Predicate Privacy in Encryption Systems

Emily Shen!, Elaine Shi?, and Brent Waters3*

L MIT
eshen@csail.mit.edu
2 CMU/PARC
eshi@parc.com
3 UT Austin
bwaters@cs.utexas.edu

Abstract. Predicate encryption is a new encryption paradigm which
gives a master secret key owner fine-grained control over access to en-
crypted data. The master secret key owner can generate secret key tokens
corresponding to predicates. An encryption of data = can be evaluated us-
ing a secret token corresponding to a predicate f; the user learns whether
the data satisfies the predicate, i.e., whether f(z) = 1.

Prior work on public-key predicate encryption has focused on the no-
tion of data or plaintext privacy, the property that ciphertexts reveal no
information about the encrypted data to an attacker other than what
is inherently revealed by the tokens the attacker possesses. In this pa-
per, we consider a new notion called predicate privacy, the property that
tokens reveal no information about the encoded query predicate. Predi-
cate privacy is inherently impossible to achieve in the public-key setting
and has therefore received little attention in prior work. In this work, we
consider predicate encryption in the symmetric-key setting and present a
symmetric-key predicate encryption scheme which supports inner prod-
uct queries. We prove that our scheme achieves both plaintext privacy
and predicate privacy.

1 Introduction

In traditional public-key encryption, a user encrypts a message under a public
key, and only the owner of the corresponding secret key can decrypt the cipher-
text. In some applications, however, the user may wish to have more fine-grained
control over what is revealed about the encrypted data. For example, in a med-
ical context an administrative assistant might only be able to learn whether an
encrypted record was generated at a certain clinic. Predicate encryption is a new
encryption paradigm which allows for such fine-grained control over access to en-
crypted data. In a predicate encryption scheme, the owner of a master secret key
can create and issue secret key tokens to other users. Tokens are associated with

* Supported by NSF CNS-0524252, CNS-0716199; the U.S. Department of Homeland
Security under Grant Award Number 2006-CS-001-000001.

predicates which can be evaluated over encrypted data. Specifically, an encryp-
tion of a data = can be evaluated using a token T'Ky associated with a predicate
f to learn whether f(x) = 1.

Prior work on public-key predicate encryption [7,12,1,9,19,11,28,27] has
focused on the security property that ciphertexts reveal no information about
the underlying plaintext or data other than what is implied by the tokens in one’s
possession. More specifically, an adversary in possession of tokens T Ky, , ..., T Ky,
for predicates f1,..., f¢ learns no information about the underlying plaintext x
other than the values of fi(z),..., fo(z)*. We refer to the above property as
plaintext or data privacy.

In this work, we consider a different dimension of predicate encryption — pred-
icate privacy. In addition to protecting the privacy of plaintexts, we would like
to protect the description of the predicates encoded by tokens. Informally, predi-
cate privacy says that a token hides all information about the encoded predicate
other than what is implied by the ciphertexts in one’s possession. Unfortunately,
predicate privacy is inherently impossible to achieve in the public-key setting.
Since encryption does not require a secret key, an adversary can encrypt any
plaintext of his choice and evaluate a token on the resulting ciphertext to learn
whether the plaintext satisfies the predicate associated with the token. In this
way, an adversary can gain information about the predicate encoded in a token.
Therefore, it does not make sense to consider the notion of predicate privacy for
predicate encryption in the public-key setting.

However, it is interesting to consider predicate privacy in the symmetric-key
setting, in applications where we want to hide information about the predicate
being tested from the party evaluating a token. For example, suppose a user
Alice uses a remote storage service to back up her files. Alice wishes to protect
the privacy of her files by encrypting them using her secret key before sending
them to the server. (Only Alice possesses her secret key.) Later on, Alice may
wish to retrieve all files satisfying a certain predicate. To do this, Alice can
create a token (using her secret key) for this predicate and issue the token to
the server. The server can then evaluate the predicate on the encrypted files and
return those files which satisfy the predicate. We want to guarantee that the
server learns nothing about the predicate it evaluates on Alice’s behalf.

1.1 Our Results

In this paper, we present formal definitions of security for predicate encryp-
tion in the symmetric-key setting, for general classes of predicates. We present a
symmetric-key predicate encryption scheme that achieves both plaintext privacy
and predicate privacy. Our construction supports the class of predicates corre-
sponding to the evaluation of inner products. We take the set of plaintexts to

4 In some works the authors also distinguish an extra “payload message” M such
that in the case that one of fi(z),..., fe(z) evaluates to 1, the adversary learns the
payload message M. In our work we solely consider the predicate encryption system
property where the evaluation reveals f(x).

be X' = Z% and the class of predicates to be F = {f,|v € Z% } where f,(x) =1
iff (v,z) = 0, where (v,z) denotes the inner product Y ., v;-x; mod N of
vectors v and . Our construction is based on the KSW construction [21], which
uses bilinear groups whose order is the product of three primes. Our construction
uses groups whose order is the product of four primes. Our complexity assump-
tions have all been introduced in prior work but for the case of groups whose
order is the product of fewer than four primes.

Why Inner Product Queries? An important goal in predicate encryption is to
support complex, expressive queries. Prior work has focused on achieving more
expressive schemes, with the most expressive scheme to date being that of Katz,
Sahai and Waters [21]. The KSW scheme supports inner product queries, which
are strictly more expressive than conjunctive queries and, as shown in [21], imply
conjunctions, disjunctions, CNF/DNF formulas, polynomial evaluation, and ex-
act thresholds. Therefore, our goal in this work is to construct a symmetric-key
predicate encryption scheme that supports inner product queries.

