to-point
communication, where encrypted data is intended for one particular user who
is known to the sender in advance. In other settings, however, the sender may

� Research supported in part by NSF CAREER award #0447075 and the U.S. Army
Research Laboratory.

�� Supported in part by the NSF ITR and CyberTrust programs (including grants
0627781, 0456717, 0716389, and 0205594), a subgrant from SRI as part of the Army
Cyber-TA program, an equipment grant from Intel, an Okawa Research Award,
and an Alfred P. Sloan Foundation Research Fellowship.

��� Supported by NSF CNS-0524252, CNS-0716199; the US Army Research Office
under the CyberTA Grant No. W911NF-06-1-0316; and the U.S. Department of
Homeland Security under Grant Award Number 2006-CS-001-000001.

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 146–162, 2008.
c© International Association for Cryptologic Research 2008

Predicate Encryption Supporting Disjunctions 147

instead want to define some complex policy determining who is allowed to recover
the encrypted data. For example, classified data might be associated with certain
keywords; this data should be accessible to users who are allowed to read all
classified information, as well as to users allowed to read information associated
with the particular keywords in question. Or, in a health care application, a
patient’s records should perhaps be accessible only to a physician who has treated
the patient in the past.

Applications such as those sketched above require new cryptographic mech-
anisms that provide more fine-grained control over access to encrypted data.
Predicate encryption offers one such tool. At a high level (formal definitions are
given in Section 2), secret keys in a predicate encryption scheme correspond to
predicates in some class F , and a sender associates a ciphertext with an at-
tribute in a set Σ; a ciphertext associated with the attribute I ∈ Σ can be
decrypted by a secret key SKf corresponding to the predicate f ∈ F if and only
if f(I) = 1.

The “basic” level of security achieved by such schemes guarantees, informally,
that a ciphertext associated with attribute I hides all information about the
underlying message unless one holds a secret key giving the explicit ability to
decrypt. I.e., if an adversary A holds keys SKf1 , . . . , SKf�

, then A learns nothing
about a message encrypted using attribute I if f1(I) = · · · = f�(I) = 0. We refer
to this security notion as payload hiding. A stronger notion of security, that
we call attribute hiding, requires further that a ciphertext hides all information
about the associated attribute I except that which is explicitly leaked by the
keys in one’s possession; i.e., an adversary holding secret keys as above learns
only the values f1(I), . . . , f�(I) (in addition to the message in case one of these
evaluates to ‘1’). Formal definitions are given in Section 2.

Much recent work aimed at constructing different types of fine-grained encryp-
tion schemes can be cast in the framework of predicate encryption. Identity-based
encryption (IBE) [21,8,13,4,5,23] can be viewed as predicate encryption for the
class of equality tests; the standard notion of security for IBE [8,12] corresponds
to payload-hiding, while anonymous IBE [7,11,14] corresponds to the stronger
notion of attribute hiding. Attribute-based encryption schemes [20,15,3,19] can
also be cast in the framework of predicate encryption, though in this case all
the listed constructions achieve payload hiding only. Boneh and Waters [10] con-
struct a predicate encryption scheme that handles conjunctions (of, e.g., equality
tests) and range queries; their scheme satisfies the stronger notion of attribute
hiding. Shi et al. [22] also construct a scheme for range queries, but prove se-
curity in a weaker model where attribute hiding is required to hold only if the
adversary holds keys that do not allow recovery of the message.

Other work introducing concepts related to predicate encryption includes
[2,1]. In contrast to the present work, however, the threat model in those works
do not consider collusion among users holding different secret keys. The
problem becomes significantly more difficult when security against collusion is
required.

148 J. Katz, A. Sahai, and B. Waters

1.1 Our Results

An important research direction is to construct predicate encryption schemes
for predicate classes F that are as expressive as possible, with the ultimate goal
being to handle all polynomial-time predicates. We are still far from this goal.
Furthermore, most of the existing work (listed above) yields only payload-hiding
schemes, and existing techniques for obtaining attribute-hiding schemes seem
limited to enforcing conjunctions (indeed, handling disjunctions was left as an
open question in [10]). Getting slightly technical, this is because the underly-
ing cryptographic mechanism used in the above schemes is to pair components
of the secret key with corresponding components of the ciphertext and then
multiply the intermediate results together; a “cancelation” occurs if everything
“matches”, but a random group element results if there is any “mismatch”. Thus,
the holder of a non-matching secret key learns only that there was a mismatch
in at least one position, but does not learn the number of mismatches or their
locations. Very different cryptographic techniques seem needed to support dis-
junctions, since a mismatch in a single position cannot result in a completely
random group element but rather must somehow allow for a “cancelation” if
there is a match in some other position. (We stress that what makes this diffi-
cult is that attribute hiding requires correct decryption to hide the position of
a match and only reveal that there was a match in at least one position.)

The aim of our work is to construct an attribute-hiding scheme handling dis-
junctions. As a stepping stone toward this goal, we first focus on predicates
corresponding to the computation of inner products over ZN (for some large in-
teger N). Formally, we take Σ = Zn

N as our set of attributes, and take our class
of predicates to be F = {fx | x ∈ Zn

N} where fx(y) = 1 iff 〈x, y〉 = 0. (Here,
〈x, y〉 denotes the dot product

∑n
i=1 xi · yi mod N of two vectors x and y.)

