
Predicates and Predicate Transformers for Supervisory

Control of Discrete Event Dynamical Systems 1

Ratnesh Kumar
Department of Electrical Engineering

University of Kentucky
Lexington, KY 40506-0046

Vijay Garg
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712-1084

Steven I. Marcus
Department of EE and System Research Center

University of Maryland
College Park, MD 20742

November 20, 2005

1This research was supported in part by the Center for Robotics and Manufacturing, University
of Kentucky, in part by the National Science Foundation under Grant NSFD-CDR-8803012 and
NSF-CCR-9110605, in part by the Air Force Office of Scientific Research (AFOSR) under Contract
F49620-92-J-0045, in part by a University Research Institute Grant and in part by a Bureau of
Engineering Research Grant.

Abstract

Most discrete event system models are based on defining the alphabet set or the set of
events as a fundamental concept. In this paper, we take an alternative view of treating the
state space as the fundamental concept. We approach the problem of controlling discrete
event systems by using predicates and predicate transformers. Predicates have the advantage
that they can concisely characterize an infinite state space. The notion of controllability of
a predicate is defined, and the supervisory predicate control problem introduced in this
paper is solved. A closed form expression for the weakest controllable predicate is obtained.
The problem of controlling discrete event systems under incomplete state observation is
also considered and observability of predicates is defined. Techniques for finding extremal
solutions of boolean equations is used to derive minimally restrictive supervisors.

1 Introduction

Many discrete event system models [24, 23, 25, 9, 11, 12] are based on defining the
alphabet set or the set of events as a fundamental concept. The language of a deterministic
system characterizes its behavior, and two systems are considered equivalent if they have
the same alphabet and language [9]. In this paper, we take an alternative view of treating
the state space as the fundamental concept. Problems treated in [22, 19, 3, 1, 18, 14, 7] are
also formalized with a similar point of view.

We approach the problem of controlling the behavior of a discrete event system described
in terms of its state trajectories by using predicates and predicate transformers. Predicates
have the advantage that they can concisely characterize an infinite state space. Petri net
based models have also been used for describing infinite state discrete event dynamical
systems [26, 17]. The notions of two types of predicate transformers, namely strongest post-
condition (sp) and weakest liberal precondition (wlp) [5, 6, 8] are very useful in characterizing
the dynamics of discrete event dynamical systems. In this paper, we study the system dy-
namics in the framework of these predicate transformers. We use the notion of duality of
predicate transformers and show that sp and wlp are duals of each other. Thus one of the
predicate transformers - either sp or wlp - can be treated as fundamental and the other as a
derived notion. In this paper we treat sp to be the fundamental predicate transformer, as it
describes the forward evolution of the system behavior, and develop the supervisory control
theory using it.

We describe a few basic properties - strictness, monotonicity, disjunctivity, conjunctivity
etc. - of predicate transformers. sp is a strict, monotone and disjunctive predicate trans-
former, while its dual wlp is a strict, monotone and conjunctive. One or more of these
properties of sp and wlp are used to obtain all the results in this paper. It is known [6] that
a predicate equation in the variable predicate Q of the type Q : f(Q) � g(Q) has unique
extremal solutions, provided the predicate transformers f, g satisfy certain basic properties.
We use the extremal solutions of such predicate equations to demonstrate the existence and
uniqueness of minimally restrictive [23, 2] supervisors.

We introduce the supervisory predicate control problem as the problem of synthesizing
a supervisor for a given system so that the state trajectories of the system remain confined
to a set of “legal” states, and also visit all the states in the set of legal states. Thus the set
of legal predicate corresponds to the weakest predicate that remains invariant under control.
A special case of this problem where the latter constraint is relaxed was considered in [22].
The notion of controllability is defined and it is shown that it serves as a necessary and
sufficient condition for the existence of a supervisor that solves the supervisory predicate
control problem. A different definition of controllability is presented in [19], which can be
shown to be equivalent to our definition. Our definition of controllability is purely in terms
of the predicate transformer sp, which results in a more compact definition, simplicity of the
proofs (as demonstrated by the proof of Theorem 4.5) as well as the synthesis techniques of
the supervisors.

In this paper, we also address the problem of synthesizing supervisors for the case when
the required predicate is not controllable. This problem is quite important and is not ad-
dressed in [19, 22]. We show that if the given “legal” predicate is not controllable, then
the minimally restrictive supervisor can be constructed so that the state trajectories of the

1

controlled system remain confined to and also visit all the states in the set of states where
the weakest controllable legal predicate holds. We prove that the weakest controllable pred-
icate stronger than the required predicate exists and present an algorithm for computing it.
This algorithm is then used for constructing the minimally restrictive supervisor. Thus our
work extends the earlier works on supervisory predicate control [22, 19]. In [22] a method is
presented for computing the weakest “invariant” predicate stronger than the legal predicate;
which can also be computed as a special case using the method of computing the weakest
controllable predicate presented in this paper.

Next we consider the supervisory predicate control problem under partial state observa-
tions. The behavior of the system, i.e. the state trajectories, are observed under a “mask”
which maps the state space of the system to the “observation space”, and is not necessarily
injective. This problem is much harder, as the controller also consists of a state estimator,
and based on its state estimates takes the appropriate control actions. This problem was
first addressed in [19] and a solution was obtained under very restrictive assumptions on the
desired reachable predicate. This is because the observability condition obtained in [19] is
based only on the current observations and ignores all the past observations. We obtain the
observability condition based on the entire available information: control as well as obser-
vation; present as well as past. Thus the notion of observability introduced in this paper is
quite general. The notion of dynamical observers, which use the entire history for estimating
states, is presented in [3, 21]. However, in [3] it is assumed that the transition events are
completely known at all the transition steps, which is not the case in this paper. All that is
known is at any transition step one of the several events that are enabled by the supervisor
will occur and cause a system transition. In [21] the issue of synthesizing dynamical state
estimator for a partially observed system was addressed and no control was exercised. In
this paper we address the issue of simultaneously estimating the state and controlling the
system so that the set of reachable states equals the required legal set of states.

The notion of observability of a predicate described in this paper also leads to a syn-
thesis technique for the minimally restrictive supervisor. Unlike the supervisory control of
system behavior described in terms of event trajectories under partial observation where the
minimally restrictive supervisor does not exist [20], we show in this paper that it is possible
to construct the minimally restrictive supervisor for the supervisory predicate control prob-
lem under partial state observation, where the system behavior is described as the weakest
invariant predicate.

The advantage of using predicates and predicate transformers to represent a DEDS is
that we can concisely characterize systems with a very large, possibly infinite, number of
states. This is illustrated by the Readers-Writers example considered in this paper, in which
case the state space is infinite. We provide a technique for synthesizing a supervisor so as
to ensure mutual exclusion of readers and writers. Also, a technique is provided for the syn-
thesis of the minimally restrictive supervisor for a modified Readers-Writers problem, again
with infinite state space. Thus we have successfully developed a technique for supervisory
control of infinite state systems. The computational complexity of our approach depends
on the number of variables and conditional assignment statements representing the system
rather than the actual number of states and transitions. Computationally more efficient al-
gorithms for supervisory control of infinite state systems need to be developed based on the
theory presented in this paper. Some such techniques that involve mathematical induction

2

as an analysis tool are reported in [7], and further research on this issue is currently under
investigation.

2 Notation and Terminology

The discrete event dynamical system (DEDS) to be controlled - called the plant - is
modeled as a state machine (SM) [10] following the framework of [23]. Let the quadruple

G
def
= (X, Σ, δ, x0) denote a SM representing a plant; where X denotes the state set; Σ denotes

the finite event or alphabet set; δ : X ×Σ → X denotes the partial state transition function;
and x0 ∈ X denotes the initial state.

A supervisor or controller for the given DEDS is designed so that the behavior of the
closed loop system satisfies certain qualitative constraints described in terms of the state set
of the plant. The event set is partitioned into Σ = Σu ∪ (Σ − Σu), the sets of uncontrollable
and controllable events. A supervisor for the given plant G is characterized by a (static)
control law S : X → 2Σ. A control law is said to be static if the control action at each step
depends only on the observation at that step (for a more detailed and formal definition refer
to [13, 16]). A dynamic control law will be considered in section 5, where the supervisory
control problem under partial observation is addressed.

Thus if σ ∈ Σ is such that σ ∈ S(x) for some x ∈ X, then σ is said to be enabled by the
supervisor in state x. Since a supervisor can disallow only controllable events from occurring,
we also have for each x ∈ X, Σu(x) ⊆ S(x), where Σu(x) is the set of uncontrollable
events defined at state x. The controlled system is then described by the state machine

GS
def
= (X, Σ, δS, x0), where for x ∈ X and σ ∈ Σ, δS(x, σ) = δ(x, σ) if σ ∈ S(x), and

undefined otherwise.

Remark 2.1 One way to implement a static control law as described above is to let the
subautomaton of G corresponding to the control law S run in synchrony with G, as described
in [13, 16].

2.1 Predicates and Predicate Transformers

Next we introduce a few definitions from the theory of predicate calculus [5, 6, 8] that
we use in this paper to study and formulate the supervisory predicate control problem. Let
P denote the collection of predicates defined on the state set X, i.e. if P ∈ P, then it is a
boolean valued map P : X → {0, 1}. With every P ∈ P, we associate a set XP ⊆ X on
which P takes the value one, i.e. x ∈ XP if and only if P (x) = 1. We say that the predicate
P holds on x ∈ X if P (x) = 1. Conversely, given a set X ′ ⊆ X, it can be associated with
a predicate PX′ ∈ P such that PX′(x) = 1 if and only if x ∈ X ′. Thus the collection of
predicates P can be associated with the power set 2X using the association described above.
In what follows next, we use the names predicates and subsets interchangeably. The symbols
P,Q,R etc. are used for denoting predicates.

Definition 2.2 Given P ∈ P, its negation, denoted ¬P , is another predicate defined to be:
for every x ∈ X,¬P (x) = 1 ⇔ P (x) = 0. Given an indexing set Λ, let Pλ ∈ P for each λ ∈ Λ.
Then the conjunction

∧

λ∈Λ Pλ is defined to be: for every x ∈ X,
∧

λ∈Λ Pλ(x) = 1 ⇔ ∀λ ∈

3

Λ, Pλ(x) = 1; and the disjunction
∨

λ∈Λ Pλ is defined to be: for every x ∈ X,
∨

λ∈Λ Pλ(x) =
1 ⇔ ∃λ ∈ Λ s.t. Pλ(x) = 1.

Definition 2.3 The symbols true and false are used for denoting predicates that hold on
all and none of the states respectively, i.e. true(x) = 1,∀x ∈ X and false(x) = 0,∀x ∈ X.
Thus true = ¬false. Also, the predicate true can be associated with the entire state space
X, and the predicate false can be associated with the empty set ∅.

