
Predictability and Consistency in Real-time Transaction Processing

Distribution of this item is restricted to members of the University of Virginia community.

APA Citation: Kim, Y.(1995). Predictability and Consistency in Real-time Transaction Processing.
Retrieved from http://libra.virginia.edu/catalog/libra-oa:299

Accessed: July 22, 2015

Permanent URL: http://libra.virginia.edu/catalog/libra-oa:299

Keywords:

Terms: This article was downloaded from the University of Virginia’s Libra institutional
repository, and is made available under the terms and conditions applicable as set forth
at http://libra.virginia.edu/terms

(Article begins on next page)

PREDICTABILITY AND CONSISTENCY

IN

REAL-TIME TRANSACTION PROCESSING

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Ful�llment

of the Requirements for the Degree

Doctor of Philosophy

in

Computer Science

by

Young-Kuk Kim

May 1995

Dedicated with love and appreciation to my parents

iii

Acknowledgments

I would like to thank everyone who has, in some way, contributed to this work. I would not

have completed it without their support, guidance and encouragement.

First and foremost, I must thank Professor Sang H. Son, my advisor, for his patience

and invaluable help in the development and completion of this thesis. The members of my

examining committee, Alf Weaver, William Wulf, J�org Liebeherr and K. Preston White,

provided many insightful comments and devoted much time to ensure that this work mea-

sures up to the standards of the University of Virginia and the scienti�c community.

I would like to thank many of my fellow graduate students. Juhnyoung Lee, Ying-feng

Oh, Bert Dempsey and Tim Strayer were always available for discussions and reviews of my

work. I also thank the former and current members of the Real-Time Database Systems

Lab, Marc Poris, Carmen Iannacone, David George, Matt Lehr, Anthony Williams and

Stuart Shih. It has been my great pleasure to work with them. It has been a great privilege

for me to have such wonderful o�cemates as Sally McKee, Erik Cota-Robles, Chris Oliver,

Rob Hines and Gabriel Ferrer, to name a few. They were there to provide amusement and

relief whenever needed and were always happy to answer my questions on English usage

during my thesis preparation.

I also would like to thank every sta� member and secretary at the Department of

Computer Science for their invaluable support. In particular, Mark Smith, Gina Bull, Ray

Lubinsky, Ann Bailey, Ginny Hilton and Brenda Lynch deserve my sincere thanks.

Finally, I wish to thank my family for all their love and encouragement. My wife So-

hwa always has been a constant source of encouragement and understanding during many

trying days of this research. I am also grateful to my parents in Korea. Their steadfast en-

couragement was perhaps the single most inuential factor in my education since childhood.

It is to them that this dissertation is dedicated.

iv

Abstract

A real-time database system (RTDBS) can be de�ned as a database system where trans-

actions are associated with real-time constraints typically in the form of deadlines. The

system must process transactions so as to both meet the deadlines and maintain the data

consistency. Previous research e�ort in this �eld has been focused on scheduling transac-

tions with soft or �rm deadlines under the conventional transaction model and database

system architecture which cannot support predictable real-time transaction processing.

In this thesis, we provide a framework to realize predictable real-time transaction pro-

cessing, satisfying both timing and consistency constraints of a real-time database system.

First, we classify data objects and transactions found in typical real-time database appli-

cations, considering their distinct characteristics and requirements. Each type of real-time

data objects has its own correctness criteria, di�erent from the conventional one. Real-time

transactions are categorized, according to their timing constraints, arrival patterns, data

access patterns, availability of data and run-time requirements, and accessed data type.

Our model is a superset of conventional models; it includes both hard and soft real-time

transactions, and supports the temporal consistency as well as the logical consistency of the

database.

Second, we develop an integrated transaction processing scheme that extends a �xed-

priority-based task scheduling framework for mixed task sets into a transaction processing

environment, combining it with best-e�ort real-time transaction scheduling algorithms. This

scheme provides predictability for a RTDBS in the sense that under our transaction pro-

cessing scheme it is guaranteed that every application in the system will achieve its own

performance goals. Along with the transaction processing scheme, a temporal consistency

enforcement scheme called Static Temporal Consistency Enforcement (STCE) is introduced.

v

In the scheme, the temporal consistency requirements of database are transformed into tim-

ing constraints of transactions. Thus, as long as the timing constraints of transactions are

satis�ed in the system, the temporal consistency requirements are automatically achieved.

Third, in order to synchronize the transactions' concurrent accesses to the data objects

and maintain the logical consistency of the database, we provide a concurrency control and

conict resolution scheme called Semantic-based Optimistic Concurrency Control (SOCC)

for our RTDBS model. It is semantic-based in that it can utilize the available semantic

information about di�erent classes of transactions to make more e�cient control decisions,

consequently increasing the concurrency level of the system. In SOCC, however, serializable

schedules are not always achieved for every class of transactions, since meeting their timing

constraints is sometimes more important than maintaining logical consistency of some types

of data objects in RTDBS.

Our system allows application developers to specify multiple guarantee levels for dif-

ferent applications. We perform a simulation study to measure the cost of these guarantees

realized in our integrated transaction processing scheme. The results show that the higher

level of guarantee requires more system resources and therefore causes more non-guaranteed

transactions to miss their deadlines.

Our RTDBS model relies on a deterministic subsystem environment. We propose

a deterministic computing structure for the model, consisting of a real-time transaction

server, a memory-resident data object manager, and a real-time microkernel. The proposed

architecture can eliminate sources of unpredictable behavior in the system related to dy-

namic I/O, such as bu�er management, dynamic paging, and disk scheduling. We develop a

real-time database system testbed called StarBase, which is currently supporting only �rm

real-time transactions. The practical issues involved in implementing our RTDBS model

and the integrated transaction scheduling scheme on the StarBase platform are discussed.

Finally, we give some thoughts on query processing and recovery mechanisms in the

context of memory-resident RTDBS.

vi

Contents

Acknowledgments iv

Abstract v

1 Introduction 1

1.1 Characteristics of Real-Time Database Systems : : : : : : : : : : : : : : : : 3

1.1.1 Real-Time Data : 4

1.1.2 Real-Time Transactions : 4

1.1.3 Real-Time Database Applications : 7

1.2 Requirements of Real-Time Database Systems : : : : : : : : : : : : : : : : : 8

1.2.1 Predictability and Timeliness : 8

1.2.2 Correctness Criteria : 9

1.2.3 Operating System and Architectural Support : : : : : : : : : : : : : 10

1.3 Research Objective and Approach : 10

1.4 Contributions of the Thesis : 14

1.5 Organization of the Thesis : 16

2 Background and Related Work 18

2.1 Real-Time Task Scheduling : 18

2.2 Real-Time Transaction Scheduling : 23

2.3 Temporal Consistency : 27

2.4 Memory Resident Database Systems : 28

2.5 Operating System Support for Database Management : : : : : : : : : : : : 29

vii

3 Real-Time Database System Model 32

3.1 Real-Time Data Object Model : 32

3.2 Real-Time Transaction Model : 34

4 Predictable Transaction Processing 41

4.1 Maintaining Temporal Consistency : 41

4.2 Integrated Transaction Scheduling : 48

4.2.1 Guaranteed Scheduling : 49

4.2.2 Non-Guaranteed Scheduling : 54

4.3 Semantic Concurrency Control and Conict Resolution : : : : : : : : : : : : 56

5 Cost and Performance Evaluation 62

5.1 Simulation Model : 62

5.1.1 Workload Characteristics and Generation : : : : : : : : : : : : : : : 63

5.1.2 Simulation Parameters : 65

5.1.3 Performance Metrics : 67

5.2 Experiments and Results : 68

5.2.1 No Class I and II, but all Class III transactions : : : : : : : : : : : : 69

5.2.2 Cost of Timing Constraint Guarantee : : : : : : : : : : : : : : : : : 70

5.2.3 Cost of Temporal Consistency Guarantee : : : : : : : : : : : : : : : 77

5.2.4 E�ects of Various Parameter Settings : : : : : : : : : : : : : : : : : 78

5.3 Summary : 91

6 Implementation Issues 93

6.1 Deterministic Subsystem Structure : 93

6.1.1 The Real-Time Database Server : 96

6.1.2 Interface of the Real-Time Data Object Manager : : : : : : : : : : : 96

6.2 StarBase { The Current Status : 98

6.2.1 Database Overview : 98

6.2.2 Resource Contention and Transaction Scheduling : : : : : : : : : : : 100

viii

6.2.3 Summary : 103

6.3 Predictable Transaction Processing in StarBase : : : : : : : : : : : : : : : : 104

7 Query Processing and Recovery 107

7.1 Query Processing on Memory-Resident Databases : : : : : : : : : : : : : : : 107

7.1.1 T Tree Index Structure : 108

7.1.2 The Join Algorithms : 108

7.1.3 Hybrid Join Approach : 115

7.1.4 Summary : 119

7.2 Recovery in Memory-Resident Real-Time Databases : : : : : : : : : : : : : 119

7.2.1 A Memory-Resident DBMS Structure : : : : : : : : : : : : : : : : : 121

7.2.2 An Integrated Recovery Scheme : 124

7.2.3 Other Recovery Techniques : 126

7.2.4 Temporal Constraints : 129

7.2.5 Future Research Issues : 130

8 Conclusions 132

8.1 Summary : 133

8.2 Future Work : 134

A Slack Stealing Algorithms for Fixed-Priority Preemptive Systems 137

A.1 Computational Model and Assumptions : 137

A.2 Schedulability Analysis : 138

A.3 Optimal Dynamic Slack Stealing Algorithm : : : : : : : : : : : : : : : : : : 142

A.4 Approximate Slack Stealing Algorithms : 144

Bibliography 146

ix

List of Tables

3.1 Classi�cation of Real-Time Transactions : 39

4.1 Parameters and Notations : 51

5.1 System Parameters : 65

5.2 Workload Parameters : 66

5.3 Utilization Increment due to CC Overhead : : : : : : : : : : : : : : : : : : 80

x

List of Figures

2.1 Sporadic Arrivals of a Task : 20

4.1 The Worst-Case Scenario for a Class IA Transaction : : : : : : : : : : : : : 43

4.2 Two Possible Cases of a Class IB Transaction's Read Operation : : : : : : : 45

4.3 Validation Phase of a Class III Transaction : : : : : : : : : : : : : : : : : : 59

4.4 Read Phase Check in a Class III Transaction : : : : : : : : : : : : : : : : : 60

5.1 No Class I and II, Only Class III Transactions, SOCC : : : : : : : : : : : : 72

5.2 30% Class I and II, 99% Class II Guarantee Level, EDF : : : : : : : : : : : 72

5.3 30% Class I and II Utilization, EDF : 73

5.4 50% Class I and II, 99% Class II Guarantee Level, EDF : : : : : : : : : : : 73

5.5 50% Class I and II Utilization, EDF : 74

5.6 70% Class I and II, 80% Class II Guarantee Level, EDF : : : : : : : : : : : 74

5.7 70% Class I and II Utilization, EDF : 75

5.8 30% Class I and II Utilization : 75

5.9 50% Class I and II Utilization : 76

5.10 70% Class I and II Utilization : 76

5.11 Combined Load of Class I and II: No STCE=9.5%, STCE=19.1% : : : : : : 82

5.12 Combined Load of Class I and II: No STCE=30.2%, STCE=31.2% : : : : : : 82

5.13 Combined Load of Class I and II: No STCE=35.6%, STCE=42.7% : : : : : : 83

5.14 Combined Load of Class I and II: No STCE=9.5%, STCE=19.1% : : : : : : 83

5.15 Combined Load of Class I and II: No STCE=30.2%, STCE=31.2% : : : : : : 84

5.16 Combined Load of Class I and II: No STCE=35.6%, STCE=42.7% : : : : : : 84

5.17 30% Class I and II Utilization, EDF/SOCC : : : : : : : : : : : : : : : : : : : 85

xi

5.18 50% Class I and II Utilization, EDF/SOCC : : : : : : : : : : : : : : : : : : : 85

5.19 70% Class I and II Utilization, EDF/SOCC : : : : : : : : : : : : : : : : : : : 86

5.20 50% Class I and II Utilization, No CC vs CC : : : : : : : : : : : : : : : : : 86

5.21 50% Class I and II Utilization, WRITE RATIO = 0.25 : : : : : : : : : : : : : : 87

5.22 50% Class I and II Utilization, WRITE RATIO = 0.5 : : : : : : : : : : : : : : 87

5.23 50% Class I and II Utilization, WRITE RATIO = 0.75 : : : : : : : : : : : : : : 88

5.24 50% Class I and II Utilization, WRITE RATIO = 1.0 : : : : : : : : : : : : : : 88

5.25 50% Class I and II Utilization, CC Overhead = 0 : : : : : : : : : : : : : : : 89

5.26 50% Class I and II Utilization, CC Overhead = 100 : : : : : : : : : : : : : 89

5.27 50% Class I and II Utilization, CC Overhead = 500 : : : : : : : : : : : : : 90

5.28 50% Class I and II Utilization, CC Overhead = 1000 : : : : : : : : : : : : : 90

6.1 Conceptual Structure of a Real-Time Database System : : : : : : : : : : : : 94

6.2 Physical Structure of a Real-Time Database System : : : : : : : : : : : : : 95

6.3 StarBase Server Architecture : 99

7.1 Distribution of Duplicate Values : 109

7.2 Tree Merge Algorithm : 113

7.3 Hash Join Algorithm : 114

7.4 Hybrid Join Algorithm (1) : 117

7.5 Hybrid Join Algorithm (2) : 118

7.6 Recovery Mechanism Architecture for a Memory-Resident DBMS : : : : : : 122

A.1 Algorithm for Determining the Level i Slack : : : : : : : : : : : : : : : : : : 141

xii

Chapter 1

Introduction

As our society becomes more integrated with computer technology, information processing

for human activities necessitates computing that responds to requests in real-time rather

than just with best-e�ort . Many computer systems are now being used to monitor and

control physical devices and large complex systems that must have predictable and timely

behaviors. We call such systems real-time systems. Real-time computing is emerging as

an important discipline and an open research area in computer science and engineering.