We construct a predicate encryption scheme for this F without random ora-
cles, based on two new assumptions in composite-order groups equipped with
a bilinear map. Our assumptions are non-interactive and of fixed size (i.e., not
“q-type”), and can be shown to hold in the generic group model. A pessimistic
interpretation of our results would be that we prove security in the generic group
model, but we believe it is of importance that we are able to distill our necessary
assumptions to ones that are compact and falsifiable. Our construction uses new
techniques, including the fact that we work in a bilinear group whose order is a
product of three primes.

We view our main construction as a significant step toward increasing the
expressiveness of predicate encryption. Moreover, we show that any predicate
encryption scheme supporting “inner product” predicates as described above
can be used as a building block to construct predicates of more general types:

– As an easy warm-up, we show that it implies (anonymous) identity-based
encryption as well as hidden-vector encryption [10]. As a consequence, our
work implies all the results of [10].

– We can also construct predicate encryption schemes supporting polynomial
evaluation. Here, we take ZN as our set of attributes, and predicates corre-
spond to polynomials in ZN [x] of some bounded degree; a predicate evaluates

Predicate Encryption Supporting Disjunctions 149

to 1 iff the corresponding polynomial evaluates to 0 on the point in ques-
tion. We can also extend this to include multi-variate polynomials (in some
bounded number of variables). A “dual” of this construction allows the at-
tributes to be polynomials, and the predicates to correspond to evaluation
at a fixed point.

– Given the above, we can fairly easily support predicates that are disjunctions
of other predicates (e.g., equality), thus achieving our main goal. In the
context of identity-based encryption, this gives the ability to issue secret
keys corresponding to a set of identities that enables decryption whenever
a ciphertext is encrypted to any identity in this set (without leaking which
identity was actually used to encrypt).

– We also show how to handle predicates corresponding to DNF and CNF
formulae of some bounded size.

– Working directly with our “inner product” construction, we can derive a
scheme supporting threshold queries of the following form: Attributes are
subsets of A = {1, . . . , �}, and predicates take the form {fS,t | S ⊆ A} where
fS,t(S′) = 1 iff S ∩ S′ = t. This is useful in the “fuzzy IBE” setting of Sahai
and Waters [20], and improves on their work in that we achieve attribute
hiding (rather than only payload hiding) and handle exact thresholds.

We defer further discussion regarding the above until Section 5.

2 Definitions

We formally define the syntax of predicate encryption and the security proper-
ties discussed informally in the Introduction. (Our definitions follow the general
framework of those given in [10].) Throughout this section, we consider the
general case where Σ denotes an arbitrary set of attributes and F denotes an
arbitrary set of predicates over Σ. Formally, both Σ and F may depend on the
security parameter and/or the master public parameters; for simplicity, we leave
this implicit.

Definition 1. A predicate encryption scheme for the class of predicates F over
the set of attributes Σ consists of four ppt algorithms Setup, GenKey, Enc, Dec
such that:

• Setup takes as input the security parameter 1n and outputs a (master) public
key PK and a (master) secret key SK.

• GenKey takes as input the master secret key SK and a (description of a)
predicate f ∈ F . It outputs a key SKf .

• Enc takes as input the public key PK, an attribute I ∈ Σ, and a message M
in some associated message space. It returns a ciphertext C. We write this
as C ← EncPK(I, M).

• Dec takes as input a secret key SKf and a ciphertext C. It outputs either a
message M or the distinguished symbol ⊥.

For correctness, we require that for all n, all (PK, SK) generated by Setup(1n),
all f ∈ F , any key SKf ← GenKeySK(f), and all I ∈ Σ:

150 J. Katz, A. Sahai, and B. Waters

• If f(I) = 1 then DecSKf
(EncPK(I, M)) = M .

• If f(I) = 0 then DecSKf
(EncPK(I, M)) = ⊥ with all but negligible probability.

We will also consider a variant of the above that we call a predicate-only
scheme. Here, Enc takes only an attribute I (and no message); the correctness
requirement is that DecSKf

(EncPK(I)) = f(I) and so all the receiver learns is
whether the predicate is satisfied. A predicate-only scheme can serve as a useful
building block toward a full-fledged predicate encryption scheme.

Our definition of attribute-hiding security corresponds to the notion described
informally earlier. Here, an adversary may request keys corresponding to the
predicates f1, . . . , f� and is then given either EncPK(I0, M0) or EncPK(I1, M1)
for attributes I0, I1 such that fi(I0) = fi(I1) for all i. Furthermore, if M0 �= M1
then it is required that fi(I0) = fi(I1) = 0 for all i. The goal of the adversary
is to determine which attribute-message pair was encrypted, and the stated
conditions ensure that this is not trivial. Observe that when specialized to the
case when F consists of equality tests on strings, this notion corresponds to
anonymous identity-based encryption (with selective-ID security).