Example 2.4 Let X = R2, i.e. the state space equals the real plane. Let x, y be state
variables taking values in R. Then the predicate (x ≤ y) holds in those states in R2 where
the value of the variable x is not greater than that of variable y. Notice that predicates can
concisely describe an infinite state space.

The quadruple (P ,¬,∧,∨) forms a boolean algebra which is isomorphic to the algebra of
subsets of X under the operations of complementation, intersection and union. For P1, P2 ∈
P , we say that P1 � P2 if and only if P1 ∧P2 = P1, or P1 ∨P2 = P2. P1 is said to be stronger
than P2, equivalently, P2 is said to be weaker than P1 if P1 � P2. Note that � induces a
partial order on P , i.e. � is a reflexive, transitive and antisymmetric relation on P . Since �
is antisymmetric, if P1, P2 ∈ P are such that P1 � P2 and P2 � P1, then P1 = P2, i.e. they
are the same predicate. It can be shown that the partial order (P ,�) is also complete [9].

Let F denote the collection of all predicate transformers, i.e. if f ∈ F , then f : P → P.
We use the symbols f, g, h etc. to denote predicate transformers.

Definition 2.5 The negation ¬f for some f ∈ F is defined to be (¬f)(P) = ¬(f(P)) for
each P ∈ P. The conjunction and disjunction of an arbitrary set of predicate transformers
are defined in an analogous way and are obtained by taking the conjunction and disjunc-
tion, respectively, over the set of image predicates, i.e. given an arbitrary indexing set Λ,
(
∧

λ∈Λ fλ)(P) =
∧

λ∈Λ(fλ(P)), and (
∨

λ∈Λ fλ)(P) =
∨

λ∈Λ(fλ(P)) for each P ∈ P.

Definition 2.6 Consider G
def
= (X, Σ, δ, x0). For each σ ∈ Σ, spσ : P → P is defined to be:

spσ(P)
def
= Q, where XQ = {x ∈ X | ∃y ∈ XP s.t. δ(y, σ) = x}. We use sp, spu to denote

∨

σ∈Σ spσ,
∨

σ∈Σu
spσ respectively.

Thus spσ(P) is the predicate which holds on the set of states that are reached by the
transition σ from a state where P holds.

Definition 2.7 For the system G, the predicate transformer wlpσ ∈ F for each σ ∈ Σ is:

wlpσ(P)
def
= Q, where XQ = {x ∈ X | either δ(x, σ) ∈ XP or δ(x, σ) is undefined}. The

predicate transformers wlp, wlpu are defined to be
∧

σ∈Σ wlpσ,
∧

σ∈Σu
wlpσ respectively.

Thus wlpσ(P) is the predicate which holds in those states where either the transition σ
is not defined or a σ transition from them leads to a state where P holds.

Example 2.8 Let the state space be R2. We will use the pair (x, y) to denote an arbitrary
element of R2. Consider a program G that assigns (x, y) to (x + y, x − y), i.e.

G : (x, y) := (x + y, x − y).

4

Then given any set R ⊆ R2, it gets “transformed” to the set {(x′, y′) | (x′ = x + y) ∧ (y′ =
x − y), (x, y) ∈ R} whenever G is executed. Let the predicate (xy ≥ 10) be true upon
execution of G. Then the predicate (x2 − y2) ≥ 10 must be true before execution of G. In
other words, wlp(x,y):=(x+y,x−y)((xy ≥ 10)) = (x2 − y2 ≥ 10).

The predicate transformers sp and wlp as defined above are called strongest postcondition
and the weakest liberal precondition [5, 6, 8]. We use the notation spS(wlpS) to denote the
strongest postcondition (weakest liberal precondition) operator induced by the transition
function δS of the controlled system GS, i.e. spS =

∨

σ∈Σ(spS)σ and wlpS =
∧

σ∈Σ(wlpS)σ.
With the above introduction on predicates and predicate transformers it is clear that a DEDS
can also be represented in terms of predicates and predicate transformers.

Definition 2.9 G
def
= (PX , Σ, sp, I); where PX corresponds to the set of predicates defined

on the state space X of G; Σ denotes the event set; sp ∈ F is the predicate transformer
corresponding to the state transition function of G; and I ∈ PX corresponds to the initial
states (also called initial condition) of G.

The behavior of a DEDS is essentially described by sp ∈ F which is specified using the
state transition function. It may also be specified using a finite set of conditional assignment
statements of the type:

x := F (x) if C(x) : σ

The above assignment statement, labeled by the event σ, is said to be enabled if the the
condition specified as the predicate C(x) holds, and if executed, value of variable x becomes
F (x). Thus given any predicate P (x), spσ(P (x)) is the predicate reached after the execution
of σ and can be readily calculated to be [P (F−1(x)) ∧ C(F−1(x))], where F−1(x) = {x′ |
F (x′) = x}. Similarly, the predicate wlpσ(P (x)) can be easily computed to be [[P (F (x)) ∧
C(x)] ∨ ¬C(x)].

Consider for example a conditional assignment statement:

x, y := x + y, x − y if x > y : σ

Let P (x, y) = x + y ≥ 10. Then spσ(P (x, y)) = [{x+y

2
+ x−y

2
≥ 10} ∧ {x+y

2
> x−y

2
}] = [(x ≥

10) ∧ (y > 0)]; and wlpσ(P (x, y)) = [{(x + y) + (x − y) ≥ 10} ∧ {x > y}] ∨ [x ≤ y] = [{(x ≥
5) ∧ (x > y)} ∨ {x ≤ 5}].

Note that the DEDS representation as described in Definition 2.9 describes a wide range
of DEDS’s, such as system with an infinite state space, a nondeterministic [10] system, or a
system that could initially be in a set of states where the predicate I holds. Henceforth we
use the representation of G introduced in Definition 2.9 for describing a DEDS.

Example 2.10 Consider the following program which corresponds to the Readers–Writers
problem written in a programming logic adapted from UNITY framework [4]. Informally
stated, the Readers–Writers problem can be expressed as a DEDS which has a distributed
database, access to which is sought by an infinite numbers of readers and writers.

5

Program Rd Wr
declare nr, nw : integer

st rd, st wt, end rd, end wt : event
initially nr, nw = 0,0
assign nr := nr + 1 :st rd

nr − 1 if (nr > 0) :end rd
nw := nw + 1 :st wt

nw − 1 if (nw > 0) :end wt
end {Rd Wr}

The declare section contains the description of the program variables. The state variables
nr, nw are integer type and denote the number of readers, number of writers respectively
accessing the database. Both nr, nw are bounded below by zero. Thus the state space
of the system is N which is infinite. The symbols st rd, st wt, end rd, end wt correspond
to the events start-read, start-write, end-read, end-write respectively. The program starts
executing with the system being in the initial state ((nr, nw) = (0, 0)), which is described
in the initial section of the program. The system evolves according to the execution of the
“enabled” assignment statements of the assign section. An assignment statement is said to
be enabled whenever the condition under the “if” part of the assignment is satisfied. One
of the enabled assignment statements is nondeterministically picked for execution and upon
execution the state variables accordingly change their values. The entries in the last column
of the assign section are the event names for the corresponding assignment statements.

The program Rd Wr describes a DEDS of the type: G
def
= (PX , Σ, sp, I); where PX

denotes the set of predicates corresponding to the subsets of the state set X = N ; Σ =
{st rd, st wt, end rd, end wt}; sp corresponds to the assignments of the assign section as
aforementioned; and I = ((nr, nw) = (0, 0)).

3 On Solving Predicate Equations

So far we have defined the notions of predicates and predicate transformers. Next we
consider some of their properties and describe a few methods for solving some predicate
equations that we use later to design supervisors for a given DEDS. Some of the results
presented in this section can also be found in [6], however, we present their proofs here
mainly to illustrate the proof style that we follow throughout the paper.

Definition 3.1 [6] Consider f ∈ F . f is said to be strict if f(false) = false; monotone
if P � Q ⇒ f(P) � f(Q); disjunctive if f(

∨

λ∈Λ Pλ) =
∨

λ∈Λ f(Pλ); and conjunctive if
f(

∧

λ∈Λ Pλ) =
∧

λ∈Λ f(Pλ) (Λ denotes an arbitrary indexing set, and we adopt the conven-
tion that the disjunction as well as conjunction over the empty set is predicate false, i.e.
∨

λ∈Λ Pλ =
∧

λ∈Λ Pλ = false if Λ = ∅).

It is easily shown that spσ(
∨

λ∈Λ Pλ) =
∨

λ∈Λ spσ(Pλ), as {x ∈ X | ∃λ ∈ Λ : ∃y ∈
XPλ

s.t. δ(y, σ) = x} = ∃λ ∈ Λ : {x ∈ X | ∃y ∈ XPλ
s.t. δ(y, σ) = x}. Thus sp is

disjunctive, and similarly it is easily verified that wlp is conjunctive.

Example 3.2 To illustrate that sp is disjunctive, consider the program of Example 2.8, and
let [x + y ≤ 1] and [(x, y) = (0, 1)] be two predicates on the state space R2. Then under

6

program G, sp([x + y ≤ 1]) = ([x ≤ 1]), and sp([(x, y) = (0, 1)]) = [(x, y) = (1,−1)]. Since
[x + y ≤ 1] ∨ [(x, y) = (0, 1)] = [x + y ≤ 1], sp([x + y ≤ 1] ∨ [(x, y) = (0, 1)]) = sp([x + y ≤
1]) = [x ≤ 1]. Notice that [x ≤ 1] ∨ [(x, y) = (1,−1)] = [x ≤ 1] as expected, for sp is
disjunctive.

wlp is conjunctive; to illustrate this consider two predicates xy ≤ 10 and x = 2 on the
state space R2. Then xy ≤ 10 ∧ (x = 2) = y ≤ 5. Consider the program G of Example
2.8. Then under G, wlp([xy ≤ 10]) = [x2 − y2 ≤ 10], wlp([x = 2]) = [x + y = 2], and
wlp([y ≤ 5]) = [x− y ≤ 5]. Note that [x2 − y2 ≤ 10]∧ [x + y = 2] = [x− y ≤ 5] as expected,
for wlp is conjunctive.

Lemma 3.3 [6] Consider f ∈ F .

1. f disjunctive implies that f is strict and monotone.

2. f conjunctive implies that f is strict and monotone.