The growing importance of real-time computing in a diverse number of applications such

as defense systems, industrial automation, aerospace and medical applications, has resulted

in an increased research e�ort in this area [69].

Real-time systems often require database management services to store large amounts

of time-sensitive data and to manipulate the data within given timing constraints. For

example, an aerospace tracking system must update its track�le database continuously

with incoming track data from radar, retrieve the current state of a speci�c track from the

database, and perform some image processing to display the track's movement on a graphics

map. All these tasks have their own timing requirements.

Neither current real-time systems nor conventional database management systems,

however, support this kind of application adequately. Real-time systems do take temporal

speci�cations into account, but they do not consider consistency constraints of the data

objects they use. On the other hand, conventional database systems do not stress the

notion of timing constraints or deadlines with respect to transactions. The performance

goal of conventional database systems is usually expressed in terms of minimizing average

1

response time, which is relatively unimportant to real-time systems. These inadequacies of

conventional systems for time-critical applications introduce the need for real-time database

systems.

A real-time database system (RTDBS) can be de�ned as a database system where

transactions are associated with explicit timing constraints, such as the worst-case response

time requirements (i.e., deadlines) and the maximum temporal distance requirements be-

tween the accessed data objects. The correctness of a real-time databases system depends

not only upon the logical results but also upon the time at which the results are produced.

Transactions in the system must be scheduled in such a way that they can be completed be-

fore their corresponding deadlines expire as well as satisfy database consistency constraints.

In the last few years, the area of real-time databases has attracted attention from

researchers in both real-time systems and database systems �elds. The motivation of the

database researchers has been to bring to bear many of the ideas of database technology to

solve problems in managing data in real-time systems. Real-time system researchers have

been attracted by the opportunity that real-time database systems can provide for building

a complex real-time system with lots of time-sensitive data [57]. Although some of the

necessary research has been done, many issues remain, especially seamless integration of

real-time systems and the state-of-the-art database systems technology.

The design and implementation of RTDBS introduces several interesting problems.

For example, what is an appropriate model for real-time transactions and data? What

language constructs can be used to specify real-time constraints? What is the best concur-

rency control scheme that handles real-time constraints and the importance of transactions?

Is serializability a useful correctness criterion for RTDBS? In this thesis, we focus on two

issues, predictability and consistency , which are fundamental to real-time transaction pro-

cessing, but sometimes require conicting actions. To ensure consistency, we may have to

block certain transactions. Blocking these transactions, however, may cause unpredictable

transaction execution and may lead to the violation of timing constraints.

In the following sections, we discuss the characteristics of data and transactions in

2

RTDBS and the requirements of RTDBS, especially focusing on predictability and consis-

tency issues. In this context, we identify the limitations of the previous research e�orts in

this �eld, set the goal of our research, and outline our approach to achieving this goal.

1.1 Characteristics of Real-Time Database Systems

Real-time systems in general try to meet the timing constraints of individual tasks, but

may ignore data consistency problems. Tasks in real-time systems and transactions in

RTDBS are similar abstractions in the sense that both are units of work as well as units

of scheduling. However, tasks and transactions are di�erent computational concepts, and

their di�erences a�ect how they should be processed. In real-time task scheduling, it is

usually assumed that all tasks are preemptable. Preemption of a transaction that uses a �le

resource in an exclusive mode of writing, however, may result in subsequent transactions

reading inconsistent information. In addition, while the run-time behavior of a task is

statically predictable, the behavior of a transaction is dynamic, making it di�cult to predict

its execution time with accuracy.

Conventional database systems are not used in real-time applications, because of their

poor performance and their lack of predictability. In conventional database systems, the

response time of a transaction is often a�ected by the slow and unpredictable disk access

delay. Since real-time systems are often used in safety-critical applications, an unpredictable

system can do more harm than good under abnormal conditions. There are other reasons

why traditional database systems may have unpredictable performance. For example, to

ensure the data consistency, traditional database systems often block certain transactions

from reading or updating data if these data are locked by other transactions. It is di�cult

for a transaction to predict how long the delay will be since there may be cascaded blockings

when the blocking transactions themselves are blocked by other transactions. Consequently,

the response time of a transaction in conventional database systems is often unpredictable.

In the following subsections, we further investigate the characteristics of data and

transactions in RTDBS.

3

1.1.1 Real-Time Data

Since real-time systems are used to monitor and to control physical devices, they need to

store a large amount of information about their environments. Such information includes

input data from devices as well as system and machine states. In addition, many embedded

systems must also store the system execution history for maintenance or error recovery

purposes. Some systems may also keep track of system statistics like average system load

or average device temperature. Depending on the applications, real-time systems may

have to handle multi-media information like audio (for sonar devices), graphics (for radar

devices), and images (for robots). Since systems are constantly recording information, data

must have their temporal attributes recorded. Also, some input devices may be subject to

noise degradation and need to record the quality of the attributes along with the data.

Often a signi�cant portion of a real-time database is highly perishable in the sense that

it may contribute to a mission only if it is used in time. In addition to deadlines, therefore,

other kinds of timing constraints could be associated with data in RTDBS. For example,

each sensor input could be indexed by the time at which it was taken. Once entered into

the database, data may become out-of-date if it is not updated within a certain period

of time. To quantify this notion of \age," data may be associated with a valid lifespan.

Data outside its valid lifespan does not represent the current state. What occurs when a

transaction attempts to access data outside its valid lifespan depends on the semantics of

data and the particular system requirements.

1.1.2 Real-Time Transactions

Real-time applications can be grouped into three categories: hard deadline, �rm deadline,

and soft deadline. The classi�cation is based on how the application is a�ected by the

violation of timing constraints. For a hard deadline application, missing a deadline is

equivalent to a catastrophe. In general, a large negative value is imparted to the system if a

hard deadline is missed. For �rm or soft deadline applications, however, missing deadlines

leads to a performance penalty but does not lead to catastrophic results.

4

This categorization has also been applied to real-time database systems: hard deadline

transactions are those which may result in a catastrophe if the deadline is missed and soft

deadline transactions have some value even after their deadlines.

1

However, there has been no research work which includes both types of transactions.

Most previous work assumes only soft or �rm deadline transactions in a real-time database

system [1, 23, 25, 28, 52]. In such systems, the transaction scheduler is usually supposed to

have no idea about a transaction's computing time and resource requirement in advance.

Their justi�cation can be stated as follows [70, 25]:

Database systems for e�ciently supporting hard deadline real-time applications,

where all transaction deadlines have to be met, appear infeasible. This is be-

cause there is usually a large variance between the average case and worst case

execution time of a transaction. The large variance is due to transaction's in-

teracting with the operating system, the I/O subsystem, and with each other

in unpredictable ways. Guaranteeing transactions under such circumstances re-

quires an enormous excess of resource capacity to account for the worst possible

combination of concurrently executing transactions.

We agree that, under the conventional database management system's architecture and

operating system environment, it is almost impossible to estimate the worst case behavior

of a transaction correctly. Some real-time transaction scheduling algorithms [1, 59] that

utilize a priori knowledge about transactions are unrealistic.

However, there are many potential applications of hard real-time database systems

in the real world, such as ight control systems and missile guidance systems. For those

applications, a real-time database system must provide mechanisms to minimize the ex-

ecution time variance of a transaction, making the system's behavior predictable. There

has been some work dealing with hard deadline transactions [59, 66, 4, 51], but impractical

assumptions have often been made (for example, all transactions are periodic and their

1

Firm deadline transactions are special cases of soft deadline transactions which have no value after their

deadlines.

5

worst-case execution times are given) or di�erent correctness and performance criteria for

hard real-time transactions have been used in each work.

We believe that this conventional categorization of real-time applications is not enough

for real-time database applications. Some of the terms used in conventional real-time sys-

tems should be rede�ned or clari�ed in the context of RTDBS, since the latter have quite

di�erent characteristics from the former. First of all, the term \hard" should have di�er-

ent semantics in RTDBS from that in conventional real-time systems, since RTDBS must

satisfy not only the timing constraints of transactions but also the consistency constraints

of real-time data. For instance, what if a real-time transaction meets its hard deadline but

has lost the validity of the accessed data (i.e., the result of the transaction does not meet

the given consistency constraints of real-time data)?

In this research, we de�ne a hard real-time transaction as a transaction that has

a hard response-time requirement and strict temporal data consistency constraints. The

RTDBS must guarantee that both timing and consistency requirements of a hard real-time

transaction are always met, since a failure to meet those hard requirements will lead to a

system failure.

However, it would be extremely di�cult, if not impossible, to dynamically satisfy

both requirements at the same time. One possible approach to this problem is to associate

temporal data consistency constraints with timing constraints. That is, one can determine

the deadline of a real-time transaction so that once the deadline is met, the temporal

data consistency is maintained. Note that in most research work on real-time transaction

processing, deadlines are usually determined by considering only execution-time and/or

response-time requirements.

A soft/�rm real-time transaction is de�ned as a transaction which does not have

critical timing constraints but has less or no value if it does not meet those constraints. But

it must still maintain data consistency constraints.

Furthermore, there may be some real-time database applications which cannot be put

into either hard or soft/�rm real-time transaction category. Consider a transaction that

has a critical response-time requirement but cannot be guaranteed to meet the deadline

6

due to its indeterministic data access behavior or unknown data requirement. This kind

of transaction can be regarded as neither hard nor soft. We call such transactions critical

real-time transactions. To accommodate these transactions, we introduce the concept of

guarantee level for real-time transactions. The guarantee level of a real-time transaction is

determined by the degree of criticality of its timing constraints and has a value between

0 and 1. If the guarantee level of a transaction is x, the system should meet its timing

constraints with 100 � x % probability. According to this de�nition, the guarantee levels of

hard and soft real-time transactions are 1 and 0, respectively.

1.1.3 Real-Time Database Applications

A real-time database system is often de�ned as a database system where transactions are

associated with real-time constraints, typically in the form of deadlines. However, with this

de�nition, it is not clear what its applications are.

Unlike conventional general-purpose computing systems, it is extremely di�cult, if

not impossible, to develop general-purpose real-time computing systems that can be used

for all kinds of time-critical applications, since each real-time application has di�erent char-

acteristics and performance requirements. As a consequence, a real-time system is often

designed and con�gured for a speci�c type of application to achieve the desired performance.

Otherwise, the system must be adaptable, providing a variety of options to process di�erent

kinds of applications.

There are two major categories of applications for which a real-time database system

can be used: �rst, real-time process control systems which manage large amounts of real-

time data, and second, information management systems in which at least some transactions

have deadlines. Each type of application has totally di�erent characteristics from the other.

For example, a real-time transaction in a process control system often has hard timing

constraints, accesses highly perishable and prede�ned set of data objects, requires only

simple database functions, and arrives with a �xed period, while a real-time transaction in

an information management system usually has a soft deadline, may request highly complex

queries, and arrives aperiodically.

7

Even though there has been a considerable amount of research work done in the real-

time database area so far, no research work deals with both types of transactions in a single

application. Some of them assume process control systems having highly perishable data

and hard deadline transactions as their target applications. Others consider full-edged

information management systems supporting only soft or �rm deadline transactions. As

the applications of real-time systems getting large and complex, more systems need to

support both hard and soft real-time constraints in an integrated manner.

The real-time database systems model to be presented in the following chapter sup-

ports various types of real-time transactions, including both hard and soft real-time trans-

actions.

1.2 Requirements of Real-Time Database Systems

1.2.1 Predictability and Timeliness

Real-time computing is not equivalent to fast computing [69]. There are more important

properties of RTDBS than speed: timeliness, i.e., the ability to produce expected results

early or at the right time, and predictability , i.e., the ability to function as deterministically

as necessary to satisfy system speci�cations, including timing constraints. Fast comput-

ing which is busy doing the wrong activity at the wrong time is not helpful for real-time

computing. Fast is helpful in meeting stringent timing constraints, but fast alone does not

guarantee timeliness and predictability.

Since the performance requirements may be di�erent for each class of real-time appli-

cations, the term predictability should be interpreted in a speci�c context. A hard real-time

system must be predictable in the sense that we should be able to know beforehand whether

its tasks will complete before their deadlines. This prediction will be possible only if we

know the worst-case execution time of a task and its data and resource needs. However,

in real-time database applications, it is not always possible to get such information in ad-

vance, since, unlike the conventional real-time applications, there are more factors that

8

contribute to the unpredictability of transaction execution in database systems, such as in-

teractions with indeterministic subsystems, data dependence of transaction execution, data

and resource conicts among transactions, and conventional recovery mechanisms [55].