Definition 2. A predicate encryption scheme with respect to F and Σ is at-
tribute hiding (or simple secure) if for all ppt adversaries A, the advantage of
A in the following experiment is negligible in the security parameter n:

1. A(1n) outputs I0, I1 ∈ Σ.
2. Setup(1n) is run to generate PK, SK, and the adversary is given PK.
3. A may adaptively request keys for any predicates f1, . . . , f� ∈ F subject to

the restriction that fi(I0) = fi(I1) for all i. In response, A is given the
corresponding keys SKfi ← GenKeySK(fi).

4. A outputs two equal-length messages M0, M1. If there is an i for which
fi(I0) = fi(I1) = 1, then it is required that M0 = M1.

5. A random bit b is chosen, and A is given the ciphertext C ← EncPK(Ib, Mb).
6. The adversary may continue to request keys for additional predicates, subject

to the same restrictions as before.
7. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success
probability and 1/2.

We remark that our definition uses the “selective” notion of security introduced
in [12]. One could also consider the definition where the adversary is allowed to
specify I0, I1 adaptively, based on PK and any secret keys it obtains.

Payload hiding, a strictly weaker notion of security, is defined by forcing I0 =
I1 = I in the above (in which case A has no possible advantage if fi(I) = 1 for
some i). For predicate-only encryption schemes we simply omit the messages in
the above experiment. For convenience, we include in Appendix A a re-statement
of the definition of security given above for the particular inner-product predicate
we use in our main construction.

Predicate Encryption Supporting Disjunctions 151

3 Background on Pairings and Complexity Assumptions

We review some general notions about bilinear groups of composite order, first
used in cryptographic applications by [9]. In contrast to all prior work using
composite-order bilinear groups, however, we use groups whose order N is a
product of three (distinct) primes. This is for simplicity only, since a variant
of our construction can be proven secure based on a “decisional linear”-type
assumption [6] in a group of composite order N which is a product of two primes.1

Let G be an algorithm that takes as input a security parameter 1n and outputs
a tuple (p, q, r, G, GT , ê) where p, q, r are distinct primes, G and GT are two cyclic
groups of order N = pqr, and ê : G × G → GT is bilinear (i.e., ∀u, v ∈ G and
∀a, b ∈ Z we have ê(ua, vb) = ê(u, v)ab) and non-degenerate (i.e., if g generates G

then ê(g, g) generates GT). We assume the group operations in G and GT as well
as the bilinear map ê are all computable in time polynomial in n. Furthermore,
we assume that the description of G and GT includes generators of these groups.

We use the notation Gp, Gq, Gr to denote the subgroups of G having order
p, q, and r, respectively. Observe that G = Gp × Gq × Gr. Note also that if g is
a generator of G, then the element gpq is a generator of Gr; the element gpr is a
generator of Gq; and the element gqr is a generator of Gp. Furthermore, if, e.g.,
hp ∈ Gp and hq ∈ Gq then

ê(hp, hq) = ê
(
(gqr)α1 , (gpr)α2

)
= ê

(
gα1 , grα2

)pqr

= 1,

where α1 = loggqr hp and α2 = loggpr hq. Similar rules hold whenever ê is applied
to non-identity elements in distinct subgroups.

3.1 Our Assumptions

We now state the assumptions we use to prove security of our construction. As
remarked earlier, these assumptions are new but we justify them by proving
that they hold in the generic group model under the assumption that finding
a non-trivial factor of N (the group order) is hard. (Details appear in the full
version of this paper [17].) At a minimum, then, our construction can be viewed
as secure in the generic group model. Nevertheless, we state our assumptions
explicitly and highlight that they are non-interactive and of fixed size.

Assumption 1. Let G be as above. We say that G satisfies Assumption 1 if the
advantage of any ppt algorithm A in the following experiment is negligible in
the security parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be
generators of Gp, Gq, and Gr, respectively.

1 This is analogous to the “folklore” transformation (see, e.g., [16]) that converts a
scheme based on a group whose order N is a product of two primes to a scheme that
uses a prime-order group. Typically, using composite order groups gives a simpler
scheme; since the group sizes are larger, however, group operations are less efficient.

152 J. Katz, A. Sahai, and B. Waters

2. Choose random Q1, Q2, Q3 ∈ Gq, random R1, R2, R3 ∈ Gr, random a, b, s ∈
Zp, and a random bit ν. Give to A the values (N, G, GT , ê) as well as

gp, gr, gqR1, gb
p, gb2

p , ga
pgq, gab

p Q1, gs
p, gbs

p Q2R2.

If ν = 0 give A the value T = gb2s
p R3, while if ν = 1 give A the value

T = gb2s
p Q3R3.

3. A outputs a bit ν′, and succeeds if ν′ = ν.

The advantage of A is the absolute value of the difference between its success
probability and 1/2.

Assumption 2. Let G be as above. We say that G satisfies Assumption 2 if the
advantage of any ppt algorithm A in the following experiment is negligible in
the security parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be
generators of Gp, Gq, and Gr, respectively.

2. Choose random h ∈ Gp and Q1, Q2 ∈ Gq, random s, γ ∈ Zq, and a random
bit ν. Give to A the values (N, G, GT , ê) as well as

gp, gq, gr, h, gs
p, hsQ1, gγ

p Q2, ê(gp, h)γ .