1.2 Related Work

Public-Key Predicate Encryption. The earliest examples of public-key predicate
encryption are anonymous identity-based encryption (A-IBE) schemes with key-
word search (which corresponds to an equality predicate) [7,12,1,9]. Since then,
more expressive schemes such as those supporting conjunctive queries [19, 11, 28]
and multi-dimensional range queries [27] have been proposed. The most expres-
sive scheme known to date is due to Katz, Sahai and Waters [21] and supports
inner-product queries. As explained above, the KSW scheme is strictly more
expressive than previously proposed predicate encryption schemes.

Searchable Encrypted Databases. A related line of research is secure searching
on outsourced encrypted databases. The problem was considered by Goldreich
and Ostrovsky [22, 18] when cast as a problem of oblivious RAM, and they pro-
vided general solutions. Song, Wagner, and Perrig [29] later gave more efficient
solutions for equality searches, but made a tradeoff of letting a storage server
learn the access pattern of a user. Curtmola et al. [17] considered stronger secu-
rity definitions in a similar setting. While we do not directly address searchable
encrypted databases in this work, our predicate encryption solution allows for
more complex queries to be made in this particular application.

Identity-Based Encryption and Attribute-Based Encryption. Identity-based en-
cryption (IBE) [26,8,16] can be viewed as a special, more limited, case of pred-
icate encryption for the class of equality tests. In attribute-based encryption
(ABE) [25,20,3,24,15,23], a user can receive a capability representing an ac-
cess control policy over the attributes of an encrypted record.

In both IBE and ABE schemes, the identity or attributes are not hidden
in the ciphertext. In fact, access to the encrypted data itself is inherently “all-
or-nothing.” The important distinction between these systems and the ones we

consider is that they only hide a “payload message” M. In particular, the ci-
phertext is associated with a payload message M and some extra structure x
(e.g., the “identity” or set of attributes associated with the ciphertext). The
security guarantee of these systems is that M remains hidden as along as the
attacker does not have a secret key associated with a predicate function f such
that f(x) = 1; however, there is no guarantee about hiding the structure of z,
which in general might be leaked to the attacker. One advantage, however, is
that this relaxation might allow for more expressive access predicates.

2 Definitions

In this section, we formally define symmetric-key predicate encryption and its
security. For simplicity, we consider the predicate-only variant, in which evalu-
ating a token on a ciphertext outputs a bit indicating whether the encrypted
plaintext satisfies the predicate corresponding to the token. We note that a
predicate-only scheme can easily be extended to obtain a full-fledged predicate
encryption scheme, in which evaluating a token on a ciphertext outputs the en-
crypted plaintext if the plaintext satisfies the predicate corresponding to the
token, using techniques from prior work such as [11, 27, 21].

We give definitions for the general case of an arbitrary set of plaintexts X
and an arbitrary set of predicates F. Our construction in Section 4 will be for
the specific case of X' = Z%; and F = {f,|v € Z%} with fz(v) =1 iff (x,v) =0
mod N, where (x,v) denotes the inner product Y ., z; -v; mod N of vectors
x and v. We follow the notation of [21].

2.1 Symmetric-Key Predicate-Only Encryption

Let X denote a finite set of plaintexts, and let F denote a finite set of predicates
f:X —{0,1}. We say that = € X' satisfies a predicate f if f(z) = 1.

Definition 1 (Symmetric-Key Predicate-Only Encryption Scheme). A
symmetric-key predicate-only encryption scheme for the class of predicates F
over the set of attributes X consists of the following probabilistic polynomial
time (PPT) algorithms.

Setup(1*): Takes as input a security parameter 1 and outputs a secret key SK.

Encrypt(SK,x): Takes as input a secret key SK and a plaintext x € X and
outputs a ciphertext CT.

GenToken(SK, f): Takes as input a secret key SK and a description of a pred-
icate f € F and outputs a token TKjy.

Query(TKy,CT): Takes as input a token TKy for a predicate f and a cipher-
text CT. It outputs either 0 or 1, indicating the value of the predicate f
evaluated on the underlying plaintext.

Correctness. For correctness, we require the following condition. For all A\, all
z € X, and all f € F, letting SK « Setup(1*), TK; < GenToken(SK, f), and
CT «— Encrypt(SK, x),

— If f(z) =1, then Query(TK;,CT) = 1.
— If f(z) =0, then Pr[Query(TKy,CT) = 0] > 1 —€(\) where € is a negligible
function.

2.2 Security Definitions

We now give formal definitions of security for a symmetric-key predicate-only
encryption scheme. We first define full security, which, roughly speaking, says

that given a set of tokens for predicates fi,..., fr and a set of encryptions of
plaintexts z1,...,xy, an adversary A gains no information about any of the
predicates fi, ..., fi or the plaintexts 1, ...,z (other than the value of each of

the predicates evaluated on each of the plaintexts).