Consequently, we cannot give this kind of predictability to all real-time transactions.

Instead, we should provide a di�erent level of guarantee to each class of real-time transac-

tions. For example, for a group of real-time transactions, we should be able to predict what

percentage of the transactions will meet the deadlines statistically.

Predictability is also important for soft real-time transactions, albeit to a lesser de-

gree. For instance, if the execution-time requirement of a transaction is available in advance,

then under some scheduling policies designed for on-line scheduling, a system may provide

an earlier feedback on whether the transaction can be completed before its deadline. This

allows the system to discard infeasible transactions (i.e., transactions which may not com-

plete before their deadlines) even before they begin execution so that wasted computations,

aborts, and restarts can be avoided [1, 39].

1.2.2 Correctness Criteria

Another limitation of current real-time transaction scheduling algorithms is that most of

them rely on serializability to preserve the logical consistency of the database, but they fail

to address how to maintain temporal consistency of real-time data.

To facilitate more timely executions of transactions to meet their deadlines, we may

extend the de�nition of correctness in database systems. Since real-time systems are used to

respond to external stimuli (e.g., in combat systems) or to control physical devices (e.g., in

auto-pilot systems), a timely and useful result is much more desirable than a serializable but

out-of-date response. As long as the result of a transaction is consistent with the situations

of the real world, whether or not the database is internally consistent may not be important

to the application. Depending on the semantics and requirements of data and transactions,

a RTDBS may apply di�erent correctness criteria under various situations.

9

1.2.3 Operating System and Architectural Support

Most research e�orts on real-time database systems have concentrated on developing and

evaluating real-time transaction scheduling algorithms, including priority assignment, disk

I/O scheduling, concurrency control, and conict resolution schemes. The primary goal of

those research e�orts is to minimize the deadline miss ratio of transactions [1, 39, 7, 23,

26, 25, 29, 28, 52]. However, less attention has been paid to architectural and operating

system aspects of the system which support the predictable behavior of a real-time trans-

action. Without adequate support from the underlying subsystems, none of the scheduling

algorithms can guarantee predictable transaction performance. The major di�culty is the

lack of a reasonable paradigm for cooperation between real-time operating systems and

real-time database management systems. The result is a duplication of some common ser-

vices, not only leading to a degradation in system performance, but also making the system

even more unpredictable. Clearly, this is intolerable for real-time applications. Real-time

database building blocks must be integrated with the real-time operating system kernel

and other run-time environment building blocks in order to avoid wasteful duplication and

provide predictable services.

1.3 Research Objective and Approach

Our research is motivated by the limitations of the previous real-time database systems

research as described above and intended to address some of the important issues on a RT-

DBS's development which have not been investigated thoroughly in the previous research.

The goal is to provide a framework for predictable real-time transaction processing which

also maintains consistency of real-time data objects.

Our approach to achieving this goal is as follows: First, we analyze the characteristics

of data and transactions in typical real-time database applications and categorize them into

several classes, specifying di�erent assumptions and requirements for each class. Second,

we develop an integrated real-time transaction processing scheme which can guarantee the

given performance requirements of each real-time application and maintain the consistency

10

requirements of a real-time database.

Note that our model depends heavily on the deterministic behavior of transaction

processing. In our framework, we try to eliminate or avoid the sources of unpredictability

in a database system, which have made a hard deadline guarantee infeasible. What we need

is to make the execution time of a transaction (pure computation and data access time)

deterministic either by minimizing the variance between its worst-case and average-case

execution times or by removing the sources of the variance. We observe that hard real-time

database systems become feasible only when the worst-case execution times of hard real-

time transactions are available. If the desired level of predictability can be achieved, the

performance of soft or �rm real-time transactions can also be signi�cantly improved.

In the following, we identify a number of factors which contribute to the unpredictable

execution of transactions and present our approaches to dealing with the problems.

Interaction between DBMS and the subsystem

Transactions interact with the operating system and I/O subsystem in unpredictable ways.

Since transactions require concurrency control, commit protocols, recovery protocols, bu�ers,

and access to disks, it is virtually impossible to predict the response time of a transaction

under the conventional database system architecture. Also, response time is usually long

due to these complicated protocols and disk access times. Unpredictability occurs from op-

erating system features such as paging, working sets, dynamic adjusting of priorities, disk

scheduling algorithms, bu�ering schemes, and blocking over resource contention.

Furthermore, many of the functions of a DBMS (e.g., scheduling and resource manage-

ment) are usually considered parts of an operating system. Real-time applications cannot

a�ord the duplication of these functions. For example, a DBMS application written in

Ada might �nd its execution controlled by the operating system process scheduler, the Ada

runtime task scheduler, the DBMS transaction scheduler, the DBMS resource (lock) man-

ager, the operating system virtual memory manager, the DBMS bu�er manager, the disk

scheduler, and the DBMS recovery (log) manager.

Our approach to the above problem is to utilize a real-time microkernel architecture

11

combined with memory resident real-time data objects. In contrast to the traditional mono-

lithic operating system kernel, a microkernel provides system servers with generic services

independent of a particular operating system, including (real-time) scheduling of one or

more processors, memory management, and a simple IPC (Interprocess Communication)

facility [20, 21, 76, 73].

This combination of elementary services forms a standard base which can support all

other system-speci�c functions. These system-speci�c functions can then be con�gured into

appropriate system servers managing other physical and logical resources of a computer

system, such as real-time memory objects, devices, and high-level communication services.

Such an architecture contributes to make the behavior of each service component of a real-

time database system more predictable and analyzable.

As semiconductor memory becomes cheaper and chip densities increase, it becomes

feasible to store larger and larger databases in memory. Memory residency of database is

especially important for hard real-time applications where transactions have to complete

by their speci�ed deadlines. Using main memory as the primary repository of the database

eliminates the problems due to dynamic I/O, such as bu�er management, dynamic paging,

and disk scheduling, and o�ers considerably improved performance over conventional disk-

based DBMS.

However, structures and algorithms designed for conventional main memory databases

must be reconsidered for real-time databases, since their performance goal (minimizing the

average response time) is di�erent from that of real-time database systems (minimizing the

worst-case execution time).

Data dependence of transaction execution

Since a transaction's execution path can depend on the state of the data items it accesses,

it may not be possible in general to predict the behavior of a transaction in advance.

However, in some hard real-time environments, we can assume \canned" transactions and

queries whose read/write sets can be predicted or predeclared beforehand. Since a real-time

database is generally used in a closed loop situation where the environment being controlled

12

closes the loop, the data items accessed by a transaction are likely to be known a priori

once its functionality is known. Furthermore, with the support of a specialized hardware

(e.g., content addressable memory), there is a potential to develop a predictable database

access and query processing mechanism regardless of the state of the database.

In case the above statements are not valid for some critical transactions, at best we

can provide a partial guarantee on their timing constraints.

Data and resource conicts among transactions

Since a typical transaction dynamically acquires the data items it needs, it may be forced

to wait until a data item is released by other transactions currently using it. Similarly, a

transaction may be forced to wait for other resources, such as the CPU and I/O devices,

to become available. While both of these blocking problems have their counterparts in

real-time systems, the problems are exacerbated in real-time database systems due to data

consistency requirements. Consider a database that employs a strict two phase locking

protocol for concurrency control. In this case a transaction may wait for an unbounded

amount of time, when it attempts to acquire a data item. The cumulative delays can be

very long and unpredictable, given the possibility of deadlocks and restarts.

Conict avoiding data access protocols and pre-allocation of resources can reduce the

e�ects of this problem. Many such protocols have been developed in the context of real-

time systems but they do not apply directly to real-time database systems. However, we

can prevent the unbounded blocking of a transaction (e.g., priority ceiling protocol [59]),

assuming that a priori knowledge about transactions is available, which is often the case

in hard real-time applications, or avoid the blocking by allowing non-serializable schedule,

which is acceptable for some types of real-time transactions.

13

Conventional recovery mechanisms

In conventional database systems, recovery mechanisms after failure often depend on logging

and checkpointing. However, those actions often conict with normal transaction process-

ing, making a transaction's response time unpredictable. Also, transaction aborts and the

resulting rollbacks and restarts not only increase the total execution time for the involved

transaction, but also a�ect other ongoing transactions. This kind of backward recovery

mechanism should not be used in hard real-time applications. Fortunately, we observe that

it is meaningless to blindly roll back to an earlier consistent state of a real-time database

since the prior values in the database could be out-of-date and useless anyway. Abnormal

termination of a real-time transaction should not always require rolling back the changes.

We do not consider the failure situation and the database recovery issues in our

RTDBS model, to be presented in Chapter 3, but the issues related with the real-time

recovery in memory-resident database systems will be discussed in Chapter 7.

1.4 Contributions of the Thesis

The major contributions of this thesis can be summarized as follows:

A new RTDBS model. Our model classi�es real-time data and transactions, considering

their attributes and the application semantics and requirements. It includes both hard and

soft real-time transactions, and supports the temporal consistency as well as the logical

consistency of a database. The conventional RTDBS models used in the previous researches

are only subsets of our model.

Predictable transaction processing. We have extended a �xed-priority-based method

to jointly schedule both hard periodic tasks and soft aperiodic tasks into a transaction

processing environment, and integrated it with a best-e�ort real-time transaction scheduling

algorithm to come up with a predictable transaction processing scheme. Under this scheme,

three di�erent levels of performance can be speci�ed and achieved in one system, in terms

14

of guarantee on the timing constraints, depending on the characteristics and requirements

of transactions:

� total guarantee (or 100% guarantee)

� partial guarantee (or statistical guarantee)

� no guarantee (or best e�ort)

This is not the case in the conventional RTDBS, where users only can express the relative

importance of a transaction in terms of the priority and the scheduling algorithms only can

make a best e�ort with no guarantee on its individual timing constraints.

Static temporal consistency enforcement. In order to maintain temporal consistency

of real-time data and transactions, we have developed a systematic scheme to determine

some attributes of real-time transactions, such as periods, deadlines, and priorities. Under

this scheme, the temporal consistency requirements of RTDBS are always ful�lled as long

as the deadlines of the related transactions are always met. Other approaches are di�erent

from ours in that they do not provide a guarantee on temporal consistency, but just make

a best e�ort to minimize the number of temporal consistency violations.

Semantic-based concurrency control. In real-time databases, serializable schedules

are not always required for transactions to maintain consistency of the database. Utilizing

the inherent semantic information about transactions in speci�c classes, a real-time trans-

action manager can make di�erent control decisions for di�erent classes of transactions, in

order to maximize the level of concurrency while maintaining both timing and consistency

constraints of the system. We have developed a semantic-based concurrency control and

conict resolution scheme under our real-time database model. Comparing to concurrency

control algorithms being used in conventional database systems, our scheme can make more

e�cient control decisions when conicts occur, since it can make use of certain semantic

knowledge about transactions which is given a priori .

15

Cost and performance evaluation. We have evaluated the cost and performance of

our integrated real-time transaction processing system, comparing to the conventional best-

e�ort system, through a simulation study. Especially, we illustrated the cost of timing

constraint guarantee, the cost of temporal consistency guarantee, and the cost of logical

consistency guarantee in our system, under the various situations.

Deterministic subsystem model. To support our RTDBS model, we suggest a de-

terministic computing environment for a real-time database system, utilizing a memory-

resident real-time data object abstraction and a real-time microkernel architecture. The

proposed architecture eliminates sources of unpredictable behavior in the system related to

dynamic I/O, such as bu�er management, dynamic paging, and disk scheduling.

Real-time query processing and recovery mechanism. In the context of memory-

resident real-time databases, query processing and recovery issues have been discussed and

several possible approaches to the problems have been proposed, but without evaluation.

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows.

In Chapter 2, we review the current status of real-time database systems research

and related areas, and discuss the problems of the current technology used in traditional

database management systems in the context of a real-time database system.

In Chapter 3, we introduce a new model for real-time data and transactions. We come

up with three types of data objects and �ve classes of transactions in RTDBS, based on

their characteristics and requirements.

In Chapter 4, we develop a predictable transaction processing scheme under the pro-

posed model, which satis�es the temporal consistency requirements of real-time data objects

as well as the response-time requirements of real-time transactions.

In Chapter 5, our model and the supporting schemes to achieve predictable real-time

transaction processing are evaluated by simulation. The main result is that the guarantee

16

on hard real-time transactions can be achieved at the reasonable expense of soft real-time

transactions.

In Chapter 6, we discuss some practical issues which may be encountered when a

real-time database system is developed based on our model and our transaction processing

algorithms are to be implemented on top of it. The current structure and future extensions of

the StarBase system, an experimental real-time database system testbed, are also presented.

In Chapter 7, we give some lights on other issues in RTDBS, such as real-time query

processing and recovery, which are important but have not been addressed in the previous

RTDBS research.

Finally, in Chapter 8, we summarize the results of our research and discuss how this

work has contributed to the �eld of real-time transaction processing. Also, we explore future

directions in which our research can be extended.