If ν = 0 then give A the value ê(gp, h)γs, while if ν = 1 then give A a random
element of GT .

3. A outputs a bit ν′, and succeeds if ν′ = ν.

The advantage of A is the absolute value of the difference between its success
probability and 1/2.

Note that both the above assumptions imply the hardness of factoring N .

4 Our Main Construction

Our main construction is a predicate-only scheme where the set of attributes is
Σ = Zn

N , and the class of predicates is F = {fx | x ∈ Zn
N} with fx(y) = 1

iff 〈x, y〉 = 0 mod N . (We use vectors of length n for convenience only.) In this
section we construct a predicate-only scheme and give some intuition about our
proof. In Appendix B we show how our scheme can be extended to give a full-
fledged predicate encryption scheme. All proofs of security appear in the full
version of our paper [17].

Intuition. In our construction, each ciphertext has associated with it a (secret)
vector x, and each secret key corresponds to a vector v. The decryption proce-
dure must check whether x ·v = 0, and reveal nothing about x but whether this
is true. To do this, we will make use of a bilinear group G whose order N is the
product of three primes p, q, and r. Let Gp, Gq, and Gr denote the subgroups of
G having order p, q, and r, respectively. We will (informally) assume, as in [9],

Predicate Encryption Supporting Disjunctions 153

that a random element in any of these subgroups is indistinguishable from a
random element of G.2 Thus, we can use random elements from one subgroup
to “mask” elements from another subgroup.

At a high level, we will use these subgroups as follows. Gq will be used to
encode the vectors x and v in the ciphertext and secret keys, respectively. Com-
putation of the inner product 〈v, x〉 will be done in Gq (in the exponent), using
the bilinear map. Gp will be used to encode an equation (again in the exponent)
that evaluates to zero when decryption is done properly. This subgroup is used
to prevent an adversary from improperly “manipulating” the computation (by,
e.g., changing the ordering of components of the ciphertext or secret key, raising
these components to some power, etc.). On an intuitive level, if the adversary
tries to manipulate the computation in any way, then the computation occurring
in the Gp subgroup will no longer yield the identity (i.e., will no longer yield 0 in
the exponent), but will instead have the effect of “masking” the correct answer
with a random element of Gp (which will invalidate the entire computation).
Elements in Gr are used for “general masking” of terms in other subgroups;
i.e., random elements of Gr will be multiplied with various components of the
ciphertext (and secret key) in order to “hide” information that might be present
in the Gp and Gq subgroups.

We now proceed to the formal description of our scheme.

4.1 The Construction

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with
G = Gp ×Gq ×Gr. Next, it computes gp, gq, and gr as generators of Gp, Gq, and
Gr, respectively. It then chooses R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at
random for i = 1 to n, and R0 ∈ Gr uniformly at random. The public parameters
include (N = pqr, G, GT , ê) along with:

PK =
(
gp, gr, Q = gq · R0, {H1,i = h1,i · R1,i, H2,i = h2,i · R2,i}n

i=1

)
.

The master secret key SK is
(
p, q, r, gq, {h1,i, h2,i}n

i=1

)
.

EncPK(x). Let x = (x1, . . . , xn) with xi ∈ ZN . This algorithm chooses random
s, α, β ∈ ZN and R3,i, R4,i ∈ Gr for i = 1 to n. (Note: a random element R ∈ Gr

can be sampled by choosing random δ ∈ ZN and setting R = gδ
r .) It outputs the

ciphertext

C =
(
C0 = gs

p,
{

C1,i = Hs
1,i · Qα·xi · R3,i, C2,i = Hs

2,i · Qβ·xi · R4,i

}n

i=1

)
.

GenKeySK(v). Let v = (v1, . . . , vn), and recall SK =
(
p, q, r, gq, {h1,i, h2,i}n

i=1

)
.

This algorithm chooses random r1,i, r2,i ∈ Zp for i = 1 to n, random R5 ∈ Gr,
random f1, f2 ∈ Zq, and random Q6 ∈ Gq. It then outputs

SKv =

⎛
⎝ K = R5 · Q6 ·

∏n
i=1 h

−r1,i

1,i · h−r2,i

2,i ,{
K1,i = g

r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

⎞
⎠ .

2 This is only for intuition. Our actual computational assumption is given in Section 3.

154 J. Katz, A. Sahai, and B. Waters

DecSKv(C). Let C =
(
C0, {C1,i, C2,i}n

i=1

)
and SKv =

(
K, {K1,i, K2,i}n

i=1

)
be

as above. The decryption algorithm outputs 1 iff

ê(C0, K) ·
n∏

i=1

ê(C1,i, K1,i) · ê(C2,i, K2,i)
?= 1.