Proof: We prove the first part of Lemma 3.3; the proof of the second part is obtained in a
similar manner. Let P,Q ∈ P be arbitrary.
1. f(

∨

λ∈Λ Pλ) =
∨

λ∈Λ f(Pλ) ;f is disjunctive
2. f(

∨

λ∈∅ Pλ) =
∨

λ∈∅ f(Pλ) ;replace Λ by ∅ in 1
3. f(false) = false ;from 2 and using

∨

λ∈Λ Pλ = false
4. f is strict ;from 3
5. P � Q ⇒ P ∨ Q = Q ;by definition of �
6. P � Q ⇒ f(P ∨ Q) = f(Q) ;apply f on 5
7. P � Q ⇒ f(P) ∨ f(Q) = f(Q) ;f is disjunctive
8. P � Q ⇒ f(P) � f(Q) ;follows from 7 and definition of �
9. f is monotone ;from 8

This completes the proof. 2

We define the following operations on f ∈ F (we have already defined negation, disjunc-
tion and conjunction above):

Definition 3.4 The conjugate of f , written as f , is defined to be ¬f¬, i.e. for P ∈ P,
f(P) = ¬(f(¬P)); the disjunctive closure of f , written as f ⋆, is defined to be

∨

n≥0 fn; and
the conjunctive closure of f , written as f⋆, is defined to be

∧

n≥0 fn, where f 0 is defined to
be the identity predicate transformer.

Thus sp(P) characterizes the predicate which holds in states that cannot be reached by
a single transition from a state where ¬P holds, i.e. in states that either have no transitions
leading into them or which can be reached by a single transition only from those states where
P holds. sp⋆(P) denotes the predicate which holds in those states that can be reached by
any number of transitions from a state where P holds. Thus sp⋆ is useful in characterizing
the set of reachable states.

wlp(P) characterizes the predicate which holds in states from which only a state where P
holds can be reached by a single transition. wlp⋆(P) characterizes the the weakest predicate
stronger than P that is closed under the executions of G, i.e. Xwlp⋆(P) is the supremal Σ-
invariant [13, 16] subset of XP .

7

Lemma 3.5 Let f ∈ F be monotone; then

1. f(P) � P ⇔ f ⋆(P) � P

2. P � f(P) ⇔ P � f⋆(P).

Proof: We only prove the first part of Lemma 3.5; the proof for the second part is derived
in an analogous way. Note that the reverse implication is obvious; we use induction on the
exponent n in the definition of f ⋆ to prove the forward implication.
1. f ⋆(P) � P ⇒ f(P) � P ;by definition of f ⋆

2. f 0(P) � P ⇔ true ;by definition of f 0

3. f(P) � P ⇒ f 0(P) � P ;from 2 (base case for induction)
4. f(P) � P ⇒ fn(P) � P ;induction hypothesis
5. f(P) � P ⇒ f(fn(P)) � f(P) ;apply f on RHS of 4, and f monotone
6. f(P) � P ⇒ fn+1(P) � P ;simplifying 5
7. ∀i ≥ 0 : f(P) � P ⇒ f i(P) � P ;from 3, 6 and induction
8. f(P) � P ⇒ f ⋆(P) � P ;taking disjunct wrt i in 7
9. f(P) � P ⇔ f ⋆(P) � P ;from 1 and 8

This completes the proof. 2

Since sp is disjunctive, it is also monotone (Lemma 3.3). Thus Lemma 3.5 applies to sp
as well; the implication of part 1 is that if the set of states reached by a single transition
is contained in the set of starting states, then so is the entire set of reachable states. The
implication of the second part of Lemma 3.5 applied to wlp (wlp conjunctive implies wlp
monotone from Lemma 3.3) is that if the set of states from which only the states in a target
state set can be reached in a single transition contains the set of target states, then so does
the set of states from which only the target state set is reached in all numbers of transitions.

Lemma 3.6 [6] Consider f ∈ F .

1. If f is disjunctive, then so is f ⋆.

2. If f is conjunctive, then so is f⋆.

Proof: As above we omit the proof of the second part, which can be obtained analogously
to the proof of part 1 that we present next. It suffices to show that fn is disjunctive for
each n ∈ N , for if fn is disjunctive for each n ∈ N , then f ⋆(

∨

λ∈Λ Pλ) =
∨

n≥0 fn(
∨

λ∈Λ Pλ) =
∨

n≥0

∨

λ∈Λ fn(Pλ) =
∨

λ∈Λ

∨

n≥0 fn(Pλ) =
∨

λ∈Λ f ⋆(Pλ). Hence we prove disjunctivity of fn

for each n ∈ N by induction on the exponent n in the definition of f ⋆.
1. f 1 = f is disjunctive ;by assumption (base case for induction)
2. fn+1 = f(fn) ;definition of exponent
3. fn(

∨

λ∈Λ Pλ) =
∨

λ∈Λ fn(Pλ) ;induction hypothesis
4. fn+1(

∨

λ∈Λ Pλ) = f(
∨

λ∈Λ fn(Pλ)) ;using 2 and 3
5. fn+1(

∨

λ∈Λ Pλ) =
∨

λ∈Λ fn+1(Pλ) ;from 4 and f is disjunctive
Thus the proof is completed. 2

Lemma 3.7 [6] If f is disjunctive (conjunctive), then f is conjunctive (disjunctive).

8

Proof: The proof is simple and based on application of De Morgan’s law. 2

It thus follows from Lemma 3.6 that sp⋆ is disjunctive, and from Lemma 3.7 that sp and
sp⋆ are conjunctive. Similarly, since wlp is conjunctive, so is wlp⋆ (Lemma 3.6) and wlp
and wlp⋆ are disjunctive (Lemma 3.7). Next we quote a result regarding existence of the
extremal solution of a predicate equation, the proof of which can be found in [6]. A notation
of the type Q : f(Q) � h(Q), where f, h ∈ F and Q ∈ P, is used to denote a predicate
equation in the variable predicate Q such that it staisfies f(Q) � h(Q).

Theorem 3.8 [6] Consider the predicate equation Q : f(Q) � h(Q).

1. If f is disjunctive and h is monotone, then the weakest solution of the above equation
exists (and is unique).

2. If f is monotone and h is conjunctive, then the strongest solution of the above equation
exists (and is unique).

An immediate consequence of Theorem 3.8 is the following corollary:

Corollary 3.9 Let f be disjunctive and P ∈ P be arbitrary; then

1. the weakest solution of the equation Q : f(Q) � P exists.

2. the weakest solution of the equation Q : f(Q) � Q exists.

Proof: 1. Follows from the fact that P , treated as a constant predicate transformer, is
monotone.
2. Follows from the fact that the identity function is monotone. 2

Next we show that there exists a strong relationship between the set of disjunctive and
the set of conjunctive predicate transformers. A result of similar nature is obtained in [6, p.
202, Theorem 1] regarding converses of predicates.

Theorem 3.10 Consider f, g ∈ F . Let f be disjunctive and g be conjunctive; then the
following are equivalent:

C-1. g(P) is the weakest solution of Q : f(Q) � P for all P ∈ P.

C-2. (f(g(P)) � P) ∧ (P � g(f(P))) for all P ∈ P

C-3. f(P) � Q ⇔ P � g(Q) for all P,Q ∈ P.

C-4. f(P) is the strongest solution of Q : P � g(Q) for all P ∈ P.

Proof: Refer to Appendix A. 2

The weakest solution of Q : f(Q) � P depends both on f and P . Let it be denoted by
f⊥(P). Note that f⊥ ∈ F . We define it to be the dual of f . Formally,

Definition 3.11 Let f⊥(·) ∈ F be the weakest solution of Q : f(Q) � (·), where f ∈ F is
disjunctive. Then f⊥ is called the dual of f .

Lemma 3.12 If f is disjunctive, then its dual f⊥ is conjunctive.

9

Proof: Consider the equation Q : f(Q) �
∧

λ∈Λ Pλ. Then by definition f⊥(
∧

λ∈Λ Pλ) is the
weakest solution of this equation. We show that

∧

λ∈Λ(f⊥(Pλ)) is also the weakest solution;
hence from the uniqueness of the solution it follows that f⊥ is conjunctive. First we show
that

∧

λ∈Λ(f⊥(Pλ)) is a solution.
1. ∀λ ∈ Λ : f(f⊥(Pλ)) � Pλ ;f⊥(Pλ) is a solution of Q : f(Q) � Pλ

2. ∀λ ∈ Λ :
∧

λ∈Λ(f⊥(Pλ)) � f⊥(Pλ) ;definition of conjunction
3. ∀λ ∈ Λ : f(

∧

λ∈Λ(f⊥(Pλ))) � f(f⊥(Pλ)) ;apply f on 2, f monotone (Lemma 3.3)
4. ∀λ ∈ Λ : f(

∧

λ∈Λ(f⊥(Pλ))) � Pλ ;from 1 and 3
5. f(

∧

λ∈Λ(f⊥(Pλ))) �
∧

λ∈Λ Pλ ;by taking conjunct wrt λ in 4
6.

∧

λ∈Λ(f⊥(Pλ)) is a solution ;from 5

Next we show that
∧

λ∈Λ(f⊥(Pλ)) is the weakest solution also. Let R be another solution of
Q : f(Q) �

∧

λ∈Λ(Pλ). Then we need to show that R �
∧

λ∈Λ(f⊥(Pλ)).
1. f(R) �

∧

λ∈Λ Pλ ;by assumption
2. ∀λ ∈ Λ : f(R) � Pλ ;from 1
3. ∀λ ∈ Λ : R is a solution of Q : f(Q) � Pλ ;from 2
4. ∀λ ∈ Λ : f⊥(Pλ) is weakest solution of Q : f(Q) � Pλ ;by definition of f⊥

5. ∀λ ∈ Λ : R � f⊥(Pλ) ;from 3 and 4
6. R �

∧

λ∈Λ(f⊥(Pλ)) ;taking conjunct wrt λ in 5
7.

∧

λ∈Λ(f⊥(Pλ)) is the weakest solution ;from 5

This proves that f⊥ is conjunctive. 2

An immediate consequence of Theorem 3.10 and Lemma 3.12 is the following corollary:

Corollary 3.13 Let f ∈ F be disjunctive. Then the strongest solution of the equation
Q : P � f⊥(Q) exists and is given by f(P).

Proof: From Lemma 3.12 we have that f⊥ is conjunctive. Since P as a constant predicate
transformer is monotone, the strongest solution of Q : P � f⊥(Q) exists (Theorem 3.8).
That f(P) is the strongest solution follows by substituting f⊥ for g in Theorem 3.10. 2

Remark 3.14 The result of Corollary 3.13 justifies the term dual for the functions f and
f⊥. Note that C-1 is used to define the dual of a disjunctive predicate transformer. Since in
Theorem 3.10 we showed the equivalence of C-1 and C-2 and C-3 and C-4, any one of them
can be used to equivalently define the dual predicate transformer.