17

Chapter 2

Background and Related Work

Real-time database systems require research e�orts on various aspects of real-time systems

and database management systems. However, since this research �eld has received attention

only in the last few years, research work done so far does not address all the issues necessary

for developing a practical real-time database system.

In this chapter, we review the current status of real-time task and transaction schedul-

ing research, as well as other related areas, and discuss the problems of the current technol-

ogy used in traditional database management systems in the context of real-time database

support.

2.1 Real-Time Task Scheduling

Over the last decade, scheduling methods have been introduced which allow for the design

of real-time systems with predictable timing correctness. Moreover, these methods have

become su�ciently advanced so that many practical problems associated with these sys-

tems have been addressed successfully. The most complete theoretical results have been for

the situation in which the system must process a signi�cant number of periodic tasks, for

example, tasks associated with monitoring in control systems. For this case, there are two

popular approaches: (1) static or �xed-priority algorithms, including the rate-monotonic

and deadline-monotonic algorithms [53, 3] and (2) dynamic priority algorithms, including

the earliest deadline algorithm [53]. Both approaches are becoming increasingly well de-

veloped, although at the present time the static priority theory is much more complete. A

18

summary of the results available on �xed-priority scheduling can be found in review articles

by Burns [8] and Lehoczky [47].

Given the success of �xed priority scheduling methods, it is natural to attempt to ex-

tend this theory to solve other important problems that arise in real-time systems. This in-

cludes problems such as scheduling hard deadline sporadic tasks and simultaneously schedul-

ing hard deadline periodic tasks along with soft deadline aperiodic tasks. In this section, we

review recent development in scheduling theory designed to determine a �xed-priority-based

method to accommodate sporadic tasks and jointly schedule tasks with both hard and soft

time constraints.

Scheduling Sporadic Tasks

Non-periodic tasks are those whose releases are not periodic in nature. Such tasks can be

subdivided into two categories [8]: aperiodic and sporadic. The di�erence between these

categories lies in the nature of their release frequencies. Aperiodic tasks are those whose

release frequency is unbounded. In the extreme, this could lead to an arbitrarily large

number of simultaneously active tasks. Sporadic tasks are those that have a maximum

frequency such that only one instance of a particular sporadic task can be active at a time.

When a static scheduling algorithm is employed, it is di�cult to introduce non-periodic

task executions into the schedule: it is not known before the system is run when non-periodic

tasks will be released. More di�culties arise when attempting to guarantee the deadlines

of those tasks. It is clearly impossible to guarantee the deadlines of aperiodic tasks as there

could be an arbitrarily large number of them active at any time. Deadlines of sporadic tasks

can be guaranteed since it is possible, by means of maximum release frequency, to de�ne

the maximum workload they place upon the system.

One approach is available to guarantee the deadlines of sporadic tasks without re-

sorting to the introduction of polling servers within the existing deadline-monotonic theory.

Consider the timing characteristics of a sporadic task �

s

, illustrated in Figure 2.1. The mini-

mum time di�erence between successive releases of �

s

is the minimum inter-arrival timeM

s

.

This occurs between the �rst two releases of �

s

. At this point, �

s

is behaving exactly like a

19

Ts

Ts

Released

Ms

Ds

Ts

Released Ds

Ts

Released

Ms

Figure 2.1: Sporadic Arrivals of a Task

periodic task with periodM

s

: the sporadic is being released at its maximum frequency and

so is imposing its maximum workload. When the releases do not occur at the maximum rate

(between the second and third releases in Figure 2.1) �

s

behaves like a periodic task that is

intermittently activated and then laid dormant. The workload imposed by the sporadic is

at a maximum when the task is released, but falls when the next release occurs after greater

than M

s

time units have elapsed.

In the worst-case the �

s

behaves exactly like a periodic task with period M

s

and

deadline D

s

where D

s

�M

s

. The characteristic of this behavior is that a maximum of one

release of the task can occur in any interval [t, t+M

s

] where release time t is at least M

s

time units after the previous release of the task. This implies that to guarantee the deadline

of the sporadic task the computation time must be available within the interval [t, t+D

s

]

noting that the deadline will be at least M

s

after the previous deadline of the sporadic.

This is exactly the guarantee given by the original deadline-monotonic scheduling theory.

For schedulability purposes only, the sporadic task can be regarded as a periodic task

whose period is equal to M

s

. However, we note that since the task is sporadic, the actual

release times of the task will not be periodic, but successive releases will be separated by

no less than M

s

time units.

For the schedulability tests given in [8] to be e�ective for this task set, it is assumed

that at some instant all tasks, both periodic and sporadic, are released simultaneously (i.e., a

20

critical instant). If the deadline of the sporadic can be guaranteed for the release at a critical

instant then all subsequent deadlines are guaranteed. No limitations on the combination of

periodic and sporadic tasks are imposed by this scheme. Indeed, the approach is optimal

for a �xed-priority scheduling since sporadic tasks are treated in exactly the same manner

as periodic tasks. To improve the responsiveness of sporadic tasks, their deadlines can be

reduced to the point at which the system becomes unschedulable.

Scheduling Both Hard and Soft Deadline Tasks

Analysis of �xed-priority preemptive scheduling has provided a sound theoretical basis for

designing predictable hard real-time systems. Within this framework, a number of ap-

proaches have been developed for scheduling mixed task sets. The simplest and perhaps

least e�ective of these is to execute soft deadline tasks at a lower priority level than any of

those with hard deadlines. This e�ectively relegates the soft tasks to background process-

ing. Alternatively, soft tasks may be run at a higher priority under the control of a pseudo

hard real-time server task, such as a simple polling server.

A polling server is a periodic task with a �xed priority level (usually the highest) and

an execution capacity. The capacity of the server is calculated o�-line and is normally set

to the maximum possible, such that the hard task set, including server, is schedulable. At

run-time, the polling server is released periodically and its capacity is used to service soft

real-time tasks. Once this capacity has been exhausted, execution is suspended until it can

be replenished at the server's next release.

The polling server will usually signi�cantly improve the response times of soft tasks

over background processing. However, if the ready soft tasks exceed the capacity of the

server, then some of them will have to wait until its next release, leading to potentially long

response times. Conversely, no soft tasks may be ready when the server is released, wasting

its high priority capacity.

The latter drawback is avoided by the Priority Exchange [68] and Deferrable/Sporadic

Server [67] algorithms. These are all based on similar principles to the polling server.

However, they are able to preserve capacity if no soft tasks are pending when they are

21

released. Due to this property, they are termed \bandwidth preserving algorithms". The

three algorithms di�er in the ways in which the capacity of the server is preserved and

replenished and in the schedulability analysis needed to determine their maximum capacity.

In general, all three o�er improved responsiveness over the polling approach. However,

there are still disadvantages with these more complex server algorithms. They are unable to

make use of slack time which maybe present due to the often favorable phasing of periodic

tasks (i.e., not being the worst case). Further, they tend to degrade to providing essentially

the same performance as the polling server at high loads. The Deferrable and Sporadic

Servers are also unable to reclaim spare capacity gained when, for example, hard tasks

require less than their worst-case execution time. This spare capacity, termed gain time,

can however be reclaimed by the Extended Priority Exchange algorithm.

Slack Stealing Algorithms

The static slack stealing algorithm of Lehoczky and Ramos-Thuel [48] su�ers from none of

these disadvantages. It is optimal in the sense that it minimizes the response times of soft

tasks among all algorithms which meet all hard periodic task deadlines. The slack stealer

services soft requests by making any spare processing time available as soon as possible.

In doing so, it e�ectively steals slack from the hard deadline periodic tasks. A means of

determining the maximum amount of slack which may be stolen, without jeopardizing the

hard timing constraints, is therefore key to the operation of the algorithm.

In [48], Lehoczky and Ramos-Thuel describe how the slack available can be found.

This is done by mapping out the processor schedule for the hard periodic tasks over their

hyperperiod (the least common multiple of task periods). The mapping is then inspected to

determine the slack present between the deadline on one invocation of a task and the next.

The values found are stored in a table. At run time, a set of counters are used to keep track

of the slack which may be stolen at each priority level. These counters are decremented

depending on which tasks, if any, are executing and updated by reference to the table, at

the completion of each task. Whenever the counters indicate that there is slack available

at all priority levels, soft tasks may be executed at the highest priority level.

22

Unfortunately, the need to map out the hyperperiod restricts the applicability of this

optimal algorithm: Slack can only be stolen from hard deadline tasks which are strictly

periodic and have no release jitter [2] or synchronization. Realistically, it is also limited to

task sets with a manageably short hyperperiod. This is a signi�cant restriction, as even

modest task sets (e.g., 10 tasks) may have very long hyperperiods.

The limitations inherent in the optimal static algorithm are addressed by the dynamic

slack stealer developed by Davis et al [14]. By virtue of computing slack at run time, the

optimal dynamic algorithm is applicable to a more general class of scheduling problems,

including task sets which contain hard deadline sporadics and tasks which exhibit release

jitter and synchronization. Further, the dynamic algorithm is able to improve the response

times of soft tasks by exploiting run-time information about hard task execution require-

ments, blocking and context switch times [13]. Unfortunately, the execution time overhead

of the optimal dynamic algorithm is such that it is infeasible in practice.

Approximate methods of determining slack presented by Davis [12] address the space

and time complexity problems inherent in the optimal algorithms. These approximations

form the basis of various approximate slack stealing algorithms which o�er close to opti-

mal performance with practical utility. These algorithms, to be described in Appendix A,

have been integrated into our real-time transaction processing environment and their perfor-

mances have been compared with background processing and optimal slack stealing method

in Chapter 5.

2.2 Real-Time Transaction Scheduling

Scheduling transactions with timing constraints is a more complicated problem than real-

time task scheduling due to the multiplicity of resources in a database system, the need to

maintain database integrity, and the lack of a priori knowledge of transaction processing

requirements in many database applications. The development and evaluation of transaction

scheduling algorithms has been the main focus of research in real-time database systems.

We can categorize the studies in this area into the following three classes, according to their

23

assumptions on real-time transaction model:

� Transactions arrive sporadically with unpredictable arrival times and resource require-

ments. That is, no a priori knowledge of transactions is available to the scheduler.

This transaction model is usually used in soft or �rm real-time system environment.

� Transactions arrive in the same way as the above, but some a priori knowledge of

transactions can be utilized by the scheduler. That is, the data requirements of each

transaction are still unknown but a worst case execution time is available to the

scheduler. This transaction model is also used for real-time applications with soft or

�rm deadlines.

� Transactions arrive periodically with known invocation times. Furthermore, data

requirement and worst case execution time of each transaction are known in advance

to scheduler. This model is usually assumed for hard real-time transactions. In the

case of aperiodic transactions, by making use of the smallest separation time between

two incarnations of an aperiodic transaction, they can be viewed just like periodic

transactions. Thus, all hard real-time transactions are regarded as periodic in this

model.

Each real-time transaction scheduling algorithm employs di�erent priority assignment, con-

currency control, and conict resolution schemes based on one of the above transaction

models.

Hard Deadline Transaction Scheduling

By the de�nition of hard deadlines, all transactions with hard deadlines must meet their tim-

ing constraints. Since dynamically managed transactions cannot provide such guarantees,

the data and processing resources as well as computation time needed by such transactions

must be guaranteed to be made available when necessary. We thus have to know about the

transaction's invocation time, its resource requirement, and the worst case execution time in

24

advance. This requires that many restrictions be placed on the structure and characteristics

of real-time transactions.

Only a few real-time transaction scheduling algorithms using this class of transaction

model have been proposed so far. Sha et al proposed algorithms for scheduling a �xed set

of periodic transactions with hard deadlines [59, 61]. Their model assumes that transaction

priorities and resource requirements are known a priori. The rate-monotonic algorithm is

used for determining transaction priority and scheduling the CPU. A priority ceiling protocol

based on locking is used for concurrency control. The priority ceiling algorithm appears to

have a promise for a hard real-time environment since it prevents deadlock formation and

strictly bounds transaction blocking times. The price, however, is a priori knowledge about

data to be accessed by real-time transactions.

This condition appears to be too restrictive and even unrealistic in traditional database

systems where data access is random. Moreover, the scheme becomes extremely conservative

with respect to the degree of concurrency if transactions can access any data objects in the

database. Nevertheless, we can hardly imagine a hard real-time system with unpredictable

transaction behavior. Our approach is to make transaction's behavior predictable by pro-

viding a new real-time database model which allows non-serializable transaction executions

and partial guarantees on timing constraints.

Soft or Firm Deadline Transaction Scheduling

Most of the real-time transaction scheduling algorithms assume that the transaction sched-

uler is supposed to have no idea about transaction's computing time and resource require-

ment in advance, which is the case of soft or �rm deadline applications. Priority of a trans-

action is thus assigned based on its timing constraint (i.e., deadline) and/or value, without

considering information about its runtime behavior. Also, conict resolution schemes used

in real-time concurrency control protocols do not utilize such information. Consequently,

they cannot guarantee that each transaction will complete by its deadline, but try to mini-

mize the deadline miss ratio of transactions or to maximize the total value of transactions

completed by their deadlines, when transactions have di�erent values.