Correctness. To see that correctness holds, let C and SKv be as above. Then

ê(C0, K) ·
n∏

i=1

ê(C1,i, K1,i) · ê(C2,i, K2,i)

= ê

(
gs

p, R5Q6

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, gr1,i

p gf1·vi
q

)
· ê

(
Hs

2,iQ
β·xiR4,i, gr2,i

p gf2·vi
q

)

= ê

(
gs

p,
n∏

i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
hs

1,i · gα·xi
q , gr1,i

p gf1·vi
q

)
· ê

(
hs

2,i · gβ·xi
q , gr2,i

p gf2·vi
q

)

=
n∏

i=1

ê(gq, gq)(αf1+βf2)xivi = ê(gq, gq)(αf1+βf2 mod q)〈x,v〉,

where α, β are random in ZN and f1, f2 are random in Zq. If 〈x, v〉 = 0 mod N ,
then the above evaluates to 1. If 〈x, v〉 �= 0 mod N there are two cases: if 〈x, v〉 �=
0 mod q then with all but negligible probability (over choice of α, β, f1, f2) the
above evaluates to an element other than the identity. The other possibility is
that 〈x, v〉 = 0 mod q, in which case the above would always evaluate to 1;
however, this would reveal a non-trivial factor of N and so this occurs with
only negligible probability (recall, our assumptions imply hardness of finding a
non-trivial factor of N).

There may appear to be some redundancy in our construction; for instance,
the C1,i and C2,i components play almost identical roles. In fact we can view the
encryption system as two parallel sub-systems linked via the C0 component (and
the corresponding component of the secret key). This two sub-system approach
was first used by Boyen and Waters [11]; it can be viewed as a complex gener-
alization of the Naor-Yung [18] “two-key” paradigm to the predicate encryption
setting. A natural question is whether this redundancy can be eliminated to
achieve better performance. While such a construction appears to be secure, our
current proof (that utilizes a non-interactive assumption) relies in an essential
way on having two parallel subsystems.

Predicate Encryption Supporting Disjunctions 155

4.2 Proof Intuition

The most challenging aspect to providing a proof of our scheme naturally arises
from the disjunctive capabilities of our system. In previous conjunctive systems
(such as the one by Boneh and Waters [10]) the authors proved security by
moving through a sequence of hybrid games, in which an encryption of a vector
x was changed component-by-component to the encryption of a vector y. The
adversary could only ask for queries that did not match either x or y, or queries
that did not “look at” the components in which x and y differed. Thus, it was
relatively straightforward to perform hybrid experiments over the components
of x and y that differed, since the private keys given to the adversary did not
“look at” these components.

In our proof an adversary will again try to determine whether a given cipher-
text was encrypted with respect to x or y. However, in our case the adversary
can legally request a secret key for a vector v such that 〈x, v〉 = 0 and 〈y, v〉 = 0;
i.e., it may obtain a key that should enable correct decryption in either case.
This means that we cannot use the same proof strategy as in previous, conjunc-
tive schemes. For example, if we change just one component at a time, then
the “hybrid” vector used in an intermediate step will likely not be orthogonal
to v (and the adversary will be able to detect this because its secret key will
no longer decrypt the given ciphertext). Therefore, we need to use a sequence of
hybrid games in which entire vectors are changed in one step, instead of using a
sequence of hybrid games where the vector is changed component-by-component.

To do this we take advantage of the fact that, as noted earlier, our encryp-
tion scheme contains two parallel sub-systems. In our proof we will use hybrid
games where a challenge ciphertext will be encrypted with respect to one vector
in the first sub-system and a different vector in the second sub-system. (Note
that such a ciphertext is ill-formed, since any valid ciphertext will always use the
same vector in each sub-system.) Let (a, b) denote a ciphertext encrypted using
vector a in the first sub-system and b in the second sub-system. To prove in-
distinguishability when encrypting to x (which corresponds to (x, x)) and when
encrypting to y (which corresponds to (y, y)), we will prove indistinguishability
of the following sequence of hybrid games:

(x, x) ≈ (x,0) ≈ (x, y) ≈ (0, y) ≈ (y, y).

Using this structure in our proof allows us to use a simulator that will essentially
be able to work in one sub-system without “knowing” what is happening in the
other one. The simulator embeds a “subgroup decision-like” assumption into the
challenge ciphertext for each experiment. The structure of the challenge will de-
termine whether a sub-system encrypts the given vector or the zero vector. Details
of our proof and further discussion are given in the full version of our paper [17].

5 Applications of Our Main Construction

In this section we discuss some applications of predicate encryption schemes of
the type constructed in this paper. Our treatment here is general and can be

156 J. Katz, A. Sahai, and B. Waters

based on any predicate encryption scheme supporting “inner product” queries;
we do not rely on any specific details of our construction.

Given a vector x ∈ Z�
N , we denote by fx : Z�

N → {0, 1} the function such

that fx(y) = 1 iff 〈x, y〉 = 0. We define F�
def= {fx | x ∈ Z

�
N}. An inner product

encryption scheme of dimension � is an attribute-hiding predicate encryption
scheme for the class of predicates F�.