Next we prove a result that is interesting from the control perspective.

Theorem 3.15 wlp and sp are duals of each other.

Proof: Note that sp is disjunctive and wlp is conjunctive; hence the duality is well defined
in this context. In order to show duality we need to show that wlp and sp satisfy any of the
conditions C-1 through C-4 (refer to Theorem 3.10 and Remark 3.14). We show that C-2
holds.

Firstly, it follows from the definitions of sp and wlp that sp(wlp(P)) � P for any P ∈ P.
This is true because sp(wlp(P)) holds only in those states of XP which have at least one
transition leading into them. Secondly, it again follows from the definitions of sp and wlp
that P � wlp(sp(P)) for any P ∈ P. This is true because wlp(sp(P)) holds in those states
where either P holds or which have no transitions leading out of them. Thus both the
conjuncts of C-2 hold, which proves the duality of wlp and sp. 2

10

4 Predicate Transformers and Supervisory Control

In the previous section we described the conditions under which extremal solutions of
various boolean equations exist, and introduced the notion of duality of predicate transform-
ers, which is one of the key concepts relating the extremal solutions of the above boolean
equations. We now show how these concepts can be useful in synthesizing static supervisors
[16, 13] for a given DEDS.

Let G
def
= (PX , Σ, sp, I) be a plant as described in Definition 2.9. Let R ∈ P denote the

required behavioral constraint on G. In other words, the control task is to design a static
controller S : X → 2Σ such that as the closed loop system evolves, it visits only and all those
states where R holds. Formally,

Supervisory Predicate Control Problem (SPCP): The control task is to construct a

static controller S : X → 2Σ for the plant G
def
= (PX , Σ, sp, I) such that sp⋆

S(I) = R.

The SPCP requires that the state trajectories (in the controlled system GS) starting from
a state where the initial predicate I holds, remain confined to the set of states where the
required predicate R holds, and visit all the states where R holds. A special case of this
problem was first treated in [22] where the control task was to synthesize a static supervisor
S such that sp⋆

S(I) � R, i.e. the states visited under closed loop control be confined to R.
Thus R in [22] represents a predicate that remains invariant under control. The required
predicate R considered in this paper represents the weakest predicate that remains invariant
under control (i.e. if S solves SPCP, then no other predicate weaker than R is invariant
under S).

It is clear that SPCP is solvable only if the set of initial states is contained in the set of
states where R holds. Hence in order to allow nontrivial solution of the SPCP we assume
that the above condition is satisfied, which we state as assumption A-1 below:

A-1. I � R.

Next we define a few notions that play a central role in supervisory control of DEDS.

Definition 4.1 R is said to be invariant if sp(R) � R. R is said to be Σu-invariant if
spu(R) � R. R is said to be control-invariant if there exists a static controller S : X → 2Σ

such that spS(R) � R.

Thus if R is an invariant predicate and if the system starts from a state where R holds,
then as it evolves it visits only those states where R holds. If R is Σu-invariant, and if
the system starts in a state where R holds, then under the execution of any uncontrollable
event it remains in a state where R holds. If R is control-invariant, then there exists a
static supervisor S such that R is invariant in the controlled system GS. Note that all
the above notions are defined with respect to the plant G, for they depend on the plant
transition function sp. It also follows in view of C-3 of Theorem 3.10 that R being invariant,
Σu-invariant, control-invariant is equivalent to R � wlp(R), R � wlpu(R), R � wlpS(R)
respectively. These are the same as the definitions given in [22]. Hence it follows in view of
Proposition 7.1 of [22] that R is control-invariant if and only if R is Σu-invariant.

11

These notions of invariance introduced in [22] are useful in characterizing those sets of
states which are closed under the system execution, i.e. if the system starts in a state of
an invariant set, then under all executions the state of the system remains in that invariant
set. However, it may be quite possible that the system may never visit some states in that
invariant set. Thus the notion of invariance alone is not enough for addressing the SPCP.
The notion of controllability of predicates (a notion stronger than that of invariance) was
introduced in [19] for addressing the above mentioned problem. We present an equivalent
but slightly different definition of controllability and show that controllability is a necessary
and sufficient condition for a solution of SPCP to exist. In our opinion, our definition is
much more compact and uses a more convenient notation that results in simplicity of proofs
and supervisory synthesis techniques.

Definition 4.2 Given f ∈ F and P ∈ P, the restriction of f to P , denoted f |P , is the
predicate transformer defined as: (f |P)(Q) = f(P ∧ Q) ∧ P for each Q ∈ P.

Next we prove a useful property of the restriction operator. We say f ∈ F is weakening
if P � f(P) for any P ∈ P.

Lemma 4.3 Let f ∈ F be monotone and weakening, and P,Q ∈ P be arbitrary. Then
f |(f |P (Q)) (Q) = f |P (Q).

Proof: Let R
def
= f |P (Q). Then we need to show that f |R (Q) = R.

1. R = f(P ∧ Q) ∧ P ;definition of restriction
2. f |R (Q) = f(f(P ∧ Q) ∧ P ∧ Q) ∧ f(P ∧ Q) ∧ P ;definition of f |(·) and 1
3. P ∧ Q � f(P ∧ Q) ;f is weakening
4. P ∧ Q � f(P ∧ Q) ∧ P ∧ Q ;conjunct with P ∧ Q in 3
5. f(P ∧ Q) � f(f(P ∧ Q) ∧ P ∧ Q) ;apply f in 4, f monotone
6. f |R (Q) = f(P ∧ Q) ∧ P ;from 2 and 5
7. f |R (Q) = R ;from 6 and definition of R

This completes the proof. 2

Thus it follows from Lemma 4.3 that the restriction of a monotone predicate transformer,
the application of which results in an image predicate weaker than its preimage predicate,
exhibits a nice “invariance” property. For example, the disjunctive closure of any predicate
transformer is weakening as well as monotone (Lemma 3.3 and 3.5), and thus exhibits such
a property.

Definition 4.4 R is said to be controllable with respect to G if

1. spu(R) � R, and

2. R = (sp |R)⋆(I)

Note that it follows from the definition of restriction and disjunctive closure that the
following ordering always holds: (sp |R)⋆(I) � R. Thus the second condition in the definition
of controllability is equivalent to R � (sp |R)⋆(I). We use either of these equivalent definitions
of controllability interchangeably. In the next theorem we present a solution to the SPCP.
The simplicity of the proof obtained by using the theory of predicate transformers and a
more compact definition of controllability is easily seen.

12

Theorem 4.5 The solution to SPCP exists if and only if R is controllable with respect to
G.

Proof: First assume that R is controllable; we show that there exists a controller S : X → 2Σ

such that sp⋆
S(I) = R. Consider the controller defined as: for each x ∈ XR, σ ∈ S(x) ⇔

δ(x, σ) ∈ XR. Since R is Σu-invariant, it follows that the events disabled by S are all
controllable (S never disables any uncontrollable events). Also, note that the strongest
postcondition predicate transformer spu corresponds to the maximally restrictive control
law - the control law that disables all the controllable events from occurring.
1. spu(R) � R ;by assumption (R is controllable)
2. sp |R= spS ;from 1, definitions of S and sp |R and A-1
3. R = (sp |R)⋆(I) ;by assumption (R is controllable)
4. R = sp⋆

S(I) ;from 2 and 3
Next we show that if there exists a controller S such that sp⋆

S(I) = R, then R is controllable.
1. sp⋆

S(I) = R ;by assumption
2. sp⋆

S(I) = sp⋆
S(R) ;apply sp⋆

S on 1
3. sp⋆

S(R) = R ;from 1 and 2
4. sp⋆

u(R) � sp⋆
S(R) ;spu : most restrictive control

5. sp⋆
u(R) � R ;from 3 and 4

6. spu(R) � R ;from 5 and Lemma 3.5
7. (spS |R)⋆(I) = R ;from 1 and Lemma 4.3
8. (spS |R)⋆(I) � (sp |R)⋆(I) ;S restricts behavior
9. R � (sp |R)⋆(I) ;from 7 and 8
10. R is controllable ;from 6 and 9

This completes the proof of Theorem 4.5. 2

Example 4.6 Consider the problem of mutual exclusion for the Readers-Writers program of
Example 2.10. The mutual exclusion constraint requires that the number of writers accessing
the database should never be more than one, and a reader can access the database only when
no writer is accessing it. Thus the mutual exclusion constraint can be written as the following
required predicate: R = ((nw = 0)∨ (nw = 1∧ nr = 0)). Let Σu = {end rd, end wt}. Then
it is easily verified that R is controllable, namely, spu(R) � R and (sp |R)⋆(I) = R as
described below. First consider the event end rd:

nr := nr − 1 if nr > 0 : end rd

Comparing the above statement with the standard form:

x := F (x) if C(x) : σ

we obtain F (x) = x − 1, i.e. F−1(x) = x + 1; and C(x) = [x > 0]. Thus
spend rd(R(nr))
= R(F−1(nr)) ∧ C(F−1(nr))
= [(nw = 0) ∨ (nw = 1 ∧ nr + 1 = 0)] ∧ [nr + 1 > 0]
= [(nw = 0) ∧ (nr + 1 > 0)] ∨ [(nw = 1) ∧ (nr + 1 = 0) ∧ (nr + 1 > 0)]
= [(nw = 0) ∧ true] ∨ false

13

= (nw = 0)
� R.

Next consider the event end wt:

nw := nw − 1 if nw > 0 :

Thus F (x) = x − 1 and C(x) = [x > 0] as before. Hence
spend wt(R(nw))
= R(F−1(nw)) ∧ C(F−1(nw))
= [(nw + 1 = 0) ∨ (nw + 1 = 1 ∧ nr = 0)] ∧ [nw + 1 > 0]
= [nw + 1 = 0 ∧ nw + 1 > 0] ∨ [nw + 1 = 1 ∧ nr = 0 ∧ nw + 1 > 0]
= false ∨ [nw = 0 ∧ nr = 0]
= [nw = 0 ∧ nr = 0]
� R.

Combining the results of the above two derivations, we thus obtain:
spu(R)
= (nw = 0) ∨ (nw = 0 ∧ nr = 0) = (nw = 0)
� R.

Next, in order to verify (sp | R)⋆(I) = R, it can be easily shown by induction on n ∈ N
that (sp |R)n(I) = (nw = 0 ∧ nr ≤ n) ∨ (nw = 1 ∧ nr = 0). Hence
(sp |R)⋆(I)
=

∨

n≥0(nw = 0 ∧ nr ≤ n) ∨ (nw = 1 ∧ nr = 0)
= (nw = 0 ∧ true) ∨ (nw = 1 ∧ nr = 0)
= (nw = 0) ∨ (nw = 1 ∧ nr = 0)
= R.