25

This class of algorithms are High Priority (or Priority Abort) [29, 1], Priority Inheri-

tance (or Wait Promote) [30, 28, 1] protocols with the two-phase locking scheme, OPT-BC ,

OPT-SACRIFICE , OPT-WAIT , WAIT-50 protocols [24, 23] with optimistic concurrency

control techniques, and hybrid concurrency control algorithms [52, 63].

Some soft or �rm real-time transaction scheduling algorithms utilize the worst case

execution times of transactions, without the knowledge of data requirements. Intuitively,

this information can help the scheduler to determine eligibility of transactions, reducing

the wasted CPU time and recovery overhead due to aborted transactions. In this class

of algorithms, Least Slack priority assignment policy can be used, combined with conict

resolution policies such as Conditional Restart [1] and Conditional Priority Inheritance [30,

28] under the two phase locking concurrency control scheme.

However, some of the performance results for those algorithms are contradictory and

there is no consensus on which are the best algorithms. For example, it is reported in

[1] that concurrency control policies that combine blocking with priority inheritance (Wait

Promote, Conditional Restart) generally perform better than a policy that aborts lower

priority transactions in order to favor higher priority ones (High Priority), whereas the

opposite to this result is reported in [30]. The reason for this may lie in the fact that

they used di�erent environments and operating ranges to evaluate the algorithms. The

latter group used an experimental testbed for their performance results and was unable

to program the disk device driver to implement priority scheduling of I/O requests, while

performance evaluation of the former group was done via simulation and did incorporate

priority-based disk scheduling.

Furthermore, the well-known debate regarding the performance of locking based con-

currency control protocols versus optimistic ones has surfaced in the �eld of real-time

database systems. One group of researchers has reported an optimistic concurrency control

algorithm that can generally perform better than locking based protocol [24]. A di�erent

group of researchers has reported the opposite [31]. The small di�erences in transaction

models and the large di�erences in evaluation techniques make it di�cult to resolve these

competing claims.

26

Although it would certainly be fruitful to develop more algorithms and evaluate them

for real-time transaction scheduling, we feel that a more integrated system and transaction

model is needed to support advancement in this �eld. Our approach is to establish a

new real-time data and transaction model which accommodates a broad range of real-time

database applications and to develop a predictable transaction processing algorithm for this

model which is capable of achieving multiple levels of guarantee on timing constraints.

2.3 Temporal Consistency

The consistency of a conventional database, and the correctness of its transactions, are

de�ned purely over the values stored in data objects (logical consistency). While it may

also apply to a hard real-time database, there is an additional requirement concerning time

(temporal consistency). The concept of \temporal consistency" suggests that the age of

data should be taken into account in making scheduling decisions. Specifying bounds on

the start time of one transaction relative to the stop time of one or more transactions is a

new form of timing constraint [50]. Temporal consistency can reference either the absolute

age of the data read by a transaction, or the age of each data item relative to the age of

every other data item in the read set of a transaction [66].

Not much work has been reported on schedulers that preserve both logical and tem-

poral consistency of real-time database at the same time. All the real-time transaction

scheduling algorithms mentioned in the previous section use \serializability" as the only

database correctness criteria.

Liu and Song [66] apply temporal consistency along with serializability as a criterion

for correctness. This is consistent with the observation that the correct operation interleav-

ings for real-time transactions are those serializable interleavings which meet their timing

constraints. However, although this notion of temporal consistency was used to judge the

e�ectiveness of scheduling algorithms, their multiversion concurrency control algorithms do

not guarantee the temporal consistency of real-time data objects. Audsley et al [4] charac-

terize real-time data objects and derive some temporal consistency requirements, but they

27

do not show how a transaction scheduler can realize such requirements.

Di�erent from the above approaches, in our research di�erent consistency criteria are

applied for di�erent types of data objects. For example, for some data objects whose val-

ues are rapidly changing over time, the logical consistency may not be required, but the

temporal consistency must be maintained. This allows non-serializable (thus non-blocking)

accesses to these data objects, making a predictable maintenance of the temporal consis-

tency requirements feasible.

2.4 Memory Resident Database Systems

Since data can be accessed directly in memory, memory resident database systems (MRDSs)

can provide much better response times and transaction throughputs, as compared to con-

ventional disk resident database systems (DRDSs). Furthermore, the avoidance of disk I/O

operations and bu�er management functions provides a potential for predictable transaction

processing. This is especially important for real-time applications. Since memory prices are

steadily dropping, and memory sizes are growing, memory residence of a real-time database

becomes less of a restriction.

During the 1980's, a good deal of research investigated the e�ects of the availability of

very large main memories [15, 45, 44, 46, 58, 17]. The early work considered e�ects on query

processing strategies, data structures, and failure recovery mechanisms when a substantial

percentage of the database could �t into the DBMS bu�er pool. Other researchers assume

that the entire database can be made main memory resident.

The research cited above suggests that algorithms specialized for memory resident

databases o�er considerably improved performance over conventional DBMS with very large

bu�er pools. Much of the work in memory resident databases concentrate on the recovery

aspects of the system [46, 58, 22, 35], since in MRDSs the recovery becomes more complex

than disk-based database recovery mainly due to the volatility of main memory and the

elimination of the separation of data storage and data processing location. To minimize

the possible interference between normal transaction processing and recovery actions like

28

logging and checkpointing, small amounts of stable main memory and a dedicated recovery

processor are usually assumed in MRDSs.

However, even the most e�cient memory resident database management mechanisms

proposed so far are not readily applicable to real-time database systems because they do

not consider timing constraints of transactions. Access methods, query processing, and

recovery in memory resident database systems must be reconsidered in the context of real-

time system in order to provide predictable execution behavior. Some of these issues will

be addressed in Chapter 7.

2.5 Operating System Support for Database Management

There are three major areas where the operating system (OS) supports a database manage-

ment system: persistent data management , bu�er and memory management , and transac-

tion support .

Databases store and manage persistent data which survive past the execution of the

program that manipulates them. The traditional manner in which operating systems have

dealt with persistent data is by means of �le systems. Even as the traditional means of

supporting secondary storage of data, current �le systems are not suitable for DBMS which

have speci�c requirements regarding both logical structure of �les and their physical storage.

The major issue regarding the �le system is the management of memory bu�ers in accessing

data �les. Some operating systems are moving toward providing �le system services through

virtual memory [77, 16]. In this architecture, when a �le is opened, it is mapped into a

virtual memory segment and then read by referencing a page in virtual memory, which is

then loaded by the operating system. Similarly, a write causes a virtual memory page to

become dirty and be eventually written to disk.

If virtual memory �le systems are successful, then bu�er management code can be

removed from DBMSs, resulting in one less problem to worry about. However, in this case,

OS must provide an interface with which a DBMS can give some information about its

data access behavior to the virtual memory manager, since the general-purpose algorithm

29

like LRU replacement fails to perform adequately in a number of cases. For example, in a

nested-loop join, the bu�er page

1

that contains one data page of the outer relation is the

least recently used if a replacement page is needed to bring in the last data page of the

inner relation. However, if the outer relation bu�er page is replaced, it will be read in again

immediately, causing a bu�er fault

2

for this and every page reference from then on.

Traditionally, DBMSs have contained a signi�cant amount of code to provide transac-

tion management services (concurrency control and crash recovery). However, such services

are only available to DBMS users and not to general clients of the operating system such

as mail programs and text editors. There has been considerable interest in providing trans-

actions as an operating system service [71, 72, 16, 18], and several OSs have done exactly

that [27, 38, 11]. Moreover, if a user wishes to have a cross-system transaction (i.e., one

involving both a DBMS and another subsystem) then it is easily supported with an OS

transaction manager but is nearly impossible with a DBMS-supplied one.

Current attempts to implement these services in the conventional operating systems

(e.g., Camelot [18]) are not adequate for real-time transaction processing systems. First,

the access to the virtual memory mapped data objects is unpredictable, since a page in

a data object sometimes resides in main memory bu�er and sometimes not, depending

on the OS paging mechanism. Second, the recovery mechanisms used in OS supported

transaction managers still rely on the conventional logging and checkpointing algorithms,

and use backward recovery procedure when restarted after a failure. Even the most e�cient

recovery mechanism used in a conventional DBMS is not appropriate to hard real-time

database systems. The support for recoverable update of real-time data objects, not relying

on backward recovery, is required for real-time transaction processing.

One possible solution is to build a deterministic service interface for real-time data

objects on top of the real-time microkernel, such as ARTS [74], Real-Time Mach [76], or

1

The bu�er space is divided into pages of the same size, called bu�er pages.

2

When a process attempts to read from a �le, the bu�er manager �rst searches the bu�er pages for the

speci�c data page. If the search is unsuccessful, a bu�er fault occurs which is serviced by bringing the data

page from secondary storage and loading into a bu�er page.

30

CHORUS [20], and then develop predictable database management functions (e.g., trans-

action manager, recovery manager, etc.) based on this interface. Note that making trans-

action execution times predictable through an adequate architecture and OS support does

not guarantee that the deadline of a transaction will be met. It is the scheduling mechanism

of a real-time database management system that utilizes such information and guarantees

both consistency and timing constraints.

31

Chapter 3

Real-Time Database System Model

Most real-time database scheduling algorithms have been developed and evaluated under

almost the same workload and operating environment model used in conventional database

systems [1, 25, 28, 64]. That is, transactions are assumed to arrive in a Poisson stream

at a speci�ed mean rate. Each transaction consists of a random sequence of pages to

be read, a subset of which are updated. In addition, a conventional disk-based database

environment is assumed. The general approach is to utilize existing concurrency control

protocols, especially two-phase locking, and to apply time-critical transaction scheduling

methods that favor more urgent transactions [62]. While this model is suited to some

real-time database applications with soft or �rm deadlines (e.g., airline reservation system,

telephone directory service system, etc.), typical hard real-time database applications do not

�t into this model, since they require predictable execution of transactions and semantically

consistent data which may not satisfy serializability.

3.1 Real-Time Data Object Model

In our model, a real-time database consists of a set of data objects representing the state

of an external world controlled by a real-time system. There are two types of data objects

in a RTDBS: continuous and discrete.

Continuous data objects are related to external objects that are continuously changing

in time. There are two types of continuous data objects: one is an image object whose value

is obtained directly from a sensor and the other is a derived object whose value is computed

32

from the values of other data objects with a regular period. Discrete data objects are static

in the sense that their values do not become obsolete as time passes, and they remain valid

until update transactions change the values.

Di�erent from non-real-time data objects found in traditional databases, continuous

data objects are related with the following additional attributes:

� A timestamp tells when the current value of the data object was obtained.

� An absolute validity duration is the length of time during which the current value of the

data object is considered to be valid. The value of a continuous data object x achieves

absolute temporal consistency (or external consistency) only when t

now

� t

x

� avd

x

,

where t

now

is the current time, t

x

is the timestamp of x, and avd

x

is the absolute

validity duration of x.

� A relative validity duration is associated with a set of data objects �

y

used to derive

a new data object y. Such a set �

y

has a relative temporal consistency when the

timestamp di�erence (or temporal distance) between the data object y and any data

object in the set is not greater than the relative validity duration rvd

y

. The value of

a derived object y has temporal consistency only when all the values of data objects

in �

y

are externally consistent and �

y

satis�es relative temporal consistency.

A continuous data object is in a correct state if and only if the value of the object satis�es

both absolute and relative temporal consistency, while a discrete data object is in a correct

state as long as the value of the object is logically consistent (i.e., satis�es all integrity

constraints).

Observe that there is only one writer for each continuous data object and that its

value can be used as long as it maintains temporal consistency. Thus, serializability and

recoverability of transactions, on which most conventional databases depend to maintain

their correctness, may not be necessary for these kinds of data objects.

Let's denote that a real-time database R consists of the following data objects:

1. A set of image objects X = fx

1

; x

2

; : : : ; x

n

g,

33

2. A set of derived objects Y = fy

1

; y

2

; : : : ; y

m

g, and

3. A set of discrete data objects Z = fz

1

; z

2

; : : : ; z

l

g.

A set of data objects which is used to compute the value of a derived object y is denoted

as �

y

= f�

1

; �

2

; : : : ; �

k

g; �

i

2 X [Y [Z; 1 � i � k.

We will use this notations throughout the thesis.

3.2 Real-Time Transaction Model

Generally, a real-time transaction � has the following attributes:

1. Arrival time (a

�

)

2. Periodicity: a period (P

�

) if periodic, or a minimum inter-arrival time (M

�

) if sporadic

3. Timing constraints: Deadline (D

�

)

4. Priority (p

�

)

5. Execution time requirement (C

�

)

6. Data requirement: Read set (RS

�

) and Write set (WS

�

)

7. Criticalness (w

�

)

8. Value function (v

�

(t))

Based on the values of the above attributes, the availability of the information, and other

semantics of the transactions, a real-time transaction � can be characterized as follows:

1. Implication of missing deadline D

�

: hard , critical , or soft (�rm) real-time

2. Arrival pattern: periodic, sporadic, or aperiodic

3. Data access pattern: prede�ned (write-only , read-only , or update) or random

34

4. Data requirement: known or unknown

5. Runtime requirement (pure processor and data access time): known or unknown

6. Accessed data type: continuous, discrete, or both

We believe that if a RTDBS utilizes the unique characteristics of real-time data and trans-

actions, it can make more e�cient decisions in processing transactions and improve overall

system performance. Considering the above characterization of real-time data and trans-

actions, there are hundreds of possible transaction classes. However, some of them are

infeasible (e.g., a hard real-time transaction with random arrival pattern, random data ac-

cess set, and unknown execution time), and others can be grouped together to be processed

di�erently. In our model, a typical real-time database application consists of the following

classes of transactions:

Class I Transactions

This class includes all the hard periodic real-time transactions whose data and computation

requirements are supposed to be available in advance. Furthermore, Class I transactions

write only continuous data objects which require temporal consistency as their sole cor-

rectness criteria. It is thus feasible to guarantee their hard timing constraints using an

appropriate scheduling algorithm.