5.1 Anonymous Identity-Based Encryption

As a warm-up, we show how anonymous identity-based encryption (IBE) can be
recovered from any inner product encryption scheme of dimension 2. To generate
the master public and secret keys for the IBE scheme, simply run the setup
algorithm of the underlying inner product encryption scheme. To generate secret
keys for the identity I ∈ ZN , set I := (1, I) and output the secret key for the
predicate fI . To encrypt a message M for the identity J ∈ ZN , set J ′ := (−J, 1)
and encrypt the message using the encryption algorithm of the underlying inner
product encryption scheme and the attribute J ′. Since 〈I, J ′〉 = 0 iff I = J ,
correctness and security follow.

5.2 Hidden-Vector Encryption

Given a set Σ, let Σ� = Σ ∪ {�}. Hidden-vector encryption (HVE) [10] cor-
responds to a predicate encryption scheme for the class of predicates Φhve

� =
{φhve

(a1,...,a�)
| a1, . . . , a� ∈ Σ�}, where

φhve
(a1,...,a�)(x1, . . . , x�) =

{
1 if, for all i, either ai = xi or ai = �
0 otherwise .

A generalization of the ideas from the previous section can be used to real-
ize hidden-vector encryption with Σ = ZN from any inner product encryption
scheme (Setup, GenKey, Enc, Dec) of dimension 2�:

• The setup algorithm is unchanged.
• To generate a secret key corresponding to the predicate φhve

(a1,...,a�)
, first con-

struct a vector A = (A1, . . . , A2�) as follows:

if ai �= � : A2i−1 := 1, A2i := ai

if ai = � : A2i−1 := 0, A2i := 0.

Then output the key obtained by running GenKeySK(fA).
• To encrypt a message M for the attribute x = (x1, . . . , x�), choose random

r1, . . . , r� ∈ ZN and construct a vector Xr = (X1, . . . , X2�) as follows:

X2i−1 := −ri · xi, X2i := ri

(where all multiplication is done modulo N). Then output the ciphertext
C ← EncPK(Xr, M).

Predicate Encryption Supporting Disjunctions 157

To see that correctness holds, let (a1, . . . , a�), A, (x1, . . . , x�), r, and Xr be
as above. Then:

φhve
(a1,...,a�)(x1, . . . , x�) = 1 ⇒ ∀r : 〈A, Xr〉 = 0 ⇒ ∀r : fA(Xr) = 1.

Furthermore, assuming gcd(ai − xi, N) = 1 for all i:

φhve
(a1,...,a�)(x1, . . . , x�) = 0 ⇒ Prr [〈A, Xr〉 = 0] = 1/N

⇒ Prr [fA(Xr) = 1] = 1/N,

which is negligible. Using this, one can prove security of the construction as well.
A straightforward modification of the above gives a scheme that is the “dual”

of HVE, where the set of attributes is (Σ�)� and the class of predicates is Φ̄hve
� =

{φ̄hve
(a1,...,a�) | a1, . . . , a� ∈ Σ} with

φ̄hve
(a1,...,a�)(x1, . . . , x�) =

{
1 if, for all i, either ai = xi or xi = �
0 otherwise .

5.3 Predicate Encryption Schemes Supporting Polynomial
Evaluation

We can also construct predicate encryption schemes for predicates corresponding
to polynomial evaluation. Let Φpoly

≤d = {fp | p ∈ ZN [x], deg(p) ≤ d}, where

φp(x) =
{

1 if p(x) = 0
0 otherwise

for x ∈ ZN . Given an inner product encryption scheme (Setup, GenKey, Enc, Dec)
of dimension d + 1, we can construct a predicate encryption scheme for Φpoly

≤d as
follows:

• The setup algorithm is unchanged.
• To generate a secret key corresponding to the polynomial p(x) = adx

d +
· · · + a0x

0, set p := (ad, . . . , a0) and output the key obtained by running
GenKeySK(fp).

• To encrypt a message M for the attribute w ∈ ZN , set w := (wd mod
N, . . . , w0 mod N) and output the ciphertext C ← EncPK(w, M).

Since p(w) = 0 iff 〈p, w〉 = 0, correctness and security follow.
The above shows that we can construct predicate encryption schemes where

predicates correspond to univariate polynomials whose degree d is polynomial
in the security parameter. This can be generalized to the case of polynomials in
t variables, and degree at most d in each variable, as long as dt is polynomial in
the security parameter.

We can also construct schemes that are the “dual” of the above, in which
attributes correspond to polynomials and predicates involve the evaluation of
the input polynomial at some fixed point.

158 J. Katz, A. Sahai, and B. Waters

5.4 Disjunctions, Conjunctions, and Evaluating CNF and DNF
Formulas

Given the polynomial-based constructions of the previous section, we can fairly
easily build predicate encryption schemes for disjunctions of equality tests. For
example, the predicate ORI1,I2 , where ORI1,I2(x) = 1 iff either x = I1 or x = I2,
can be encoded as the univariate polynomial

p(x) = (x − I1) · (x − I2),

which evaluates to 0 iff the relevant predicate evaluates to 1. Similarly, the
predicate ORI1,I2 , where ORI1,I2(x1, x2) = 1 iff either x1 = I1 or x2 = I2, can
be encoded as the bivariate polynomial

p′(x1, x2) = (x1 − I1) · (x2 − I2).