It then follows that R is controllable and hence the SPCP is solvable. The supervisor S
can be computed as follows. For each controllable event σ ∈ (Σ − Σu) of the type:

x := F (x) if C(x) : σ,

the predicate on which the event σ is disable by S is computed as

C(x) ∧ R(x) ∧ wlpσ(¬R(x)).

This is the weakest predicate stronger than R, where σ is enabled (C(x) holds), and from
which a state in X¬R (states where R does not hold) is reachable by a single execution of σ.
First consider the event st rd; then S disables st rd on the predicate:
true ∧ [(nw = 0) ∨ (nw = 1 ∧ nr = 0)] ∧ [wlpst rd([nw > 1] ∨ [nw = 1 ∧ nr > 0])]
= [(nw = 0) ∨ (nw = 1 ∧ nr = 0)] ∧ [(nw > 1) ∨ (nw = 1 ∧ nr + 1 > 0)]
= [(nw = 0) ∨ (nw = 1 ∧ nr = 0)] ∧ (nw ≥ 1)
= (nw = 1 ∧ nr = 0).
Thus S disables st rd on [nw = 1 ∧ nr = 0].

The predicate where S disables the other controllable event st wt can be computed as:
true ∧ [(nw = 0) ∨ (nw = 1 ∧ nr = 0)] ∧ [wlpst wr((nw > 1) ∨ (nw = 1 ∧ nr > 0))]
= [(nw = 0) ∨ (nw = 1 ∧ nr = 0)] ∧ [(nw + 1 > 1) ∨ (nw + 1 = 1 ∧ nr > 0)]
= [(nw = 0) ∨ (nw = 1 ∧ nr = 0)] ∧ [(nw > 0) ∨ (nw = 0 ∧ nr > 0)]

14

= [nw = 0∧nw > 0]∨ [nw = 0∧ (nw = 0∧nr > 0)]∨ [(nw = 1∧nr = 0)∧nw > 0]∨ [(nw =
1 ∧ nr = 0) ∧ (nw = 0 ∧ nr > 0)]
= false ∨ (nw = 0 ∧ nr > 0) ∨ (nw = 1 ∧ nr = 0) ∨ (nw = 1 ∧ nr = 0)
= (nw = 0 ∧ nr > 0) ∨ (nw = 1 ∧ nr = 0).
Thus S disables st wt in (nw = 0 ∧ nr > 0) ∨ (nw = 1 ∧ nr = 0).

Thus it is clear that at states where (nw = 1∧nr = 0) holds both the controllable events
are disabled by S, and at states where (nw = 0 ∧ nr > 0) holds only st wr is disabled.
Thus S : X → 2Σ is given by: (x is used to denote an arbitrary element of X = N , i.e.
x = (nr, nw)):

S(x)
def
=

Σ(x) − {st wt, st rd} if (nw = 1 ∧ nr = 0)
Σ(x) − {st wt} if (nw = 0 ∧ nr > 0)
Σ(x) otherwise

where Σ(x) = {σ ∈ Σ | δ(x, σ) is defined}.

Remark 4.7 This example illustrates that techniques based on predicates and predicate
transformers can be used for solving the supervisory control problem in an infinite state
space setting. The computational complexity of computing the supervisor is linear in the
number of variables used and the number of conditional assignment statements in the pro-
gram description of the plant, and does not depend on the actual number of states and
transitions in the system which may be very large, possibly infinite.

Another advantage of using the theory based on predicate transformers is that it provides
an automated technique for synthesizing supervisors as illustrated by the above example.

4.1 Minimally Restrictive Supervisors for Predicate Control

It follows from Theorem 4.5 that if the required predicate R is controllable, i.e. satisfies
the Σu-invariance and the reachability constraint R � (sp |R)⋆(I), then the following control
law can be used for solving the SPCP: for each x ∈ XR, σ ∈ S(x) ⇔ δ(x, σ) ∈ XR. In this
subsection, we address the problem of supervisory synthesis when the required predicate R
is not controllable. This problem was not addressed in [19]. If the required predicate R
is not controllable, then a supervisor cannot be constructed which solves the SPCP. In the
next Theorem we prove that in such a situation, the minimally restrictive supervisor can be
constructed.

Theorem 4.8 The weakest controllable predicate stronger than a given predicate exists
(and is unique).

Proof: Let R ∈ P be the required predicate. Assume that R is not controllable; then at
least one of the following two conditions is not satisfied:

1. spu(R) � R

2. R � (sp |R)⋆(I)

We show that the weakest solution to the following set of equations exists:

15

E-1. Q : spu(Q) � Q

E-2. Q : Q � (sp |Q)⋆(I)

E-3. Q : Q � R

Equations E-1 and E-2 correspond to conditions 1 and 2 respectively. Equation E-3 requires
that the weakest solution be stronger than R. Consider the first equation; since spu is
disjunctive and Q as an identity function is monotone, it follows from Theorem 3.8 that the
weakest solution of it exists. Similarly consider the second equation; since Q as an identity
function is disjunctive and (sp |Q)⋆(I) as a function of Q is monotone, it follows that the
second equation also has a weakest solution. Also, since R as a constant function is monotone
and Q as an identity function is disjunctive, the third equation possess a weakest solution as
well. Since the weakest solutions of all the equations E-1 through E-3 exist, it follows that
the weakest solution of the above set of equation exists and by its definition it is unique.
More formally, let Λ be an indexing set such that for each λ ∈ Λ, Qλ satisfies the above set
of equations. Then as explained above

∨

λ∈Λ Qλ satisfies all the equations E-1 through E-3
individually. Thus

∨

λ∈Λ Qλ is the weakest solution of the above set of equations. 2

We will use R↑ � R to denote the weakest solution of the above set of equations, then
R↑ denotes the weakest controllable predicate stronger than R. If R↑ also satisfies A-1, i.e. if
I � R↑, then since R↑ is controllable, it follows from Theorem 4.5 that there exists a static
control law S such that sp⋆

S(I) = R↑. A supervisor exercising such a control law is called
the minimally restrictive supervisor. However, R↑ may not satisfy A-1, i.e. it is possible that
I 6� R↑, in which case the minimally restrictive supervisor does not exist.

4.2 Computation of R↑

In Theorem 4.8 we proved the existence of the weakest controllable predicate R↑, which
is the weakest solution of equations E-1, E-2 and E-3, stronger than R. Now we present a
method for computing it. We proceed by first proving a few lemmas.

First we note that the weakest solution of E-2 stronger than any predicate P ∈ P exists.
This follows easily from 1 and 2 below:

1. E-2 has a weakest solution (follows from Theorem 4.8), and

2. Equation Q : Q � P has a weakest solution, for Q as an identity predicate transformer
is monotone and P as a constant predicate transformer is disjunctive.

Lemma 4.9 If P ∈ P is a solution of E-1 and E-3 and P ′ is the weakest solution of E-2
stronger than P , then P ′ is also a solution of E-1 and E-3.

Proof: We first show that P ′ is a solution of E-3.
1. P ′ � P ;by assumption
2. P � R ;P is a solution of E-3
3. P ′ � R ;from 1 and 2
4. P ′ is a solution of E-3 ;from 3

Next we show that P ′ is also a solution of E-1.

16

1. spu(P) � P ;P is a solution of E-1
2. P ′ � P ;by assumption
3. spu(P

′) � spu(P) ;apply spu on 2, spu monotone
4. spu(P

′) � P ;from 1 and 3
5. spu(P

′) ∨ P ′ � P ;from 2 and 4
6. P ′ � (sp |P ′)⋆(I) ;P ′ is a solution of E-2
7. P ′ � (sp |spu(P ′)∨P ′)⋆(I) ;by weakening the RHS of 6
8. spu(P

′) � (sp |spu(P ′)∨P ′)⋆(I) ;from 6 and definition of sp |(·)
9. spu(P

′) ∨ P ′ � (sp |spu(P ′)∨P ′)⋆(I) ;taking disjunct of 7 and 8
10. spu(P

′) ∨ P ′ is a solution of E-2 stronger than P ;from 9 and 5
11. spu(P

′) ∨ P ′ � P ′ ;from 10 and definition of P ′

12. spu(P
′) � P ′ ;simplifying 11

13. P ′ is a solution of E-1 ;from 12
This completes the proof. 2

Thus the weakest solution of E-2 stronger than any solution of E-1 and E-3 is also a
solution of E-1 and E-3 and hence a solution of the all the three equations.

Lemma 4.10 Let P be the weakest solution of E-1 and E-3 and P ′ be the weakest solution
of E-2 stronger than P . Then P ′ is the weakest solution of E-1 through E-3.

Proof: It follows from Lemma 4.9 that P ′ is a solution of E-1 through E-3. We need to
show that it is the weakest solution also, i.e. P ′ = R↑.
1. P ′ � P ;by assumption
2. P ′ � R↑ ;P ′ a solution of E-1, E-2, E-3

and R↑ weakest solution of E-1, E-2, E-3
3. R↑ � P ;R↑ weakest solution of E-1, E-2, E-3

and P weakest solution of E-1, E-3
4. R↑ � P ′ ;R↑ weakest solution of E-1, E-2, E-3 stronger than P (from 3)

and P ′ weakest solution of E-2 stronger than P (from 1)
5. R↑ = P ′ ;from 2 and 4

Thus the proof is completed. 2

It follows from Lemma 4.10 that one way to compute R↑ is by computing the weakest
solution of E-2 stronger than the weakest solution of E-1 and E-3.

Theorem 4.11 The weakest solution of E-1 and E-3 is (wlpu)⋆(R).

Proof: Note that by definition, (wlpu)⋆(R) =
∧

n≥0 wlpu(R). We first show that (wlpu)⋆(R)
is a solution of E-1.
1.

∧

n≥0 wlpu(R) �
∧

n≥1 wlpu(R) ;trivially
2. (wlpu)⋆(R) � wlpu(

∧

n≥0 wlpu(R)) ;rewriting LHS and RHS of 1
3. (wlpu)⋆(R) � wlpu((wlpu)⋆(R)) ;rewriting RHS of 2
4. spu((wlpu)⋆(R)) � (wlpu)⋆(R) ;from 3 and C-3
5. (wlpu)⋆(R) is a solution of E-1 ;from 4

Next we show that (wlpu)⋆(R) is a solution of E-3.
1.