This class can be further divided into three subclasses according to the semantic

information of transactions:

Class IA Transactions. A transaction in this class is responsible for maintaining the

absolute temporal consistency of the database by writing a sampled value of an external

object to the corresponding image object with a regular interval (i.e., WS

�

� X). It is a

write-only (i.e., RS

�

= ;) transaction. We assume that the transaction is the only writer

to the corresponding image object (single-writer property). Thus, there is no write-write

conict

1

between a Class IA transaction and any other transactions.

1

a conict between any two transactions �

x

and �

y

if WS

�

x

\WS

�

y

6= ;

35

Class IB Transactions. Transactions of this class read some data objects (mainly, con-

tinuous data objects), compute new values of derived objects, and write them to the

database (i.e., RS

�

� X [Y [Z, WS

�

� Y). They do not conict with other Class

I transactions, since there can be only one writer for a derived object. Note that in order

to strictly maintain the correctness of the derived objects written by a Class IB transac-

tion, the values of data objects read by the transaction must be in a correct state until the

completion of the next instance of the transaction. However, we may be able to relax this

condition to be less conservative, depending on the semantics of a speci�c application.

Class IC Transactions. Class IC transactions periodically retrieve the values of data

objects (i.e., RS

�

� X [Y [Z) and send either some control decisions to actuators or the

retrieved data to display monitors. They are read-only transactions (i.e., WS

�

= ;) with

hard deadlines. They have di�erent validity requirements from Class IB transactions: the

values of data objects read by a Class IC transaction must be in a correct state until the

transaction is completed.

Class II Transactions

Transactions of this class are read-only transactions with some critical timing constraints.

Their timing constraints come from response-time requirements of the transactions, not from

the attributes of data. Di�erent from the Class IC transactions, they are not necessarily

periodic, and their run-time estimates and read sets are not always available in advance.

Also, their read sets may contain some discrete data objects which require serializable

accesses. For this reason, we cannot always guarantee that a Class II transaction will meet

its deadlines. This is the transaction class in which each transaction should have a di�erent

guarantee level as its performance requirement.

The main idea to achieve the speci�ed guarantee level of a Class II transaction is

to reduce the sources of unpredictability down to one dimension, making the transaction

execution time a function of only one variable (i.e., an indeterministic transaction attribute

such as data requirement). We assume that each transaction of this class has a speci�ed

36

minimum inter-arrival timeM

�

(i.e., sporadic) and a known selectivity distribution S

�

. If an

appropriate execution-time budget for a Class II transaction is given, the speci�ed guarantee

level can be achieved under the scheduling scheme to be presented in the next chapter.

Note that a Class II transaction can be either a hard or a soft real-time transaction

depending on its required guarantee level (i.e., hard real-time if the guarantee level is 1,

and soft real-time if it is 0). Determining the guarantee level of a Class II transaction is

entirely application-dependent.

Class III Transactions

All real-time transactions not belonging to any of the above classes can be categorized in

this group. They have either soft (Class IIIA) or �rm (Class IIIB) deadlines, their data

and run-time requirements are not always known, and they can access both continuous and

discrete data objects. Since data conicts between Class III and Class II transactions can

occur, an appropriate resolution scheme is required.

In fact, Class III transactions can be further divided into several classes and processed

di�erently. For example, a priori knowledge of the attributes of a transaction is sometimes

available for some soft real-time transactions and should be utilized to improve the system

performance. However, we decide not to further categorize soft real-time transactions but

to concentrate on Class I and Class II transactions. Much work has been already done for

Class III transactions [1, 25, 28, 64]. Moreover, all Class III transactions are supposed to

have the same level of importance (non-critical) and do not require an individual perfor-

mance guarantee. Non-real-time conventional transactions which do not have any timing

constraints and access only discrete data objects also can be included in this class as if they

have in�nite deadlines.

An interesting question to ask at this point is whether database consistency is guaran-

teed at all times while di�erent classes of transactions are scheduled by di�erent scheduling

algorithms. In fact, the database may be in an inconsistent state during certain intervals of

time. It is because transactions of Class IB, Class IC, and Class II are executed separately

from transactions of Class IA, even though they depend on the values written by Class IA

37

transactions. This decoupling among di�erent classes of hard deadline transactions is the

key in eliminating conicts among hard deadline transactions. However, even though data

objects may have inconsistent values at times, their values are su�ciently up-to-date to

satisfy temporal consistency requirements speci�ed by validity durations. In hard real-time

database systems, guaranteeing temporal consistency requirements is far more critical than

satisfying the conventional notion of serializability.

Our classi�cation of real-time transactions is summarized in Table 3.1. There may

be some exceptions in this classi�cation: for example, aperiodic update transactions with

hard deadlines and unknown data and run-time requirements. We exclude these cases

from our consideration because it is not feasible to guarantee their timing constraints, and

therefore they should not be hard real-time transactions. However, sometimes it is possible

to transform a transaction which does not belong to any of the above classes into a set of

related transactions in our classi�cation category. For example, if there is a highly-critical

transaction which must react to an aperiodic event within a given hard deadline, its function

can be implemented by two Class I transactions: one is to periodically update a ag which

indicates the arrival of the event (Class IA) and the other is to periodically read the ag

and make an appropriate action if the ag is on (the event occurs).

Most real-time database research uses the models which include only a subset of the

above classes (e.g., fClass Ig [61, 4, 66] or fClass IIIg [1, 25, 28, 64]), and never discriminate

among transactions in the system. However, in practice, all kinds of transactions can coexist

in one system.

Consider a medical information system as an example: Class IA transactions are

transactions which update the dynamic physical status of a critical patient from the sensor

devices, such as blood pressure, heart rate, and body temperature. Transactions that write

derived information from the raw data about the patient's physical status are Class IB

transactions. Class IC transactions may include the transactions monitoring the physical

status of the patient to provide information to life support devices. A decision-making

transaction issued by a surgeon during a critical operation on a patient can be regarded

as a Class II transaction. It may access not only the patient's current physical status but

38

Table 3.1: Classi�cation of Real-Time Transactions

Class Class I Class II Class III

Property A B C

Timing

constraints Hard Critical Soft or �rm

Arrival

pattern Periodic Sporadic Aperiodic

Data access No

pattern Write only Update Read only Read only restriction

Data

requirement Known Unknown Unknown

Runtime

requirement Known Unknown Unknown

Updated

data type Image Derived N/A N/A Discrete

Correctness Temporal Logical

criteria consistency Both consistency

Transaction

schedule Non-serializable Both Serializable

Performance Statistical No guarantee, but

goal 100% guarantee guarantee best-e�ort

39

also his or her medical history. Conventional record-keeping transactions on patient data,

such as retrieving and updating their weights and heights, can be classi�ed as Class III

transactions.

40

Chapter 4

Predictable Transaction Processing

Our model for a RTDBS supports all the transaction classes discussed in the previous

chapter. The performance goal of such a RTDBS is �rst to guarantee all the hard timing

constraints of Class I transactions, to achieve the speci�ed guarantee levels of Class II

transactions, and �nally, to minimize the deadline miss ratio of Class III transactions (or

maximize the total values of the completed transactions if a value function can be de�ned

for each transaction). At the same time, all the consistency requirements implicated in the

real-time database and transactions must be ful�lled.

To achieve this performance goal, it is necessary to apply di�erent transaction schedul-

ing and concurrency control algorithms for each class of transactions. In this chapter, we

present a framework to achieving predictable real-time transaction processing which in-

cludes a method to maintaining database consistency statically and an integrated scheduling

scheme to satisfying the performance requirement of each class of transactions.

4.1 Maintaining Temporal Consistency

There are two possible approaches to maintaining temporal consistency of real-time data

objects: one is static and the other is dynamic. In a static approach, temporal consistency

requirements are transformed into timing constraints of transactions. The system then has

only to provide a guarantee on the timing constraints, since as long as the corresponding

transactions meet their deadlines, the temporal consistency of the data objects accessed by

the transactions is automatically maintained [33, 51, 54]. In a dynamic approach, the system

41

keeps checking the temporal consistency at run time and tries to meet them dynamically,

by either using multiple versions of data objects [66] or delaying some transactions in favor

of more urgent transactions in terms of temporal consistency enforcement at the speci�c

moment [36].

In this section, we present a static approach which we call Static Temporal Consistency

Enforcement (STCE) scheme for our real-time database system model. We decided not to

go for a dynamic approach, since it involves signi�cant run-time overheads and may conict

with other scheduling mechanisms which are responsible for enforcing the timing constraints

of transactions. More importantly, our real-time database system model presented in the

previous chapter is designed for a static approach in mind. Our static approach is di�erent

from other static ones in that it provides a total guarantee on temporal consistency. In

other static approaches, temporal consistency is not guaranteed, but just its violation ratio

is tried to be minimized.

Throughout this section, we assume that the transactions are scheduled under a �xed-

priority scheduling framework, called deadline-monotonic scheduling scheme [3], where

priorities assigned to processes are inversely proportional to the length of the deadline.

Thus, the process with the shortest deadline is assigned the highest priority and the longest

deadline process is assigned the lowest priority. This priority ordering defaults to a rate-

monotonic ordering [53] when the period equals to the deadline.

Class IA Transactions

A Class IA transaction �

x

is responsible for maintaining the absolute temporal consistency

of an image object x. To achieve this, its period must satisfy the following condition:

avd

x

� P

x

+D

x

; (4.1)

where avd

x

is the absolute validity duration of x, P

x

is the period of �

x

, and D

x

is the

deadline of �

x

. This is because the worst-case next update time for an image object which

is written at the beginning of a certain period is the deadline of the next period (Figure 4.1).

42

ttt
n n+1 n+2

w(x w(x))T
x

Px Dx

n n+1

Figure 4.1: The Worst-Case Scenario for a Class IA Transaction

If the deadline of a transaction is the end of the period, the value of the period must be

less than or equal to the half of the absolute validity duration of the related image object

to maintain its absolute temporal consistency.

Class IB Transactions

The value of a derived object y is correct only while the value of each data object �

i

in �

y

is

correct (i.e., temporally consistent) and y maintains its correctness until the next instance of

the transaction updates the value. Unfortunately, it is extremely di�cult, if not impossible,

to ensure this dynamically. We approach this problem by giving some restrictions on the

attributes of transactions under a �xed-priority scheduling framework.

Assuming that the �rst periods of all transactions begin at the same time (in phase),

we �nd a su�cient condition to maintain the temporal consistency of a derived object:

A derived object y always has a correct value if each transaction �

�

i

which writes a

data object in �

y

, always meets the deadlines and satis�es the following condition:

P

y

= P

�

i

= D

�

i

� minfrvd

y

; 0:5 �min

j

(avd

�

j

)g (4.2)

for all �

i

2 �

y

\(X[Y), where rvd

y

is the relative validity duration of �

y

. Higher priorities

must be assigned to all �

�

i

than that of �

y

so that all �

i

s are written before �

y

and �

y

always

reads the most recent value of �

i

. Applying these conditions, �

y

maintains its relative

temporal consistency and each �

i

read by �

y

will be valid until the next update of y.

43

However, since this condition is very restrictive, we investigate how to relax this

condition, considering the semantics of a speci�c application. Suppose the given application

allows the following temporal consistency criteria of derived objects:

1. The values of �

i

in �

y

have only to be valid until the completion of �

y

.

2. The derived object y has its own absolute validity duration avd

y

.

3. �

y

must satisfy the relative temporal consistency requirement (i.e., temporal distance

d(y; x

i

) � rvd

y

for any x

i

2 �

y

\ (X [Y)).

Using this kind of semantic information, we can derive the following conditions for the

period and deadline of a Class IB transaction in order to maintain the temporal consistency

of derived objects under the deadline-monotonic scheduling framework:

P

x

i

+D

x

i

� avd

x

i

; (4.3)

P

y

+D

y

� avd

y

; (4.4)

D

y

� D

x

i

; and (4.5)

P

x

i

+D

x

i

� rvd

y

(4.6)

for all x

i

2 �

y

\ (X [Y). Here, if D

x

i

= D

y

, then a higher priority must be assigned to �

y

than that of �

x

i

so that �

y

reads x

i

before the next update of x

i

by �

x

i

. Note that unlike

Condition (4.2), all P

x

i

, D

x

i

, P

y

, and D

y

do not have to be the same as long as D

y

is less

than or equal to the smallest D

x

i

.

As long as the above conditions hold, the temporal consistency requirements related

with a derived object are always satis�ed. We can justify this statement as follows. First

of all, let's consider the two possible cases of a Class IB transaction's read operation (r(x

i

)

by �

y

in Figure 4.2).