However, the full security notion turns out to be difficult to work with in
our proofs of security. Therefore, we introduce a second security notion called
single challenge security, which resembles the security notions used in previous
work such as [11,21]. As we show later, full security implies single challenge
security, and, for the specific case of inner product predicates, single challenge
security implies full security in the sense that, given a single challenge secure
scheme for inner product predicates over X = Z?V”, we can construct a fully
secure scheme for inner product predicates over X = Z7%;. Therefore, for our
construction it suffices to consider the single challenge security definition. To
prove the security of our construction, we will use the selective relaxation of
single challenge security. The notion of selective security was first introduced
by [13] and has been used widely in the literature [13,14, 5,11, 12, 27].

Full Security We define full security of a symmetric-key predicate-only encryp-
tion scheme using the following game between an adversary A and a challenger.

Setup: The challenger runs Setup(1*) and keeps SK to itself. The challenger
picks a random bit b.
Queries: A adaptively issues queries, where each query is of one of two types:
— Ciphertext query. On the jth ciphertext query, A outputs a bit ¢ = 0
(indicating a ciphertext query) and two plaintexts x;0,2;1 € X. The
challenger responds with Encrypt(SK, z;p).
— Token query. On the ith token query, A outputs a bit ¢ = 1 (indicating
a token query) and descriptions of two predicates fi o, fi1 € F. The
challenger responds with GenToken(SK, fip).
A’s queries are subject to the restriction that, for all ciphertext queries
(Ij,()»zj,l) and all predicate queries (fz"()7 f171)7 fi,O(-Tj,O) = fi,l(zj,l)-
Guess: A outputs a guess b’ of b.

The advantage of A is defined as Adv4 = |Pr[b’ = b] — %}

Definition 2 (Full Security). A symmetric-key predicate-only encryption scheme
is fully secure if, for all PPT adversaries A, the advantage of A in winning the
above game is negligible in .

Single Challenge Security In order to prove the security of our construction,
we will need to introduce a second security definition, which we refer to as single
challenge security. Whereas in the full security game, each of the adversary’s
queries is considered part of the challenge, in the single challenge security game,
the challenge consists of only one pair of plaintexts or predicates. The single
challenge security game resembles security games used previously in the IBE
and predicate encryption literature. The game proceeds as follows.

Setup: The challenger runs Setup(1*) and keeps SK to itself.
Query Phase 1: A adaptively issues queries, where each query is of one of
two types:

— Ciphertext query. On the jth ciphertext query, A outputs a bit ¢ =
0 (indicating a ciphertext query) and a plaintext x;. The challenger
responds with Encrypt(SK, ;).

— Token query. On the jth token query, A outputs a bit t = 1 (indicating a
token query) and a description of a predicate f;. The challenger responds
with GenToken(SK, f;).

Challenge: A outputs a request for one of the following;:

— Ciphertext challenge. A outputs a bit ¢ = 0 (indicating a ciphertext
challenge) and two plaintexts x§ and 2} such that, for all previous token
queries f;, fj(xzg) = f;(x7). The challenger picks a random bit b and
responds with Encrypt(SK, zy).

— Token challenge. A outputs a bit ¢ = 1 (indicating a token challenge)
and descriptions of two predicates f§ and f{ such that, for all previous
ciphertext queries z;, f;(z;) = fi(z;). The challenger picks a random
bit b and responds with GenToken(SK, f).

Query Phase 2: A adaptively issues additional queries as in Query Phase 1,
subject to the same restriction with respect to the challenge as above.
Guess: A outputs a guess b’ of b.

The advantage of A is defined as Advy = |Pr[b’ = b] — 3|.

Definition 3 (Single Challenge Security). A symmetric-key predicate-only
encryption scheme is single challenge secure if, for all PPT adversaries A, the
advantage of A in winning the above game is negligible in A.

Selective Single Challenge Security. We will need to use the selective variant of
single challenge security, defined below. The notion of selective security was first
introduced by [13] and has been used previously by [13,14,5,11,12,27].

Definition 4 (Selective Single Challenge Security). In the selective single
challenge security game, the adversary A outputs the challenge strings at the

start of the game during an Init phase (instead of during a Challenge phase).
The rest of the game proceeds in the same way as in the single challenge security
game. We say that a symmetric-key predicate-only encryption scheme is selective
single challenge secure if, for all PPT adversaries A, the advantage of A in
winning the selective single challenge game is negligible in .

For our proofs of security, it will be useful to define separate notions of
plaintext privacy and predicate privacy, which correspond to a ciphertext chal-
lenge and a token challenge, respectively, in the selective single challenge security
game.

Definition 5 (Plaintext Privacy). A symmetric-key predicate-only encryp-
tion scheme has selective single challenge plaintext privacy (plaintext privacy,
for short) if, for all PPT adversaries A, the advantage of A in winning the
selective single challenge game for a ciphertext challenge is negligible in .

Definition 6 (Predicate Privacy). A symmetric-key predicate-only encryp-
tion scheme has selective single challenge predicate privacy (predicate privacy,
for short) if, for all PPT adversaries A, the advantage of A in winning the
selective single challenge game for a token challenge is negligible in \.

We note that plaintext privacy and predicate privacy, together, are equivalent
to selective single challenge security.

Relationship Between Single Challenge Security and Full Security It
is useful to consider the relationship between the security definitions introduced
above. The full security notion implies single challenge security. For the specific
case of inner product query predicates, a single challenge secure scheme for
vectors of length 2n can be used to construct a fully secure scheme for vectors
of length n. Therefore, we consider single challenge security to be a sufficiently
strong notion of security for our construction.
These relationships are stated formally in the following theorems.