∧

n≥0 wlpu(R) �
∧

n=0 wlpu(R) ;trivially
2. (wlpu)⋆(R) � R ;rewriting LHS and simplifying RHS of 1
3. (wlpu)⋆(R) is a solution of E-3 ;from 2

17

Next we prove that (wlpu)⋆(R) is the weakest solution of E-1 and E-3. Assume P is also a
solution of E-1 and E-3.
1. spu(P) � P ;P is a solution of E-1
2. P � wlpu(P) ;from 1 and C-3
3. P � (wlpu)⋆(P) ;from 2 and Lemma 3.5
4. P � R ;P is a solution of E-3
5. (wlpu)⋆(P) � (wlpu)⋆(R) ;apply (wlpu)⋆ on 4, (wlpu)⋆ monotone
6. P � (wlpu)⋆(R) ;from 3 and 5
7. (wlpu)⋆(R) is the weakest solution ;from 6

This completes the proof of Theorem 4.11. 2

Thus it follows from Theorem 4.11 that the weakest Σu-invariant predicate stronger than
R (i.e. the weakest solution of E-1 and E-3) is given by (wlpu)⋆(R). Finally we have the
following Theorem for computing R↑. This is one of the main results of this paper.

Theorem 4.12 R↑ = (sp |(wlpu)⋆(R))
⋆(I).

Proof: Let Q
def
= (sp |(wlpu)⋆(R))

⋆(I). In view of Lemma 4.10 it suffices to show that Q is
the weakest solution of E-2 stronger than the weakest solution of E-1 and E-3. Since the
weakest solution of E-1 and E-3 is (wlpu)⋆(R) (Theorem 4.11), we need to show that Q is
the weakest solution of E-2 stronger than (wlpu)⋆(R), i.e. satisfies Q � (wlpu)⋆(R). First we
show that Q is a solution of E-2 and Q � (wlpu)⋆(R).
1. (sp |(wlpu)⋆(R))

⋆(I) � (wlpu)⋆(R) ;by definition of restriction
2. Q � (wlpu)⋆(R) ;from 1 and definition of Q
3. Q = (sp |Q)⋆(I) ;from Lemma 4.3
4. Q � (sp |Q)⋆(I) ;from 3
5. Q is a solution of E-2 ;from 4

Next we show that Q is the weakest solution of E-2 stronger than (wlpu)⋆(R). Let P be
another solution of E-2 stronger than (wlpu)⋆(R). Since we have already shown above that
Q is stronger than (wlpu)⋆(R), it suffices to show that P � Q.
1. P � (wlpu)⋆(R) ;by assumption (P stronger than (wlpu)⋆(R))
2. P � (sp |P)⋆(I) ;by assumption (P solution of E-2)
3. P � (sp |(wlpu)⋆(R))

⋆(I) ;by weakening RHS of 2 using 1
4. P � Q ;from 3 and definition of Q

Hence the proof is completed. 2

Remark 4.13 The set of states XR↑ corresponding to the weakest controllable predicate
stronger than R can be easily computed in two steps:

1. Compute Ru
def
= (wlpu)⋆(R)

2. Compute (sp |Ru
)⋆(I)

The first step corresponds to the computation of the supremal Σu-invariant subset of XR.
This we denote by XRu

. The second step consists of computing the set of states reachable
from the initial state set XI in the state space restricted to XRu

. If G is represented as a
finite state machine, then the set XRu

as well as the states reachable from XI in the state
space restricted to XRu

can be computed (in the worst case) in time linear in the number of

18

transitions present in G (refer to [11, 15] for more elaborate discussions on computationally
optimal algorithmic techniques for similar computations). If G has infinite states, then
the computation of R↑ based on the state machine approach as described above will not
terminate, as it involves the computation of the “⋆” operator - disjunctive and conjunctive
closure. However, computation based on predicates and predicate transformers can be used
to automatically construct the minimally restrictive supervisor in an infinite state space
setting using efficient techniques such as those reported in [7]. Further research on this issue
is currently under investigation.

Example 4.14 Consider the following refinement of the Readers-Writers program of Exam-
ple 2.10. We use variables ar, aw to denote the number of active readers, writers, respectively,
and the variables wr,ww to denote the number of waiting readers, writers, respectively.
The event set consists of: Σ = {st rd, st wt, end rd, end wt, req rd, req wt, ovflo}. Infor-
mally described, readers and writers are first buffered in separate queues of finite capacity,
and whenever req rd or req wt occurs, the size of the corresponding queue increases. The
number of active readers/writers is increased (decreased) according to the occurrence of
st rd/st wt(end rd/end wt). If the number of waiting readers is more than a positive num-
ber B, then the number of active readers increases by one whenever the event ovflo occurs.
Formally,
Program Rd Wr 1
declare wr,ww, ar, aw : integer

st rd, st wt, ovflo,
end rd, end wt,
req rd, req wt : event

initially wr,ww, ar, aw = 0,0,0,0
assign wr, ar := wr + 1, ar : req rd

wr − 1, ar + 1 if wr > 0 : st rd
wr, ar + 1 if wr ≥ B : ovflo
wr, ar − 1 if ar > 0 : end rd

ww, aw := ww + 1, aw : req wt
ww − 1, aw + 1 if ww > 0 : st wt
ww, aw − 1 if aw > 0 : end wt

end {Rd Wr 1}
Let the uncontrollable event set be given by Σu = {ovflo}. As in Example 4.6, the mu-

tual exclusion constraint for the above program is given as the required predicate R = (aw =
0) ∨ (aw = 1 ∧ ar = 0). It can be readily verified that R is not a controllable predicate, for
spu(R) 6� R. In order to show that R is not controllable consider the uncontrollable event
ovflo. Note that F (ar) = ar + 1 and C(wr) = (wr ≥ B) for the event ovflo. Then
spovflo(R(ar, aw))
= (aw = 0 ∨ (aw = 1 ∧ ar − 1 = 0)) ∧ (wr ≥ B)
= (aw = 0 ∨ (aw = 1 ∧ ar = 1)) ∧ (wr ≥ B)
6� R.

In order to compute R↑, we first compute (wlpovflo)⋆(R) =
∧

n≥0(wlpovflo)
n(R). We need

to compute (wlpovflo)
n(R) for each n ∈ N . First we compute wlpovflo(R):

wlpovflo(R)

19

= wlp
ar:=ar+1 if wr≥B

((aw = 0) ∨ (aw = 1 ∧ ar = 0))

= [((aw = 0) ∨ (aw = 1 ∧ ar + 1 = 0)) ∧ (wr ≥ B)] ∨ [wr < B]
= [(aw = 0) ∧ (wr ≥ B)] ∨ [wr < B]
= [(aw = 0) ∨ (wr < B)] ∧ [(wr ≥ B) ∨ (wr < B)]
= [(aw = 0) ∨ (wr < B)]

Similarly we compute (wlpovflo)
2(R):

(wlpovflo)
2(R)

= wlpovflo(aw = 0 ∨ wr < B)
= [(aw = 0 ∨ wr < B) ∧ (wr ≥ B)] ∨ [wr < B]
= (aw = 0 ∨ wr < B)
= wlpovflo(R)

Hence (wlpovflo)
n(R) = wlpovflo(R) for each n ≥ 1. Thus

(wlpovflo)⋆(R)
= R ∧ wlpovflo(R)
= [(aw = 0) ∨ (aw = 1 ∧ ar = 0)] ∧ [(aw = 0) ∨ (wr < B)]
= [(aw = 0) ∧ (aw = 0)] ∨ [(aw = 0) ∧ (wr < B)] ∨ [(aw = 1 ∧ ar = 0) ∧ (aw = 0)] ∨ [(aw =
1 ∧ ar = 0) ∧ (wr < B)]
= (aw = 0) ∨ (aw = 0 ∧ wr < B) ∨ false ∨ (aw = 1 ∧ ar = 0 ∧ wr < B)
= (aw = 0) ∨ (aw = 1 ∧ ar = 0 ∧ wr < B)

Thus Ru
def
= (wlpu)⋆(R) = (aw = 0) ∨ (aw = 1 ∧ ar = 0 ∧ wr < B). In order to compute

R↑, we need to compute (sp |Ru
)⋆(I). This can be easily shown to equal Ru. Thus

R↑ = (aw = 0) ∨ (aw = 1 ∧ ar = 0 ∧ wr < B).

Using the technique described in Example 4.6, the predicate on which the minimally restric-
tive supervisor disables a given controllable event can be computed. Essentially, if σ ∈ Σ−Σu

is a controllable event of the type:

x := F (x) if C(x) : σ,

then σ is disabled by S in the predicate C(x) ∧ R↑(x) ∧ wlpσ(¬R↑(x)) = C(x) ∧ R↑(x) ∧
¬R↑(F (x)). The following minimally restrictive control S : X → 2Σ can be used for achieving
the mutual exclusion constraint (we use x to denote an arbitrary element of X = N :

S(x)
def
=

Σ(x) − {st wt, st rd, req rd} if (aw = 1 ∧ ar = 0 ∧ wr = B − 1)
Σ(x) − {st wt, st rd} if (aw = 1 ∧ ar = 0 ∧ wr < B − 1)
Σ(x) − {st wt} if (aw = 0 ∧ ar > 0)
Σ(x) otherwise

5 Observability of Predicates

So far we have considered the supervisory predicate control problem assuming that com-
plete information about the system states is available. Next we generalize the theory of
supervisory predicate control developed above to the case where the system states are not
necessarily completely observed. In order to formulate the problem of supervisory predicate
control under partial state observation, consider a mask M , which is a map from the system

20

state space X to the observation space Y , i.e. M : X → Y . Note that the mask M is
not necessarily injective, and it is possible that two different states may yield an identical
observation under the mask M .

The supervisory predicate control problem under partial observation was first studied
in [19]. However, the conditions of observability of a predicate were obtained under very
restrictive assumptions on the mask M . It was assumed in [19] that given any pair of states
x1, x2 ∈ X and any event σ ∈ Σ such that δ(x1, σ), δ(x2, σ) are both defined, the mask M
is such that M(x1) = M(x2) ⇔ M(δ(x1, σ)) = M(δ(x2, σ)). Note that this assumption may
be violated even when the mask M equals the identity function, which corresponds to the
case of complete observation. Thus the observability theory developed in [19] is applicable
only to a very small class of systems. We extend the condition of observability of predicates
without assuming any restriction on the mask M .

Supervisory Predicate Control and Observation Problem (SPCOP): Consider the

plant G
def
= (PX , Σ, sp, I) and the observation mask M : X → Y . Let R ∈ PX denote the

required predicate. The control task is to obtain a dynamic control law D : Y ⋆× (2Σ)⋆ → 2Σ

such that (spD)⋆(I) = R.