Case I: �

y

reads x

i

after the current instance of �

x

i

updates x

i

(i.e., writes x

n

i

).

In this case, the value x

n

i

will be valid at least until the time t

n+1

+D

x

i

from Con-

dition (4.3) and the completion of �

y

comes before that time since D

y

� D

x

i

from

Condition (4.5). Thus, x

n

i

, the value read by �

y

, will be valid until �

y

completes.

44

ttt
n n+1 n+2

w(x

r(x r(x
n

i

n

i

n

i

))

w(x
n+1

i
))

Case I Case II

T

T

y

x
i

Px
i

Dx
i

Figure 4.2: Two Possible Cases of a Class IB Transaction's Read Operation

Case II: �

y

reads x

i

before the current instance of �

x

i

updates x

i

(i.e., writes x

n+1

i

).

In this case, the value x

n

i

read by �

y

will be valid at least until the time t

n+1

+D

x

i

from

Condition (4.3). Furthermore, �

y

should complete before that time (i.e., the deadline

of �

x

i

), since the priority of �

y

is higher than the priority of �

x

i

from Condition (4.5).

Thus, x

n

i

, the value read by �

y

will be valid until the completion of �

y

.

The above two cases cover all possible situations for the transaction �

y

and it is shown that

the absolute temporal consistency of �

y

is maintained in each case if the conditions (4.3)

and (4.5) hold. The absolute temporal consistency of y is guaranteed by Condition (4.4).

Therefore, the absolute temporal consistency involved in a derived object is always main-

tained under the given conditions.

Now, let's suppose that the arrival time of �

y

is a

y

. Then, the oldest possible times-

tamp of x

i

read by �

y

is a

y

+R

y

�max

8x

i

2�

y

\(X[Y)

(P

x

i

+D

x

i

) (R

y

is the worst-case response

time of �

y

), since x

i

must be valid until the completion of �

y

. Also, the latest possible times-

tamp of y is a

y

+ R

y

. Thus, the maximum temporal distance between the data object y

and any data object in �

y

\ (X [Y) is

max

8x

i

2�

y

\(X[Y)

(P

x

i

+D

x

i

):

According to the de�nition, �

y

satis�es its relative temporal consistency requirement if this

distance is less than or equal to rvd

y

(i.e., if Condition (4.6) holds).

From the above, we just show that all the temporal consistency requirements for a

45

derived object can be satis�ed if the conditions (4.3) through (4.6) retain.

Class IC Transactions

Since a Class IC transaction is read-only, the values of data objects read by the transaction

have only to be in a correct state until the transaction �nishes.

Suppose O

�

= fo

i

g is a set of data objects that are read by a Class IC transaction

� , rvd

�

is a relative validity duration of the set, and �

o

i

is responsible for updating the

data object o

i

. The set O

�

must satisfy its relative temporal consistency requirement (i.e.,

temporal distance between any two data objects in O

�

must be less than or equal to rvd

�

)

as well as the absolute temporal consistency of each data object in the set. The following

conditions are su�cient to maintain the above temporal consistency requirements by a Class

IC transaction, assuming that the �rst periods of all transactions begin at the same time

(in phase):

P

o

i

= D

o

i

� minfrvd

�

; 0:5 �min

j

(avd

o

j

)g; (4.7)

P

�

= n � P

o

i

; n = 1; 2; 3; : : : ; and (4.8)

D

�

� 2 � P

o

i

(4.9)

for all o

i

2 O

�

\ (X [Y), where rvd

�

is the relative validity duration of O

�

and � has a

lower priority than any �

o

i

to guarantee that it reads the most recent values of o

i

s. With

these conditions, O

�

satis�es its relative temporal consistency, and each o

i

read by � will

be valid at least until � �nishes (in the worst-case, the deadline of �).

Again, however, these conditions may be too restrictive for some applications. Alter-

native conditions for Class IC transactions similar to those of Class IB transactions can be

given as follows:

P

o

i

+ D

o

i

� avd

o

i

; (4.10)

D

�

� D

o

i

; and (4.11)

P

o

i

+D

o

i

�R

�

� rvd

�

(4.12)

46

for all o

i

2 O

�

\ (X[Y), where R

�

is the worst-case response time of � . Remind that trans-

actions are supposed to be processed under the deadline-monotonic scheduling framework.

In case D

o

i

= D

�

, � must be assigned a higher priority than that of �

o

i

so that it reads o

i

before the next update of o

i

by �

o

i

.

The justi�cation for the conditions (4.10) and (4.11) can be given similar to that

of Class IB transactions. We can divide the � 's read operation on o

i

into two possible

cases: the one is the case that �

y

reads o

i

after the current instance of �

o

i

updates o

i

and

the other is the case that � reads o

i

before the current instance of �

o

i

updates o

i

. In the

former case, the current value of o

i

will be valid at least until the next deadline of �

o

i

from

Condition (4.10) and the completion of � comes before that time since D

�

� D

o

i

from

Condition (4.11). Thus, the value of o

i

read by � , will be valid until � completes. In the

latter case, the current value of o

i

read by � will be valid at least until the current deadline

of �

o

i

from Condition (4.10). Furthermore, � should complete before that time, since the

priority of � is higher than the priority of �

o

i

from Condition (4.11). Thus, the value read

by � will be valid until the completion of � . From the above, we know that the absolute

temporal consistency of O

�

is maintained for � if the conditions(4.10) and (4.11) hold. Note

that since a Class IC transaction writes no data object, there is no restriction on its period.

Condition (4.12) can be justi�ed as follows: if the arrival time of � is a

�

, the oldest

possible timestamp of o

i

read by � is a

�

+R

�

�max

8o

i

2O

�

\(X[Y)

(P

o

i

+D

o

i

), since o

i

must

be valid until the completion of � , and the latest possible timestamp of o

i

read by � is

less than a

�

, since � has higher priority than any �

o

i

and thus �

o

i

cannot write o

i

while �

is runnable. Therefore, the maximum temporal distance between any two data objects in

O

�

\ (X [Y) is

max

8o

i

2O

�

\(X[Y)

(P

o

i

+D

o

i

) � R

�

;

and if it is less than or equal to rvd

�

(i.e., if Condition (4.12) holds), O

�

satis�es its relative

temporal consistency requirement.

In conclusion, all the temporal consistency requirements involved in a Class IC trans-

action can be achieved under the given conditions.

47

4.2 Integrated Transaction Scheduling

Since the STCE scheme described in the previous section transforms the temporal consis-

tency constraints of a real-time database into timing constraints of transactions, the RTDBS

now have only to concentrate on satisfying the timing constraints of the transactions, but

does not have to care about temporal consistency of data objects at run time. In other

words, with STCE the goal of a real-time database system (to meet both consistency and

timing constraints) can be achieved as long as the transactions meet their timing constraints.

In this section, we present an integrated transaction scheduling scheme to achieve this

goal. Since the transactions in each class de�ned in Chapter 3 have di�erent performance

requirements (i.e., di�erent guarantee levels on their timing constraints), a distinct schedul-

ing policy must be applied to each transaction class. Our approach to jointly scheduling all

the classes of transactions is to utilize a �xed-priority preemptive scheduling framework for

guaranteeing timing constraints of Class I and Class II transactions statically and a slack

stealing algorithm to �nd spare capacity for dynamically scheduling Class III transactions.

This approach requires to extend the base algorithms designed for real-time task scheduling

to support real-time transactions, and integrate them into our RTDBS model.

Suppose that a real-time database application consists of a set of transactions

T = fT

I

; T

II

; T

III

g;

where T

N

is a set of Class N transactions, N 2 fI; II; IIIg. We also denote the set of all

guaranteed transactions T

I

[T

II

as T

G

. Each class of transactions in T should be scheduled

to achieve its own performance goal as follows. We assume that the underlying subsystems

provide deterministic services to the transactions and thus real-time data objects can be

accessed with deterministic service time.

48

4.2.1 Guaranteed Scheduling

Total Guarantee on Class I Transactions

For all transactions in T

I

, the computation and data requirements are known in advance.

Also, there is no blocking due to data conicts with other transactions (i.e., these transac-

tions access only a �xed set of continuous data objects, and any values of the data objects

can be used as long as they maintain temporal consistency), requiring no concurrency con-

trol. Therefore, total guarantee can be provided for this class of transactions under a

�xed-priority scheduling algorithm.

In this research, we employ a deadline-monotonic approach for hard deadline guaran-

tee, since it is more exible than the rate-monotonic approach and easily extendible.

1

An

extended schedulability test for our model under this approach will be presented later in

this section.

Statistical Guarantee on Class II Transactions

If the worst-case execution time is available, hard sporadic transactions can be guaranteed

to meet their deadlines under a deadline-monotonic scheduling framework, as shown in

Section 2.1. Unfortunately, this is not the case for transactions in T

II

: its execution time is

not necessarily bounded.

However, if we assign an arbitrary execution time budget to a Class II transaction and

enforce it at run time, it can be included in the deadline-monotonic scheduling framework

and will always meet the deadline as long as the actual execution time does not exceed the

given budget. In order to meet its required guarantee level based on this idea, we must

determine an appropriate execution time budget for a Class II transaction.

Suppose that we can bound the time to fetch one instance of the data objects accessed

by a Class II transaction � (denoted as t

fetch

). Then, the pure execution time of � (denoted

1

In deadline-monotonic approach, the deadline and period of a process do not have to be equal. Such a

relaxation enables sporadic processes to be directly incorporated without alteration to the process model [3].

49

as C

�

) can be written as

C

�

= t

init

+ (t

fetch

+ t

comp

) �N � S

�

+ t

close

;

where N is the size of the database, S

�

is a random variable of the selectivity distribution

of � , and t

init

, t

comp

, and t

close

are the transaction initialization time, the pure computation

time of � per data object, and the transaction closing time, respectively.

Since the cumulative distribution function for S

�

is known, we can get the probability

that the worst-case execution time of � , C

�

, is t

s

:

Prob [C

�

� t

s

] = Prob [S

�

� s] = p

s

;

where t

s

= t

init

+ (t

fetch

+ t

comp

) �N � s+ t

close

.

We can claim that if the value t

s

is used as the transaction's maximum execution time

budget and the sporadic task scheduling scheme presented in Section 2.1 is employed, the

transaction will meet its deadline with the probability no less than p

s

(i.e., it will achieve

the given guarantee level p

s

).

The Class II transaction scheduling protocol can be summarized as follows:

1. Derive the selectivity s of a transaction � in T

II

from the given performance require-

ment (its guarantee level , p

s

) and the selectivity distribution (S

�

), and then calculate

the execution-time budget t

s

using s.

2. Regard � as a periodic transaction with the period M

�

(the minimum inter-arrival

time of �), the worst-case execution time t

s

, and the deadline D

�

. Then, � can be

scheduled under the deadline-monotonic scheduling framework.

3. Keep track of the consumed run time by � . If � has spent the given execution-time

budget t

s

but is not completed yet, it must be treated as a Class III transaction with

the highest priority until its deadline. In this way, overrunning Class II transactions

never a�ect the other hard deadline transactions in T

G

.

50

Table 4.1: Parameters and Notations

Notation Description

P

j

Period of �

j

in T

I

C

j

Worst-case computation time of �

j

in T

I

D

i

Deadline of �

i

in T

G

M

s

Minimum inter-arrival time of �

s

in hps(i)

C

s

Worst-case computation time of �

s

in hps(i)

P

clk

Clock interrupt handler period

C

clk

Worst-case execution time of a clock interrupt handler

C

int

Fixed overhead associated with a clock interrupt

C

QL

Cost of moving one process between queues

C

QS

Additional cost (per transaction) of moving

more than one transaction at a time

hpp(i) The set of higher-priority transactions than �

i

in T

I

hps(i) The set of higher-priority transactions than �

i

in T

II

sih Set of all sporadic interrupt handlers

M

h

Period of a sporadic interrupt handler in sih

associated with a transaction �

s

in hps(i)

C

IH

Computing cost of a sporadic interrupt handler

Extended Schedulability Analysis

The schedulability tests for the deadline-monotonic scheduling scheme presented in [3] does

not include the possible system overheads involved in the underlying kernel mechanism, such

as clock interrupt-driven scheduling, context switching, and sporadic interrupt handling. A

more realistic o�-line schedulability analysis method must be designed for transactions in

T

G

, considering the system's operating environment.

In the following, we present our extended schedulability analysis based on the analysis

in [9, 10]. The parameters and notations used in the analysis are summarized in Table 4.1.

In our RTDBS model, transactions are supposed to be scheduled by a timer-driven

51

scheduler [32] (i.e., the scheduler is invoked by a regular timing interrupt with a period

denoted by P

clk

). The scheduler maintains two queues of tasks: one called the delay queue,

containing a list of tasks ordered by next arrival time, and one called the run queue, contain-

ing a list of runnable tasks, ordered by priority. When the scheduler is invoked, it removes

any tasks where the arrival time is less than the current time, and places these tasks in the

run queue. The scheduler then dispatches the highest priority task. In the worst-case, the

scheduler must take all the tasks from the delay queue and place them in the run queue.

The computational overheads due to the execution of the scheduler must be included in the

analysis.