Theorem 1. If a symmetric-key predicate-only encryption scheme is fully se-
cure, then it is single challenge secure.

Proof. Suppose an adversary A wins the single challenge security game with
advantage e. We can define an adversary B that wins the full security game with
advantage € as follows. When 4 makes a ciphertext query «, B in turn makes the
ciphertext query (x,) to B’s challenger and responds to A with the ciphertext
it receives. Similarly, when A makes a token query v, B in turn makes the token
query (v,v) to B’s challenger and responds to .4 with the token it receives.
When A issues its challenge request, B outputs the challenge request as a query
to its challenger and responds to .4 with the answer it receives. B outputs the
same guess b’ as A does. It is clear that all of B’s responses to A are properly
constructed, and B wins the full security game with the same advantage ¢ with
which A wins the single challenge security game.

Theorem 2. Let SCHEMEs, denote a single challenge secure symmetric-key
predicate-only encryption scheme for inner product queries, where plaintext and
predicate vectors have length 2n. Then SCHEMEs, can be used to construct a
fully secure symmetric-key predicate-only encryption scheme SCHEME,, for in-
ner product queries, where plaintext and predicate vectors have length n.

The proof of this theorem is deferred to Appendix A.

3 Background and Complexity Assumptions

Our symmetric-key predicate encryption scheme uses bilinear groups of com-
posite order, first introduced by [10]. While the public-key predicate encryption
scheme of [21] uses bilinear groups whose order is the product of three distinct
primes, we use bilinear groups whose order is the product of four distinct primes.

We briefly review some facts about bilinear groups and then state the as-
sumptions we use to prove security of our construction.

3.1 Bilinear Groups of Composite Order

Let G denote a group generator algorithm that takes as input a security parame-
ter 1* and outputs a tuple (p, q,7, s, G, Gz, ¢) where p, g, 7, s are distinct primes,
G and G are two cyclic groups of order N = pgrs, and e : G x G — G satisfies
the following properties:

— (Bilinear) Yu,v € G, VYa,b € Z, e(u®,v*) = e(u,v)?.
— (Non-degenerate) 3g € G such that e(g, g) has order N in Gr.

We assume that group operations in G and G as well as the bilinear map e can
be computed in time polynomial in A.

We use the notation Gy, G4, G,,Gs to denote the subgroups of G having
order p, q,, s, respectively.

We will use the following facts about bilinear groups of composite order.
Although these facts are stated in terms of G, and G, similar facts hold in
general for distinct subgroups of a composite order bilinear group.

— Let a, € Gy, by € G4 denote two elements from distinct subgroups. Then
e(ap,by) = 1.

— Let Gpy = G, x Gy, a,b € Gpy. a and b can be rewritten (uniquely) as
a = apag, b = byby, where ap,b, € Gy, and a4,b; € G4. Then e(a,b) =
e(ap, by)e(aq, by).

3.2 Our Assumptions

The security of our symmetric-key predicate-only encryption scheme relies on
three assumptions. All of these assumptions have been introduced previously but
in groups whose order is the product of at most three distinct primes. Specifically,

Assumption 1 involves 3 subgroups, C3DH involves 2 subgroups, and DL involves
1 subgroup. We assume that these assumptions hold when the relevant subgroups
are contained in a larger group whose order is the product of four distinct primes.
Note that the naming of subgroups is not significant in our assumptions; that
is, the assumptions are the same if the subgroups are renamed.

Assumption 1 We use Assumption 1 of KSW [21], which was used for bilinear
groups whose order is the product of three distinct primes. We restate the as-
sumption in the context of a bilinear group whose order is the product of four
distinct primes.

Let G be a group generator algorithm as above. Run G(1*) to obtain (p,
q,7,5,G,Gr,e). Let N = pgrs and let g,, g4, 9r,9s be random generators of
Gy, Gy, G, Gs, respectively. Choose random @1,Q2, @3 € Gy, random Ry, Ry,
R3 € G,, random a,b,c € Z,, and a random bit b. If b = 0, let T' = gZQCRg; if
b=11et T = 922CQ3R3. Give the adversary A the description of the bilinear
group, (N,G,Gr,e), along with the following values:

2
(gp, gry s, 9qR1, g, 9b . 909e 95°Q1, 5. ghQaRa, T)

The adversary A outputs a guess b’ of b. The advantage of A is defined as
Advy = ’Pr[b' =b| — % .

Definition 7. We say that G satisfies Assumption 1 if, for all PPT algorithms
A, the advantage of A in winning the above game is negligible in the security
parameter \.

We note that Assumption 1 implies the hardness of finding a non-trivial
factor of N.

Generalized 3-Party Diffie-Hellman Assumption (C3DH). We use the compos-
ite 3-party Diffie-Hellman assumption first introduced by [11]. We restate the
assumption in the context of a bilinear group whose order is the product of four
distinct primes.

Let G be a group generator algorithm as above. Run G(1*) to obtain (p,
q,7,8,G,Gr,e). Let N = pgrs and let g,, 94, 9r,9s be random generators of
Gy, Gy, Gy, Gs, respectively. Choose random Ry, Ra, Rs € G,, random a,b,c €
Zn, and a random bit b. If b =0, let 7' = g, - R3; if b = 1, let T be a random
element in G,, = G, x G,.. Give the adversary A the description of the bilinear
group, (N,G,Gr,e), along with the following values:

(gp7 9q> 9r, Ys, 957 927 gt;b 'Rlv g;bc 'R27 T)
The adversary A outputs a guess b’ of b. The advantage of A is defined as
Advy = [Prlb’ = b] - 1.