The notation Y ⋆, (2Σ)⋆ is used to denote the set of finite sequences of observations in Y ,
the set of finite sequences of control actions, respectively. The supervisor uses all the in-
formation available corresponding to the entire past to determine the current control action
(the set of events to be enabled). Thus the supervisor is dynamic. The supervisor consid-
ered for the SPCOP in [19] is static (current control actions are determined by the current
observation only) and can be obtained as a special case of the supervisor considered in this
section.

We propose the following algorithm for dynamically estimating the current state of the
system using the information available from the entire past. The notation yk ∈ Y for each
k ∈ N is used to denote the observation at the kth step.

Algorithm 5.1

Initiation step: P0 = trueX

Recursion step: Pk+1 = sp(Pk) ∧ M−1(yk+1); k ≥ 0

where M−1(yk+1) corresponds to the predicate which holds in those states which have the
same mask value yk+1, and Pk for each k ≥ 0 denotes the predicate corresponding to the
state estimate at the kth step.

Thus initially when no observation is made the set of states corresponding to the initial
state estimate equals the entire state space; hence P0 is set equal to trueX . The set of states
corresponding to the state estimate at the (k + 1)th step, where the predicate Pk+1 holds,
equals the set of states that correspond to the observation yk+1 and are reachable from a
state where Pk holds. Algorithm 5.1 can be used to define the following dynamic observer
for the system G.

Definition 5.2 Consider the plant G
def
= (PX , Σ, sp, I) and the mask M : X → Y . The

dynamic observer for estimating the current state of G is a DEDS O
def
= (PX , Y, spO, trueX),

21

where PX corresponds to the state set of the observer O; Y corresponds to the event set
of O; trueX corresponds to the initial condition of O; and spO, the strongest postcondition
predicate transformer of O, is defined to be (spO)y(P) = sp(P) ∧ M−1(y) for each P ∈ PX

and y ∈ Y .

A similar definition of dynamic observer is presented in [3], which uses the past sequence
of observations as well as the past sequence of control inputs for estimating the current state.

5.1 Static and Dynamic Control Laws

An algorithm similar to Algorithm 5.1 can be used to simultaneously observe the evolution
of the plant and control its behavior. Since the goal of the SPCOP is to obtain a dynamic
control law D : Y ⋆ × (2Σ)⋆ → 2Σ such that the required predicate R remains invariant under
the evolution of the controlled system, we assume that the system never starts in a state
where R does not hold. This is stated as assumption A-1 in the previous section. Keeping
assumption A-1 in mind, a dynamic control law D◦ is obtained in the manner described
below. The notations yk, P

D◦

k are used to denote the observation at the kth step, and the
predicate corresponding to the state estimate at the kth step under the control law D◦

respectively. The control action at the kth step, k ≥ 1, depends on the observation sequence
up to the kth step and the control sequence up to the (k − 1)th step; using this available
information at the kth step, first the predicate PD◦

k corresponding to the state estimate at
the kth step is obtained and then an identical control action is defined for each of the states
in the set XP D◦

k

. Thus a dynamic controller D◦ : Y ⋆×(2Σ)⋆ → 2Σ can equivalently be viewed

as a map D◦ : PX → Σ.

Algorithm 5.3

Initiation step: PD◦

1 = M−1(y1) ∧ I
σ ∈ D◦(PD◦

1) ⇔ spσ(PD◦

1) � R

Recursion step: PD◦

k+1 = spS(PD◦

k) ∧ M−1(yk+1)
σ ∈ D◦(PD◦

k+1) ⇔ spσ(PD◦

k+1) � R; k ≥ 1

where σ ∈ D◦(P) for any σ ∈ Σ and P ∈ P means that σ is enabled by the control law D◦

in every state in the set XP .

Since the system is assumed to start in I � R (Assumption A-1), the initial state estimate
after the first observation y1 ∈ Y is given by the predicate M−1(y1) ∧ I. For every state
x ∈ XP D◦

1
, a transition σ ∈ Σ is enabled by the control law if and only if the states reached

by executing σ in XP D◦

1
are all contained in XR. The predicate PD◦

k+1 corresponding to the

state estimate at the (k +1)th step is obtained by determining the states that correspond to
the (k+1)th observation yk+1, and that are reachable in G under the control law D◦ from the
states where PD◦

k holds. Since all the states in the set XP D◦

k+1

(at step (k + 1)) correspond to

the same past observation and control sequence up to step (k+1), the same control action is
applied at all of them; and the controller enables an event σ ∈ Σ at all the states x ∈ XP D◦

k+1

if and only if the states reached by executing σ in the states XP D◦

k+1

are all contained in XR.

22

Remark 5.4 It is clear that if the mask M is the identity map (or is injective), then the
dynamic control law D◦ defined in Algorithm 5.3 is the same as the static control law S
defined in section 4. In other words, if complete state observation is possible, then static
and dynamic control laws are identical. This, as we will see, is not the case when incomplete
state observations are made.

Lemma 5.5 Consider the plant G and the mask M . Let G be controlled by the dynamic
control law D◦ described in Algorithm 5.3. Then

∨

{yk}∈Y ∗

∨

k≥1 PD◦

k � R.

Proof: It suffices to show that for any yk ∈ Y ∗,
∨

k≥1 PD◦

k � R. The controller D◦ is defined
recursively in Algorithm 5.3. We use induction on k for obtaining the desired result.
1. I � R ;Assumption A-1
2. PD◦

1 � I ;initiation step of Algorithm 5.3
3. PD◦

1 � R ;from 1 and 2 (base case)
4. PD◦

k � R ;induction hypothesis
5. PD◦

k+1 � R ;recursion step of Algorithm 5.3 and 3
6. ∀k ≥ 1, PD◦

k � R ;from 3, 4, 5 and induction
7.

∨

k≥1 PD◦

k � R ;taking disjunct wrt k in 6
This completes the proof. 2

Thus under the dynamic control law described in Algorithm 5.3, the state trajectories
of the system remain confined to the states where R holds. In fact, it follows from Lemma
5.5 that

∨

{yk}∈Y ∗

∨

k≥1 PD◦

k is the weakest predicate stronger than R to which the state
trajectories of the partially observed controlled system G are confined. The property, that
this weakest predicate stronger than R equals R, is termed observability of R.

Definition 5.6 The required predicate R of the partially observed system G under the mask
M is said to be observable if and only if

∨

{yk}∈Y ∗

∨

k≥1 PD◦

k = R, where PD◦

k for each k ≥ 1
is recursively defined in Algorithm 5.3.

Algorithm 5.3 can be specialized to define a static control law S : Y → 2Σ in which the
control action at any step depends only on the observation at that step:

Algorithm 5.7

Initiation step: P S
1 = M−1(y1) ∧ I

σ ∈ S(M−1(y1) ∧ I) ⇔ spσ(M−1(y1) ∧ I) � R

Recursion step: P S
k+1 = spS(P S

k) ∧ M−1(yk+1)
σ ∈ S(M−1(yk+1)) ⇔ spσ(M−1(yk+1)) � R; k ≥ 1

Note that the control law S at each step k ≥ 1 depends only on the kth observation
yk ∈ Y , and an identical control action is applied at each of the states in the set where
M−1(y1) holds (except for the case k = 1, where an identical control is applied at each
of the states in the set where M−1(y1) ∧ I holds). Since by definition, P S

k � M−1(yk),
S(P S

k) = S(M−1(yk)). Thus the term spS(P S
k) in the recursion step is well defined.

23

Remark 5.8 It can be proved, similar to Lemma 5.5, that under the control of the static
controller S defined in Algorithm 5.7, the state trajectories of the system remain confined to
R, i.e.

∨

{yk}∈Y ∗

∨

k≥1 P S
k � R. However, the static control law S is more restrictive than the

dynamic control law D◦, for at every step k ≥ 1, S depends on M−1(yk), whereas D◦ depends
on PD◦

k , and PD◦

k � M−1(yk); as a result,
∨

k≥1 P S
k �

∨

k≥1 PD◦

k . Thus in case of incomplete
state observations, a static control law is of course more restrictive than a dynamic control
law. In fact, the dynamic control law D◦ defined in Algorithm 5.3 is the minimally restrictive
control law, i.e. if D′ : Y ⋆ × (2Σ)⋆ → 2Σ is any other control law, then

∨

k≥1 PD′

k �
∨

k≥1 PD◦

k .

The dynamic control law D◦ defined in Algorithm 5.3 and the static control law defined
in Algorithm 5.7 can both be implemented by controllers of the type:

Definition 5.9 Consider the plant G
def
= (PX , Σ, sp, I) and the mask M : X → Y . The

controller that implements the dynamic control law of Algorithm 5.3 is another DEDS C
def
=

(PX , Y ×Σ, spC , IC), where PX is the state set of the controller C; Y ×2Σ is the event set of
C; IC = M−1(y1)∧I is initial condition of C; and spC , the strongest postcondition predicate
transformer of C, is defined to be (spC)(y,Σ′)(P) = spΣ′(P)∧M−1(y) for each P ∈ PX , y ∈ Y
and Σ′ ⊆ Σ (spΣ′ =

∨

σ∈Σ′ spσ).

Finally, we present a necessary and sufficient condition under which a solution to SPCOP
exists, the proof of which is constructive so that a dynamic control law D that solves SPCOP
is automatically obtained.

Theorem 5.10 Consider the partially observed plant G under the mask M . Let R be the
required predicate. Then a solution to SPCOP exists if and only if R is controllable and
observable.

Proof: Assume first that R is controllable and observable. We will show that there exists
a dynamic control law D such that (spD)⋆(I) = R. Let D = D◦, where D◦ is as defined
in Algorithm 5.3. Since R is Σu-invariant (R is controllable) and Pk � R for each k ≥ 1
(Lemma 5.5), D◦(= D) in Algorithm 5.3 can be rewritten to yield the same dynamic control
law:

∀σ ∈ (Σ − Σu), σ ∈ D◦(Pk) ⇔ spσ(Pk) � R; k ≥ 1

In other words, D◦(= D) never disables any uncontrollable events.
1. (spD◦)⋆(I) =

∨

{yk}∈Y ∗

∨

k≥1 PD◦

k ;by definition of D◦

2.
∨

{yk}∈Y ∗

∨

k≥1 PD◦

k = R ;R is observable
3. (spD◦)⋆(I) = R ;from 1 and 2
4. (spD)⋆(I) = R ;from 3 and D = D◦

Next we show that if there exists a dynamic control law D such that (spD)⋆(I) = R, then R
is controllable and observable.

24

1. (spD)⋆(I) = R ;by assumption
2. (spD)⋆(I) =

∨

{yk}∈Y ∗

∨

k≥1 PD
k ; definition of D

3.
∨

{yk}∈Y ∗

∨

k≥1 PD
k = R ;from 1 and 2

4.
∨

{yk}∈Y ∗

∨

k≥1 PD
k �

∨

{yk}∈Y ∗

∨

k≥1 PD◦

k ;D◦ is minimally restrictive (Remark 5.8)
5. R �

∨

{yk}∈Y ∗

∨

k≥1 PD◦

k ;from 3 and 4
6.