Conjunctions can be handled in a similar fashion. Consider, for example, the
predicate ANDI1,I2 where ANDI1,I2(x1, x1) = 1 if both x1 = I1 and x2 = I2.
Here, we determine the relevant secret key by choosing a random r ∈ ZN and
letting the secret key correspond to the polynomial

p′′(x1, x2) = r · (x1 − I1) + (x2 − I2).

If ANDI1,I2(x1, x1) = 1 then p′′(x1, x2) = 0, whereas if ANDI1,I2(x1, x1) = 0
then, with all but negligible probability over choice of r, it will hold3 that
p′′(x1, x2) �= 0.

The above ideas extend to more complex combinations of disjunctions and
conjunctions, and for boolean variables this means we can handle arbitrary CNF
or DNF formulas. (For non-boolean variables we do not know how to directly
handle negation.) As pointed out in the previous section, the complexity of the
resulting scheme depends polynomially on dt, where t is the number of variables
and d is the maximum degree (of the resulting polynomial) in each variable.

5.5 Exact Thresholds

We conclude with an application that relies directly on inner product encryption.
Here, we consider the setting of “fuzzy IBE” [20], which can be mapped to the
predicate encryption framework as follows: fix a set A = {1, . . . , �} and let the
set of attributes be all subsets of A. Predicates take the form Φ = {φS | S ⊆ A}
where φS(S′) = 1 iff |S∩S′| ≥ t, i.e., S and S′ overlap in at least t positions. Sahai
and Waters [20] show a construction of a payload-hiding predicate encryption
scheme for this class of predicates.

We can construct a scheme where the attribute space is the same as
before, but the class of predicates corresponds to overlap in exactly t positions.
3 In general, the secret key may leak the value of r in which case the adversary will be

able to find x1, x2 such that ANDI1,I2(x1, x1) �= 1 yet p′′(x1, x2) = 0. Since, however,
we consider the “selective” notion of security (where the adversary must commit to
x1, x2 at the outset of the experiment), this is not a problem in our setting.

Predicate Encryption Supporting Disjunctions 159

(Our scheme will also be attribute hiding.) Namely, set Φ′ = {φ′
S | S ⊆ A} with

φ′
S(S′) = 1 iff |S ∩ S′| = t. Then, given any inner product encryption scheme of

dimension � + 1:
• The setup algorithm is unchanged.
• To generate a secret key for the predicate φ′

S , first define a vector v ∈ Z
�+1
N

as follows:
for 1 ≤ i ≤ �: vi = 1 iff i ∈ S

v�+1 = 1.

Then output the key obtained by running GenKeySK(fv).
• To encrypt a message M for the attribute S′ ⊆ A, define a vector v′ as

follows:
for 1 ≤ i ≤ �: vi = 1 iff i ∈ S′

v�+1 = −t mod N.

Then output the ciphertext C ← EncPK(v′, M).
Since |S ∩ S′| = t exactly when 〈v, v′〉 = 0, correctness and security follow.

Disclaimer

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the U.S. Department of Homeland Security.

References

1. Al-Riyami, S., Malone-Lee, J., Smart, N.: Escrow-free encryption supporting cryp-
tographic workflow. Intl. J. Information Security 5(4), 217–229 (2006)

2. Bagga, W., Molva, R.: Policy-based cryptography and applications. In: Financial
Cryptography (2005)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy (2007)

4. Boneh, D., Boyen, X.: Efficient selective-ID identity based encryption without ran-
dom oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, Springer, Heidelberg (2004)

5. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)

7. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public-key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, Springer, Heidelberg (2004)

8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. Computing 32(3), 586–615 (2003)

9. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Theory of Cryptography Conference (2005)

10. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Theory of Cryptography Conference (2007)

160 J. Katz, A. Sahai, and B. Waters

11. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer,
Heidelberg (2006)

12. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg
(2003)

13. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

14. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, Springer, Heidelberg (2006)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCCS (2006)

16. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N. (ed.) Eurocrypt 2008. LNCS, vol. 4965, Springer, Heidelberg (2008)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. Cryptology ePrint Archive, Report 2007/404

18. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC, pp. 427–437 (1990)

19. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM CCCS (2007)

20. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, Springer, Heidelberg (2005)

21. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, Springer, Heidelberg (1985)

22. Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-dimensional
range queries over encrypted data. In: IEEE Symposium on Security and Privacy
(2007)

23. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, Springer, Heidelberg (2005)

A Security Definition for Inner-Product Encryption

Here, we re-state Definition 2 in the particular setting of our main construction,
which is a predicate-only scheme where the set of attributes4 is Σ = Zn

N and the
class of predicates is F = {fx | x ∈ Zn

N} such that fx(y) = 1 ⇔ 〈x, y〉 = 0.

Definition 3. A predicate-only encryption scheme for Σ, F as above is attribute-
hiding if for all ppt adversaries A, the advantage of A in the following experiment
is negligible in the security parameter n:

1. Setup(1n) is run to generate keys PK, SK. This defines a value N which is
given to A.

2. A outputs x, y ∈ Zn
N , and is then given PK.

3. A may adaptively request keys corresponding to vectors v1, . . . , v� ∈ Zn
N ,

subject to the restriction that, for all i, 〈vi, x〉 = 〈vi, y〉. In response, A is
given the corresponding keys SKvi

← GenKeySK(fvi
).