Definition 8. We say that G satisfies the C3DH assumption if for all PPT
algorithms A, the advantage of A in winning the above game is negligible in the
security parameter \.

We note that the C3DH assumption implies the hardness of finding a non-
trivial factor N.

Decisional Linear assumption (DLinear). We use the Decisional Linear assump-
tion introduced by [6]. We restate the assumption in the context of a bilinear
group whose order is the product of four distinct primes.

Let G be a group generator algorithm as above. Run G(1*) to obtain (p,
q,7,5,G,Gr,e). Let N = pgrs and let gy, g4, 9r,gs be random generators of
Gy, Gy, Gy, G, respectively. Choose random 21, 22, 23, 24 € Zp and a random bit
b.If b=0,let Z = g;3+24; if b=1, let Z be a random element in G,. Give the
adversary A the description of the bilinear group, (N, G, Gy, ¢), along with the
following values:

(9> 9ar Grs Gs G%s 957 95-7%, 932, Z)
The adversary A outputs a guess b’ of b. The advantage of A is defined as
Advy = |Prb’ =b] — 3]

Definition 9. We say that G satisfies the DLinear assumption if for all PPT
algorithms A, the advantage of A in winning the above game is negligible in the
security parameter n.

4 Construction

Our goal is to construct a symmetric-key predicate encryption scheme supporting
inner product queries that has both plaintext privacy and predicate privacy. The
KSW construction [21] is a public-key predicate encryption scheme supporting
inner product queries that has plaintext privacy. A natural first attempt might be
to convert the KSW scheme into a symmetric-key scheme simply by withholding
the public key. Such a scheme would immediately inherit plaintext privacy from
the KSW construction. However, it is difficult to prove the predicate privacy of
such a scheme. Our primary challenge is to achieve predicate privacy.

To achieve predicate privacy, we use the observation that, for inner product
queries, ciphertexts and tokens play symmetric roles in the scheme and the
security definitions. In particular, a token and a ciphertext each encode a vector
in Z%;, and the inner product (z,v) is commutative. Furthermore, for inner
products, ciphertexts and tokens have symmetric roles in the security definitions.
One way to interpret this observation is to view a ciphertext as an encryption
of a plaintext vector and a token as an encryption of a predicate vector.

Based on this observation, our general approach is to start from a construc-
tion that resembles the KSW construction, so that we can prove plaintext privacy
in a relatively straightforward manner. We then show through a series of modifi-
cations to our construction that it is indistinguishable from one in which cipher-
texts and tokens are formed symmetrically. Using this symmetry, we can leverage
the plaintext privacy proven for our main construction to achieve predicate pri-
vacy as well. Taken all together, the “native” formation of our system gives us

plaintext privacy by a KSW type of approach, and the indistinguishability of
our construction from one in which ciphertexts and tokens are symmetrically
formed implies that our construction also has predicate privacy.

4.1 A Symmetric-Key Predicate Encryption Scheme

Our main construction is a symmetric-key predicate-only encryption scheme
supporting inner product queries. We take the class of plaintexts to be X = Z};
and the class of predicates to be F = {fy|v € Z},} with fp(v) =1 iff (x,v) =0
mod N.

‘We now describe our construction in detail.

Setup(1*): The setup algorithm runs G(1*) to obtain (p,q,r,s,G,Gr,e) with
G = Gp xGyxG, xG;. Next it picks generators gy, g4, gr, gs of Gp, G4, G, G,
respectively. It chooses hy ;, ha i, u1,4, u2,; € G, uniformly at random fori =1
to n. The secret key is

SK = (9p, 9g: 9r» 9s» {P1irhog uri, uzi}i).

Encrypt(SK,x): Let © = (x1,...,2,) € Z%;. The encryption algorithm chooses
random y, z, o, B € Zn, random S, Sy € G4, and random R, ;, Ry € G, for
i =1 to n. It outputs the ciphertext

C’:Sgg, 00250'957
CT = .
{Cl P = ul i all R1 i C = hgz u2 i 6"87 RQ 1}1 1

GenToken(SK,v): Let v = (v1,...,v,) € Z%. The token generation algorithm
chooses random f1, fo € Zn, random 71 ;,72,; € ZN for ¢ = 1 to n, random
R, Ry € G,, and random S ;, S2; € G, for ¢ = 1 to n. It outputs the token

TK. — (K R- Hz 1 Tl ' h‘;,:z,i’ KO = RO ' H;’Lzl uli,:lﬂ. ’ u2,:2,i7>
v =) .
{Kvi=g" 951”‘ Stis Koi= g - g - Saabi

Query(TK,,CT) : Let CT = (C, Cy,{C1,,C2,}7—,) and
TK, = (K, Ko, {K1,, K2}) as above. The query algorithm outputs 1 iff

?

e(C,K) - e(Co, Ko) - [e(Cui, K1) - €(Cai, Kai) = 1.
i=1

Correctness. Let CT and TK, be as above. Then

e(C, K) - e(Co, Ko) - H e(Ch,i, K1,i) - e(Co, Ka3)
i=1

R Hh) (S0 gy o [Lunl i)

i=1
Lt i, g3 Buss g gfiv - 510)

e, 5 g - Ragy g - g™ - o)