∨

{yk}∈Y ∗

∨

k≥1 PD◦

k � R ;from Lemma 5.5
7.

∨

{yk}∈Y ∗

∨

k≥1 PD◦

k = R ;from 5 and 6
8. R is observable ;from 7
9. (spD)⋆(I) = (spD)⋆(R) ;apply sp⋆

D on 1
10. (spD)⋆(R) = R ;from 1 and 9
11. sp⋆

u(R) � (spD)⋆(R) ;spu is maximally restrictive control
12. sp⋆

u(R) � R ;from 10 and 11
13. spu(R) � R ;using Lemma 3.5
14. (spD |R)⋆(I) = R ;from 1 and Lemma 4.3
15. (spD |R)⋆(I) � (sp |R)⋆(I) ;D restricts behavior
16. R � (sp |R)⋆(I) ;from 14 and 15
17. R is controllable ;from 13 and 16

This completes the proof. 2

Example 5.11 Consider the problem of mutual exclusion discussed in Example 4.6 for the
Readers-Writers program of Example 2.10. Assume that the mask M : X → Y is such that
the number of writers always appears to be the same, namely, zero; however, the number
of readers can be observed completely, i.e. M((nr = p, nw = q)) = (nr = p, nw = 0) for all
(p, q) ∈ N 2. As discussed in Example 4.6, the mutual exclusion constraint is written as the
required predicate R = ((nw = 0) ∨ (nw = 1 ∧ nr = 0)), and it is controllable. However, R
may or may not be observable, depending on the initial condition I.

Case 1: I = ((nr, nw) = (0, 0)) as in Example 2.10. Then R is observable, as in this case
the number of writers is completely determined by observing the occurrences of events
st wt and end wt. Algorithm 5.3 yields the required dynamic supervisor.

Case 2: I = (nr = 0)∧ ((nw = 0)∨ (nw = 1)). In this case the number of writers cannot be
fully determined by the past observations, and R is not observable. Hence a dynamic
supervisor cannot constructed to solve SPCOP. Under the control of the dynamic
supervisor D◦ : Y ⋆ × (2Σ)⋆ → 2Σ as described in Algorithm 5.3, the closed-loop system
can only achieve the predicate (nw = 0), i.e. (spD◦)⋆(I) = (nw = 0) � R.

6 Conclusion

We have presented in this paper a methodology for designing controllers for a wide vari-
ety of systems described in terms of a set of predicates and a set of predicate transformers.
Predicates can concisely represent an infinite state space, hence many of the discrete event
systems including clocks, queues with unbounded buffers etc. can be modeled in this frame-
work. The above theory can also be useful in synthesizing controller programs for programs
describing possibly complex DEDS’s. Thus the framework is quite general.

25

The strongest postcondition transformer has been presented as a fundamental concept for
describing the state space evolution of a DEDS. We have presented the notion of duality of
predicates and shown that sp and wlp are duals of each other. Many of the basic properties
of a predicate transformer have been highlighted, and the relation of these properties to
the existence of extremal solutions of some predicate equations has been pointed out. We
have shown how these properties and extremal solutions of boolean equations can be applied
for supervisory synthesis purposes. The notion of controllability of a required predicate
describing the set of legal states has been defined, and it has been shown that controllability
is a necessary and sufficient condition for the existence of a supervisor that guarantees the
invariance of the required predicate under system evolution. The supervisory predicate
control problem has been presented and solved using the notion of controllability. It has
further been shown that the weakest controllable predicate stronger than the given predicate
exists, and hence the construction of minimally restrictive supervisors is possible in case the
required predicate is not controllable. We have presented a method for computing the
weakest controllable predicate; this is one of the main results in this paper.

We also address the problem of designing supervisors for a partially observed plant. We
introduce the notion of observability which, together with controllability, is a necessary and
sufficient condition for the existence of a supervisor that solves the supervisory predicate
control and observation problem introduced in this paper.

A Proof of Theorem

Proof: We prove Theorem 3.10 by way of cyclic implication. First we show that C-1 ⇒
C-2. Note that since f is disjunctive, the weakest solution in C-1 exists.
1. f(g(P)) � P ;from C-1
2. conjunct 1 of C-2 holds ;from 1
3. P is a solution of Q : f(Q) � f(P) ;f(P) � f(P)
4. g(f(P)) is weakest solution of Q : f(Q) � f(P) ;from C-1
5. P � g(f(P)) ;from 3 and 4
6. conjunct 2 of C-2 holds ;from 5

Next we show that C-2 ⇒ C-3. This we show by showing that under C-2 the LHS of C-3
implies RHS of C-3 and vice versa.
1. f(P) � Q ;assume LHS of C-3
2. g(f(P)) � g(Q) ;apply g on 1, g is monotone (Lemma 3.3)
3. P � g(f(P)) ;conjunct 2 of C-2
4. P � g(Q) ;from 2 and 3
5. RHS of C-3 holds ;from 4
6. P � g(Q) ;assume RHS of C-3
7. f(P) � f(g(Q)) ;apply f on 6, f monotone (Lemma 3.3)
8. f(g(Q)) � Q ;conjunct 1 of C-2 with P replaced by Q
9. f(P) � Q ;from 7 and 8
10. LHS of C-3 holds ;from 9

Next we show that C-3 ⇒ C-4. Since g is conjunctive and P , treated as a constant predicate
transformer, is monotone, it follows from Theorem 3.8 that the strongest solution in C-4

26

exists.
1. f(P) � f(P) ⇔ P � g(f(P)) ;replace Q by f(P) in C-3
2. true ⇔ P � g(f(P)) ;from 1
3. f(P) a solution in C-4 ;from 2
4. P � g(Q) ⇔ f(P) � Q ;rewriting C-3
5. f(P) strongest solution in C-4 ;from 5

Next we show that C-4 ⇒ C-1.
1. P � g(Q) ⇔ f(P) � Q ;f(P) is the strongest solution in C-4
2. g(P) � g(P) ⇔ f(g(P)) � P ;replace P,Q by g(P), P respectively in 1
3. true ⇔ f(g(P)) � P ;simplifying 2
4. f(P) a solution in C-1 ;from 3
5. f(P) � Q ⇔ P � g(Q) ;rewritting 1
6. f(Q) � P ⇔ Q � g(P) ;replace P,Q by Q,P respectively in 5
7. g(P) weakest solution in C-1 ;from 6

This completes the proof of Theorem 3.10. 2

B Acknowledgement

Authors would like to thank Shigemasa Takai, Department of Electronics Engineering,
Osaka University, Japan for pointing out an omission in the definition of observability.

References

[1] A. Arnold and M. Nivat. Controlling behaviors of systems: Some basic concepts and
some applications. In MFSC 1980 (Lecture Notes in Computer Science, 88), pages
113–122. Springer-Verlag, New York, 1980.

[2] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham.
Formulas for calculating supremal controllable and normal sublanguages. Systems and
Control Letters, 15(8):111–117, 1990.

[3] P. E. Caines, R. Greiner, and S. Wang. Dynamical logic observers for finite automaton.
In Proceedings of the 1988 Conference on Decision and Control, pages 226–233, Austin,
Texas, December 1988.

[4] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
Reading, MA, 1988.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., Englewood Cliffs,
NJ, 1976.

[6] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Springer-
Verlag, New York, 1990.

[7] V. K. Garg and R. Kumar. State-variable approach for controlling discrete event systems
with infinite states. In Proceedings of 1992 American Control Conference, pages 2809–
2813, Chicago, IL, July 1992.

27

[8] D. Gries. The Science Of Programming. Springer-Verlag, New York, NY, 1985.

[9] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Inc., Englewood
Cliffs, NJ, 1985.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA, 1979.

[11] R. Kumar, V. K. Garg, and S. I. Marcus. On controllability and normality of discrete
event dynamical systems. Systems and Control Letters, 17(3):157–168, 1991.

[12] R. Kumar, V. K. Garg, and S. I. Marcus. On ω-controllability and ω-normality of deds.
In Proceedings of 1991 ACC, pages 2905–2910, Boston, MA, June 1991.

[13] R. Kumar, V. K. Garg, and S. I. Marcus. Stability of discrete event system behavior. In
Proceedings of 1991 IFAC Symposium on Distributed Intelligent Systems, pages 13–18,
August 1991.

[14] R. Kumar, V. K. Garg, and S. I. Marcus. Using predicate transformers for supervisory
control. In Proceedings of 1991 IEEE Conference on Decision and Control, pages 98–
103, Brighton, UK, December 1991.

[15] R. Kumar, V. K. Garg, and S. I. Marcus. On supervisory control of sequential behaviors.
IEEE Transactions on Automatic Control, 37(12):1978–1985, December 1992.

[16] R. Kumar, V. K. Garg, and S. I. Marcus. Language stability and stabilizability of dis-
crete event dynamical systems. SIAM Journal of Control and Optimization, 31(5):1294–
1320, September 1993.

[17] R. Kumar and L. E. Holloway. Supervisory control of Petri net languages. In Proceed-
ings of 1992 IEEE Conference on Decision and Control, pages 1190–1195, Tucson, AZ,
December 1992.

[18] S. Lam and A. U. Shankar. Refinement and projection of relational specifications. In
Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness, New
York, NY, May 1989. REX Workshop, Springer-Verlag.

[19] Y. Li and W. M. Wonham. Controllability and observability in the state feedback control
of discrete event systems. In Proceedings of the 27th CDC, pages 203–208, Austin, Texas,
December 1988.

[20] F. Lin and W. M. Wonham. On observability of discrete-event systems. Information
Sciences, 44(3):173–198, 1988.

[21] P. J. Ramadge. Observability of discrete event systems. In Proceedings of 1986 IEEE
Conference on Decision and Control, pages 1108–1112, Athens, Greece, December 1986.

[22] P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete event systems.
SIAM Journal of Control and Optimization, 25(5):1202–1218, 1987.

28

[23] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

[24] P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings
of IEEE: Special Issue on Discrete Event Systems, 77:81–98, 1989.

[25] R. Smedinga. Using trace theory to model discrete events. In P. Varaiya and A. B.
Kurzhanski, editors, Discrete Event Systems: Models and Applications, pages 81–99.
Springer-Verlag, 1987.

[26] R. S. Sreenivas and B. H. Krogh. On Petri net models of infinite state supervisors.
IEEE Transactions of Automatic Control, 37(2):274–277, February 1992.

29