4 Technically speaking, both Σ and F depend on the public parameters (since N is
generated as part of PK), but we ignore this technicality.

Predicate Encryption Supporting Disjunctions 161

4. A random bit b is chosen. If b = 0 then A is given C ← EncPK(x), and if
b = 1 then A is given C ← EncPK(y).

5. The adversary may continue to request keys for additional vectors, subject
to the same restriction as before.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success
probability and 1/2.

B A Full-Fledged Predicate Encryption Scheme

In Section 4, we showed a construction of a predicate-only scheme. Here, we
extend the previous scheme to obtain a full-fledged predicate encryption scheme
in the sense of Definition 1. The construction follows.

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with
G = Gp ×Gq ×Gr. Next, it computes gp, gq, and gr as generators of Gp, Gq, and
Gr, respectively. It then chooses R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly
at random for i = 1 to n, and R0 ∈ Gr uniformly at random. It also chooses
random γ ∈ Zp and h ∈ Gp. The public parameters include (N = pqr, G, GT , ê)
along with:

PK =

(
gp, gr, Q = gq · R0, P = ê(gp, h)γ ,{
H1,i = h1,i · R1,i, H2,i = h2,i · R2,i

}n

i=1

)
.

(This is identical to the public parameters of the predicate-only scheme with the
exception of the additional element P = ê(gp, h)γ .) The master secret key SK
is

(
p, q, r, gq, h

−γ , {h1,i, h2,i}n
i=1

)
.

EncPK(x, M). View M as an element of GT , and let x = (x1, . . . , xn) with
xi ∈ ZN . This algorithm chooses random s, α, β ∈ ZN and R3,i, R4,i ∈ Gr for
i = 1 to n. It outputs the ciphertext

C =

(
C′ = M · P s, C1 = gs

p,{
C1,i = Hs

1,i · Qα·xi · R3,i, C2,i = Hs
2,i · Qβ·xi · R4,i

}n

i=1

)
.

GenKeySK(v). Let v = (v1, . . . , vn). This algorithm chooses random r1,i, r2,i ∈
Zp for i = 1 to n, random f1, f2 ∈ Zq, random R5 ∈ Gr, and random Q6 ∈ Gq.
It then outputs

SKv =

⎛
⎝ K = R5 · Q6 · h−γ ·

∏n
i=1 h

−r1,i

1,i · h
−r2,i

2,i ,{
K1,i = g

r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

⎞
⎠ .

162 J. Katz, A. Sahai, and B. Waters

DecSKv(C). Let C and SKv be as above. The decryption algorithm outputs

C′ · ê(C1, K) ·
n∏

i=1

ê(C1,i, K1,i) · ê(C2,i, K2,i).

As we have described it, decryption never returns an error (i.e., even when
〈v, x〉 �= 0). We will show below that when 〈v, x〉 �= 0 then the output is es-
sentially a random element in the order-q subgroup of GT . By restricting the
message space to some efficiently-recognizable set of negligible density in this
subgroup, we recover the desired semantics by returning an error if the recov-
ered message does not lie in this space.

Correctness. Let C and SKv be as above. Then

C′ · ê(C1, K) ·
n∏

i=1

ê(C1,i, K1,i) · ê(C2,i, K2,i)

= M · P s · ê
(

gs
p, R5Q6h

−γ
n∏

i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, gr1,i

p gf1·vi
q

)
· ê

(
Hs

2,iQ
β·xiR4,i, gr2,i

p gf2·vi
q

)

= M · P s · ê
(

gs
p, h−γ

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
hs

1,i gα·xi
q , gr1,i

p gf1·vi
q

)
· ê

(
hs

2,i gβ·xi
q , gr2,i

p gf2·vi
q

)

= M · P s · ê(gp, h)−γs ·
n∏

i=1

ê(gq, gq)(αf1+βf2)xivi = M · ê(gq, gq)(αf1+βf2)〈x,v〉.

If 〈x, v〉 = 0 mod N , then the above evaluates to M . If 〈x, v〉 �= 0 mod N there
are two cases: if 〈x, v〉 �= 0 mod q then the above evaluates to an element whose
distribution is statistically close to uniform in the order-q subgroup of GT . (Re-
call that α, β are chosen at random.) It is possible that 〈x, v〉 = 0 mod q, in
which case the above always evaluates to M ; however, this reveals a non-trivial
factor of N and so an adversary can cause this condition to occur with only
negligible probability.

	Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products
	Introduction
	Our Results

	Definitions
	Background on Pairings and Complexity Assumptions
	Our Assumptions

	Our Main Construction
	The Construction
	Proof Intuition

	Applications of Our Main Construction
	Anonymous Identity-Based Encryption
	Hidden-Vector Encryption
	Predicate Encryption Schemes Supporting Polynomial Evaluation
	Disjunctions, Conjunctions, and Evaluating CNF and DNF Formulas
	Exact Thresholds

	Security Definition for Inner-Product Encryption
	A Full-Fledged Predicate Encryption Scheme