LRSI T2z —7T2,4i
gp’Hh gpaH“u Uy ;")

n

H e h?lJz 93117 g;1 i ,gfwl) . e(hg7i . géiom, ggz i ,gf2v1)
=1

n

H e(g (af1+f3fz)r Vi = e(gq, gq)(af1+ﬂf2 mod q)(x,v)

—

1=

If (x,v) = 0 mod N, then the above expression evaluates to 1. If (x,v) # 0
mod N, then there are two cases. If (x,v) =0 mod ¢, then the above expression
evaluates to 1; however, this case would reveal a non-trivial factor of N and,
therefore, this case occurs with negligible probability. If (x,v) # 0 mod ¢, then
with all but negligible probability af1+5f2 # 0 mod ¢ and the above expression
does not evaluate to 1.

4.2 Discussion

To understand our construction, it is useful to examine the role of each of the
subgroups G,, G¢, G,, G,.

The G, subgroup is used to encode the plaintext vector « in the C ; and Cs ;
terms of the ciphertext and the predicate vector v in the K ; and Ky ; terms of
the token. When a token for v is applied to an encryption of &, the computation
of the inner product (z, v) is evaluated in the exponent of the G, subgroup.

The G,, subgroup is used to prevent an adversary from manipulating com-
ponents of either a ciphertext or a token and then evaluating a query on the
improperly formed inputs. The G, subgroup encodes an equation which will
evaluate to 0 in the exponent if the inputs to the query algorithm are properly
formed.

The G, subgroup is used for to hide factors from other subgroups and ensure
plaintext privacy. In an analogous manner, the G subgroup is used to ensure
predicate privacy. Also, the additional subgroup G allows us to construct our
scheme in a slightly different manner from KSW. For example, the G4 subgroup
allows us to eliminate the factor) from the G, subgroup in the K term of the
token.

As discussed earlier, in our proofs of security we will need to show that our
main construction is computationally indistinguishable from a scheme in which
ciphertexts and tokens are formed symmetrically. In the KSW construction,
all terms in the ciphertext have the same exponent y in the G, subgroup. In
our construction, we introduce an additional degree of randomness using the
exponent z. Terms in the ciphertext now contain two degrees of randomness, y
and z, in the G, subgroup. This change is necessary to ensure symmetry of the
ciphertext and the token in the G, subgroup.

To see why this is the case, recall that Decisional Diffie-Hellman is easy
in bilinear groups. That is, for a random vector gp*,gp?,...,g,", it is easy
to decide whether the exponents (a1, aq,...,ax) are picked independently at
random or picked from a prescribed one-dimensional subspace. On the other
hand, an informal interpretation of the Decisional Linear assumption tells us
that it is computationally hard to decide whether the exponents (aq, as, ..., ak)
are picked independently at random or picked randomly from a prescribed 2-
dimensional subspace. The reason for introducing the extra randomness z in the
ciphertext is to ensure that the exponents in the G, subgroup are picked from
a 2-dimensional subspace instead of a 1-dimensional subspace.

Similarly to [11,12,21], our construction consists of two parallel sub-systems.
Note that Cq; and Cs; (similarly, K ; and K» ;) play identical roles. Our proof
of security will rely on having these two parallel sub-systems.

For comparison, we provide a review of the KSW construction in Appendix B.

4.3 Proof Overview
Our main security statement is the following theorem.

Theorem 3. Under the generalized Assumption 1 of the KSW construction,
the generalized C3DH assumption, and the Decisional Linear assumption, the
symmetric-key predicate-only encryption scheme presented in Section 4.1 is se-
lectively single challenge secure.

Our proof technique consists of two steps. First, we prove that our construc-
tion achieves plaintext privacy. Second, we prove that, for our construction,
plaintext privacy implies predicate privacy. Taken together, these results imply
the security of our scheme.

Our construction defined above, which we call SCHEMEREAL, does not imme-
diately yield a proof of these two properties. In order to argue these properties,
we define two different schemes that are computationally indistinguishable from
our original construction. That is, no adversary can tell whether tokens and ci-
phertexts are generated from our actual system or from one of the two defined
for the purposes of the proof.

We first define a system that we call SCHEMEQ), which very closely follows
the KSW construction. We reduce the plaintext privacy of SCHEMEQ to the
plaintext privacy of the KSW construction.

Next we define a system that we call SCHEMESYM, in which ciphertexts and
tokens are formed symmetrically. For this system it is straightforward to argue
that plaintext privacy implies predicate privacy.

We observe that since our main construction and the two variants defined are
all computationally indistinguishable (from an adversary’s view), it is actually
possible to define any of them as the “real” construction that we will actually
use. We chose the variant described above due to (relative) notational simplicity
and slight efficiency advantages. Details of our proof and further discussion are
given in the full version of our paper.

5 Conclusions

We examined the idea of protecting the privacy of predicates in predicate en-
cryption systems. While this turns out to be an inherently unachievable in a
public-key system, we showed that there exist solutions in the symmetric-key
setting. We first provided security definitions for predicate encryption schemes
in the symmetric-key setting and then presented a construction supporting inner
product queries, which are the most expressive queries supported by currently
known schemes.

While semantic security of predicates is inherently impossible in the public-
key setting, in the future we might wish to consider relaxations of public-key
encryption. For example, is it possible to find interesting systems where predi-
cates are drawn from a high entropy distribution, in a fashion similar to recent
work on deterministic encryption [4,2]? Another open direction is to consider
“partial public-key encryption,” in which a public key might allow a user to
generate only a subset of valid ciphertexts. (The rest may be generated from
a secret key or other public keys kept hidden from an attacker.) Thus, certain
predicates might be indistinguishable given the partial public keys published.

Acknowledgments

We thank Philippe Golle for helpful discussions. The second author thanks
Adrian Perrig for his support while part of this research was conducted.

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja
Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Search-
able encryption revisited: Consistency properties, relation to anonymous IBE, and
extensions. In Advances in Cryptology - Proceedings of CRYPTO 05, pages 205—
222. Springer-Verlag, August 2005.

2. Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic
encryption: Definitional equivalences and constructions without random oracles. In
CRYPTO, pages 360-378, 2008.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In SP ’07: Proceedings of the 2007 IEEE Symposium on Security
and Privacy, pages 321-334, Washington, DC, USA, 2007. IEEE Computer Society.
Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for
deterministic encryption, and efficient constructions without random oracles. In
CRYPTO, pages 335—359, 2008.

Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryp-
tion without random oracles. In Advances in Cryptology—EUROCRYPT 2004, vol-
ume 3027 of Lecture Notes in Computer Science, pages 223—238. Berlin: Springer-
Verlag, 2004. Available at http://wuw.cs.stanford.edu/~xb/eurocrypt04b/.
Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
CRYPTO, pages 41-55, 2004.

Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
Public key encryption with keyword search. In EUROCRYPT, pages 506-522,
2004.

Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages
213-29. Springer-Verlag, 2001.

Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based
encryption without pairings. In FOCS, 2007.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on cipher-
texts. In Joe Kilian, editor, Proceedings of Theory of Cryptography Conference
2005, volume 3378 of LNC'S, pages 325-342. Springer, 2005.

Dan Boneh and Brent Waters. A fully collusion resistant broadcast trace and
revoke system with public traceability. In ACM Conference on Computer and
Communication Security (CCS), 2006.

Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryp-
tion (without random oracles). In CRYPTO, 2006.

Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key en-
cryption scheme. In EUROCRYPT, pages 255-271, 2003.

Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In EUROCRYPT, pages 207-222, 2004.

Melissa Chase. Multi-authority attribute based encryption. In T'CC, pages 515—
534, 2007.

Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Proceedings of the 8th IMA International Conference on Cryptography and Cod-
ing, pages 360-363, London, UK, 2001. Springer-Verlag.

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. In CCS
’06: Proceedings of the 18th ACM conference on Computer and communications
security, 2006.

O. Goldreich and R. Ostrovsky. Software protection and simulation by oblivious
rams. JACM, 1996.

Philippe Golle, Jessica Staddon, and Brent Waters. Secure conjunctive keyword
search over encrypted data. In Proc. of the 2004 Applied Cryptography and Network
Security Conference, 2004.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In CCS ’06: Proceed-
ings of the 13th ACM conference on Computer and communications security, pages
89-98, New York, NY, USA, 2006. ACM Press.

21. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Eurocrypt, 2008.

22. Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. PhD
thesis, M.I.T, 1992. Preliminary version in STOC 1990.

23. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with
non-monotonic access structures. In CCS ’07: Proceedings of the 14th ACM con-
ference on Computer and communications security, 2007.

24. Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters. Secure
attribute-based systems. In CCS ’06: Proceedings of the 13th ACM conference on
Computer and communications security, pages 99-112, New York, NY, USA, 2006.

25. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457-473, 2005.

26. Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings
of Crypto ’84, volume 196 of LNCS, pages 47-53. Springer-Verlag, 1984.

27. Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Per-
rig. Multi-dimensional range query over encrypted data. In IEEE Symposium on
Security and Privacy, May 2007.

28. Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption
systems. In Proceedings of ICALP, 2008. Full version can be found online at
http://sparrow.ece.cmu.edu/~elaine/docs/delegation.pdf.

29. Dawn Song, David Wagner, and Adrian Perrig. Practical techniques for searches
on encrypted data. In Proceedings of the 2000 IEEE symposium on Security and
Privacy (S&P 2000), 2000.

A Proof of Theorem 2

Here, we prove that a single challenge secure symmetric-key predicate-only en-
cryption scheme supporting inner product queries for vectors of length 2n can be
used to construct a fully secure symmetric-key predicate-only encryption scheme
supporting inner product queries for vectors length n. Our proof is inspired by
the hybrid argument used by [21].

Proof. Let SCHEMEq,, be a single challenge secure symmetric-key predicate-only
encryption scheme supporting inner product queries over Z3*. We construct a
fully secure symmetric-key predicate-only encryption scheme SCHEME,, support-
ing inner product queries over Z7%;.

For any two vectors € = (21,...2,),Y = (Y1,-.-,Yn) € LY, define x|y =
(1, TnyY1,---,Yn) to be the vector obtained by concatenating x and y.

Informally, SCHEME,, works as follows. To encrypt a vector € Z};, encrypt
the vector z||z € Z3" using SCHEMEq,,. Similarly, to construct a token for the
vector v € Z%, use SCHEMEy,, to construct a token for the vector v|jv € Z37.
The algorithms of Scheme,, are defined as follows.

SCHEME,,.Setup(1}): Run SCHEMEgy,,.Setup(1*). The secret key SK is the same
as that generated by SCHEME,,,.

SCHEME,,. Encrypt(SK, x): Output SCHEMEy,. Encrypt(SK, x| x).

SCHEME,,. GenToken(SK,v): Output SCHEMEy,,. GenToken(SK,v||v).

SCHEME,, . Query(T K., CT): Output SCHEMEs,,. Query(T K, CT).

The correctness of SCHEME,, results from the fact that for vectors ¢, v € ZY%;,
(,v) =0 iff (zf, vl|v)=0.

We now show that SCHEME,, is fully secure. Recall the full security game
defined in Section 2.2. First, the challenger picks a random bit b. Next, the
adversary A adaptively issues queries to the challenger. If a query is a ciphertext
query (x;,0,2;,1), the challenger responds with an encryption of ;. If a query
is a token query (v;,v;,1), the challenger responds with a token for v;p. A’s
queries are subject to the restriction that, for all ciphertext queries (x;0,2; 1)
and all predicate queries (fio, fi1), fio(zj0) = fi1(x;1). At the end of the
game, A outputs a guess b’ of b and wins if b’ = b.

Suppose that the adversary A makes ¢ ciphertext queries, (z1,0, 1,1), -- .
(@c,0, 1), and t token queries, (v1,0,v1,1),- .., (Ve,0,Ve1).

Our task is to show that A cannot distinguish between two experiments:
one where the challenger constructs ciphertexts for xq0,...,%.0 and tokens
for v19,...,v40 (call this Game 0), and one where the challenger constructs
ciphertexts for @11,...,%.1 and tokens for vy 1,...,v¢1 (call this Game 1). To
do this, we construct a series of hybrid games as follows.

Game 0 : The challenger calls SCHEME,,, and computes ciphertexts for 1 ||21,0,
2,0/|T2.0, -- - TeollTe,0 and tokens for vy o||v1,0, v2,0]V20, -- -5 Ve0l|Ve0-

Game A : The challenger calls SCHEMEy,, and computes ciphertexts for &1 ¢]|0,
22,0]|0, ..., T 0]|0 and tokens for vq o|lv10, V2,0/|v2,0s - -, ViollVe0-

Game B : The challenger calls SCHEME,,, and computes ciphertexts for 1 ¢||0,
22,0]|0, ..., T 0]|0 and tokens for vy o|lvi 1, vVaolvea, - Veollvea-

. R

Game M : The challenger picks a random « < Zy, calls SCHEME,,, and com-
putes ciphertexts for @1 ol|a®1,1, @20llawe1, ..., @collaw.1 and tokens
for viol|lvi1, v20llve, -, Veolve-

Notice that in the above sequence of hybrid games, the outcomes of the predicates
corresponding to the generated tokens on the plaintexts in Z3?* encrypted by the
challenger remain the same between all pairs of adjacent games, except with
negligible probability.

Claim. If SCHEME,, is single challenge secure, then no PPT adversary A has
more than negligible advantage in distinguishing between any pair of adjacent
games in the above sequence of games.

Proof. By a hybrid argument.

Similarly, we can construct a sequence of hybrid games connecting Game M
and Game 1. Using a hybrid argument, we conclude that no PPT adversary has
more than negligible advantage in distinguishing between Game 0 and Game 1.

B KSW Predicate Encryption Scheme

To aid in the understanding of our construction and the proof of security, we
review the KSW public key predicate-only encryption scheme for inner product
queries [21].

Let G’ denote a group generator algorithm for a bilinear group whose order
is the product of three distinct primes.

Setup(1*): The setup algorithm runs G’(1*) to obtain (p,q,7,G,Gr,e) with
G = G, x G4 x G,. Next it picks generators g,,gq,gr from subgroups
Gp,Gq, Gy, respectively. It then chooses, uniformly at random, hy;, ha; €
Gp, R1,4, Rz € G, for i =1 to n, and Ry € G,.

The public key consists of:

PK = (9p, 9r, @=9q - Ro, {H1i="h1,;-R1i, Hoy=ho; Roi}ti)

The secret key is set to:

SK = (p7Qa’ra 9q, {hl,ia h2,i}?:1) .

Encrypt(PK,x): Let ® = (21,...,2,) € Z%. The encryption algorithm first
picks random exponents y, o, 8 from Zy, and it chooses random R3 ;, R4,; €
G, for i =1 to n. It outputs the ciphertext

CT = (C =g¥, {Cri=H}, Q" -Rs;, Cp;=Hjy, - Q"™ 'R4vi}?=1) :

GenToken(SK,v): Let v = (v1,...,v,) € Z%,. The token generation algorithm
chooses random f1, fo, {r1, T’Q’i}?:l from Zy, random Ry € G,., and random
Qs € Gy. It outputs the token

K=Rs Qo[hy ;" hyi™,
TK, - (H =11, 2,

{Kii=g"" g, Kog=gy™ g™}

QU@’/’y(TKv, CT) Let CT = (C, {Cl,i; 02,1’}?:1) and TKv = (K, {Kl,i7 KQJ'}ZL:l)
as above. The query algorithm outputs 1 iff

n
2

G(C, K) . He(cl,i7K1,i) . 6(02’7;71(2’7;) = 1.

i=1