Suppose that the transactions in T

G

(= f�

1

; �

2

; : : : ; �

n

g) are ordered according to pri-

ority with �

1

having the highest priority and �

n

having the lowest. Then, for each �

i

, the

following relationship holds:

R

i

= C

i

+B

i

+ I

i

+ IS

i

+ IH

i

; (4.13)

where R

i

is the worst-case response time of �

i

, C

i

is the worst-case execution time of �

i

, B

i

is the worst-case blocking time of �

i

, I

i

is the interference that �

i

experiences from higher-

priority transactions in T

G

, IS

i

is the computational overheads due to the scheduler, and

IH

i

is the sporadic interrupt handler overheads. Then, the schedulability of a transaction

�

i

can be assessed by comparing the worst-case response time R

i

with the deadline:

R

i

� D

i

:

Each term in Equation (4.13) can be determined as follows:

I

i

=

X

8j2hpp(i)

&

R

i

P

j

'

C

j

+

X

8s2hps(i)

�

R

i

M

s

�

C

s

;

IS

i

= K � C

int

+min(K;V) � C

QL

+max(V �K; 0) � C

QS

; and

IH

i

=

X

8h2sih

�

C

IH

+

�

R

i

M

h

�

C

IH

�

;

52

where K is the maximum number of times the scheduler is invoked in a given interval (0; R

i

]

and V is the maximum number of transactions moved from the delay queue to the run queue

in the interval, which can be bounded by:

K =

�

R

i

P

clk

�

and V =

X

8j2T

G

&

R

i

P

j

'

:

The �rst and second term of the equation for I

i

represent the interferences that �

i

experiences from higher-priority Class I and Class II transactions, respectively. If the num-

ber of movements from the delay queue to the run queue (V) is larger than the number of

invocations of the timer-driven scheduler (K), then some of the invocations of the scheduler

will take more than one transactions from the delay queue. Therefore, some transaction

movements will not require time C

QL

, but C

QS

per transaction. Hence the costs of operating

the scheduler can be bounded as:

C

QL

�K + C

QS

� (V �K) if V � K

C

QL

� V otherwise:

Adding on the costs of the clock interrupt processing, we can obtain the formula for IS

i

as

above.

Each sporadic Class II transaction has associated with an interrupt handler. However,

it is not possible to simply add the cost of the interrupt handling into the cost of the sporadic.

This is because the interrupt handler is allowed to execute twice in an interval smaller than

M

i

. To understand this, consider the sporadic executing immediately after an interrupt has

occurred. This will turn interrupts back on again, and hence a second interrupt could occur

soon after the previous one. However, at most 3 interrupt handling activities can occur in

any interval 2M

i

. In general, N + 1 interrupts can occur in N intervals. Thus, the cost of

interrupt handling for Class II transactions (IH

i

) can be given as above.

Note that transactions in T

G

will not be blocked due to data contention with other

transactions, but we may need B

i

's to account for the blockings caused by unavoidable

critical sections in the kernel and the servers (for example, meta-data manipulation like

index).

53

In the above analysis, it is assumed that if a transaction completes, an interrupt is

raised and the highest priority transaction in run queue can be immediately scheduled.

However, it is not always supported by the operating system kernel. In some systems, a

clock interrupt is the only scheduling point and thus a context switch cannot occur in the

middle of a clock period due to a transaction completion. The amount of time between a

transaction completion and the next clock interrupt must be wasted. If this is the case, the

worst-case computation time of �

i

(C

i

) used in the above equations must be replaced by C

0

i

:

C

0

i

= (P

clk

� C

clk

)

�

C

i

P

clk

� C

clk

�

;

C

clk

= C

int

+ C

QL

+ (n� 1)C

QS

;

where C

clk

is the worst-case execution time of the clock interrupt handler and n is the

number of transactions in T

G

.

4.2.2 Non-Guaranteed Scheduling

In the preceding subsection, we described how to provide o�ine guarantees for Class I and

Class II transactions. It is noted that the provision of guarantees implies that computing

resources are under-utilized at run time (i.e., spare capacity exists at run time). This spare

capacity must be detected at run time and assigned to schedule non-guaranteed transactions

(i.e., overrunning Class II transactions and Class III transactions), while maintaining the

guarantees made o�ine regarding Class I and Class II transactions.

Exploiting Spare Capacity

Within the �xed-priority preemptive scheduling framework, a number of approaches have

been developed for scheduling soft real-time tasks along with the guaranteed hard real-time

tasks, as reviewed in Section 2.1. Our approach to scheduling non-guaranteed transactions

is based on dynamic slack stealing approach reviewed in Appendix A, which is shown to have

better exibility and performance than other approaches, such as background processing,

the Sporadic Server algorithm [67], the Extended Priority Exchange algorithm [68] and the

optimal static slack stealing algorithm [48].

54

Di�erent from the original dynamic slack stealing presented in [14], our algorithm

accounts the scheduler overheads included in our extended schedulability analysis. That is,

Equation (A.1) in Section A.2 must be modi�ed by adding the following term IS

w

i

(t), which

represents the clock interrupt handling overhead during the busy period, to the right-hand

side of the equation:

IS

w

i

(t) = K � C

int

+min(K;V) � C

QL

+max(V �K; 0) � C

QS

;

where

K =

�

w

m

i

(t)

P

clk

�

and V =

X

8j2T

G

&

w

m

i

(t)

P

j

'

:

In summary, the transaction processing protocol for non-guaranteed transactions un-

der the timer-driven scheduling environment can be described as follows:

1. Maintain the available slack time counter, S

i

(t) for every priority level i during [t; t+

D

i

(t)), using one of the dynamic slack stealing methods.

2. At each scheduling point, if there is no guaranteed transactions runnable, schedule

the highest priority non-guaranteed transaction.

3. If there exist both guaranteed and non-guaranteed transactions runnable at a schedul-

ing point but slack time is available at priority level k and all lower levels (i.e.,

min

8j2lp(k)

S

j

(t) > 0;

where k is the priority of the highest runnable guaranteed transactions), then the

highest-priority non-guaranteed transaction is scheduled.

4. Among the non-guaranteed transactions, an overrunning Class II transaction has

a higher priority than that of any other Class III transactions until its deadline is

reached.

55

Best E�ort Scheduling for Class III Transactions

Once spare capacity is available for Class III transaction processing, best e�ort must be

made choose a right transaction to schedule so that the total values of the completed

transactions can be maximized. If we assume that all Class III transactions have the same

values when they complete, the obvious goal of the scheduler is to meet as many deadlines

as possible. In this case, we can assign priorities to Class III transactions using one of the

following methods: Earliest Deadline First (EDF) or Least Slack First (LSF) [1]. Otherwise,

we need to de�ne a priority value function for each transaction:

p

�

(t) = f(v

�

(t); t� a

�

;D

�

; c

�

; C

�

� c

�

);

where c

�

is the consumed execution time budget for the current invocation of transaction

� .

Note that the soft deadline task model used in the original slack stealing studies [48,

14, 12] is di�erent from our Class III transaction model in that its performance goal is to

minimize their average response times. The schedulers do not care about the deadlines of

soft deadline tasks, but just process them in FIFO order.

4.3 Semantic Concurrency Control and Conict Resolution

As presented in Chapter 3, the real-time database model does not always require serial-

izable schedules for transactions to maintain consistency of the database. Utilizing the

inherent semantic information about transactions in speci�c classes, the real-time transac-

tion manager can make di�erent control decisions for di�erent classes of transactions, in

order to maximize the level of concurrency while maintaining both timing and consistency

constraints of the system.

In this section, we present a semantic concurrency control and conict resolution

scheme under our real-time database model. Our scheme is based on an optimistic real-

time concurrency control algorithm using Precise Serialization (OCC-PS) developed by Lee

and Son [41]. According to the recent studies in [24, 23, 25], optimistic approach appears

56

well-suited to real-time database systems. Especially, OCC-PS is shown to outperform other

real-time optimistic concurrency control algorithms, and more importantly, it can be easily

integrated with non-serializable transaction scheduling.

Under our Semantic Optimistic Concurrency Control (SOCC) algorithm, each class

of transactions is managed as follows so that both consistency and timing constraints of the

system can be satis�ed.

Class I Transactions

Class I transactions write only continuous data objects which do not require serializable

accesses as long as they are temporally consistent. There is no data conict among them, and

it is never necessary to block or abort transactions in this category, due to data contention.

Especially, no concurrency control is required for a Class IA transaction, since it is

a write-only transaction on some image objects and it is the one and only writer to the

objects. However, Class IB and IC transactions may experience read-write conicts with

Class III transactions, since they are allowed to read discrete data objects. Even in this

case, the Class I transactions can continue without blocking, while the conicting Class III

transactions must wait until the conicting Class I transactions commit. Note that the Class

III transactions do not have to be aborted or restarted as long as they can feasibly meet

the deadlines, since the Class I transactions are not going to write discrete data objects.

In conclusion, Class I transactions can bypass the validation phase of SOCC and

always commit without blocking.

Class II Transactions

We can also claim that Class II transactions do not experience any blocking due to data

contention, since:

� They never conict with Class I transactions, since serializable access is not necessary

for continuous data objects which can be shared by both classes of transactions. Class

IB, Class IC, and Class II transactions may share some discrete data objects, but they

57

do not conict with each other, since the accesses are read-only.

� There is no conict among Class II transactions, since they are read-only transactions.

� Even though a conict occurs with a Class III transaction, the Class II transaction

continues. The conicting Class III transaction must wait until the Class II transaction

commits.

Since the priority inversion problem due to shared data objects will not occur, no priority

ceiling protocol (PCP)-based synchronization scheme [54] is necessary. Therefore, Class II

transactions can also bypass the validation phase of SOCC and always commit.

Class III Transactions

As described above, if a Class III transaction conicts with a Class I or Class II transaction,

it just waits until the conicting transaction commits as long as it is still feasible. However,

if a conict occurs between two Class III transactions, it should be resolved based on their

priorities (e.g., WAIT-50 [25] and Feasible Sacri�ce [40]).

Class III transactions under the SOCC algorithm must go through the validation

phase and read phase as detailed in Figure 4.3 and Figure 4.4, respectively. Note that as

explained above, Class I and Class II transactions do not have to carry out these phases.

In OCC-PS, a concurrently running transaction, �

cr

, which has read data items up-

dated by the committing transaction, �

v

, is not always restarted. Instead, such write-read

conicts

2

are resolved by dynamically placing �

cr

ahead of �

v

in execution history. That is,

the order of �

cr

in history is dynamically arranged that it does not read from �

v

, and hence,

�

cr

needs not restart. Such placement of �

cr

in execution history is called backward ordering.

On the other hand, to resolve read-write

3

and write-write

4

conicts, OCC-PS adjusts the

serialization order as �

v

! �

cr

. Again conicts are resolved without restarts, because �

cr

's

writes do not a�ect the operations of �

v

. Such placement of �

cr

is referred to as forward

ordering.

2

conicts between the transactions �

v

and �

cr

if WS

�

v

\ RS

�

cr

6= ;

3

conicts between the transactions �

v

and �

cr

if RS

�

v

\WS

�

cr

6= ;

4

conicts between the transactions �

v

and �

cr

if WS

�

v

\WS

�

cr

6= ;

58

/* �

v

: a validating Class III transaction */

/* CR

II

(�

v

): a set of currently running Class II transactions for �

v

*/

/* CR

III

(�

v

): a set of currently running Class III transactions for �

v

*/

Algorithm validate (�

v

)

begin

/* Check if any active Class II transaction conicts */

/* with this validating Class III transaction, �

v

*/

forall �

cr

in CR

II

(�

v

) do

if WS(�

v

) \ RS(�

cr

) 6= ; then restart(�

v

);

end

/* Check if any active Class III transaction conicts */

/* with this validating Class III transaction, �

v

*/

forall �

cr

in CR

III

(�

v

) do

fore = back = FALSE;

if WS(�

v

) \ RS(�

cr

) 6= ; then back = TRUE;

if WS(�

v

) \ WS(�

cr

) 6= ; then fore = TRUE;

if RS(�

v

) \ WS(�

cr

) 6= ; then fore = TRUE;

if fore == back == TRUE then restart(�

cr

);

else if back == TRUE then insert �

v

to RCC(�

cr

);

end

commit WS(�

v

) (except late-writes) to database;

end

Figure 4.3: Validation Phase of a Class III Transaction

59

/* � : a running Class III transaction */

/* o

�

[x]: an operation of � (either r

�

[x] or w

�

[x]) */

Algorithm read phase check (o

�

[x]);

begin

forall �

rcc

in RCC(�) do

if o

�

[x] == r

�

[x] then

if x in WS(�

rcc

) then restart(�);

else /* i.e., o

�

[x] == w

�

[x] */

if x in RS(�

rcc

) then restart(�);

if x in WS(�

rcc

) then mark as a late-write;

end

end

end

Figure 4.4: Read Phase Check in a Class III Transaction

In the OCC-PS algorithm, a running transaction � , restarts only when it is involved

in not only a write-read conict with a validating transaction �

v

, but also involved in either

a read-write or a write-write conict with �

v

. In such a situation, the OCC-PS algorithm

attempts to place � both behind and in front of �

v

in execution history, which is clearly not

feasible, and hence � needs to be restarted. Note that such restarts are inevitable to ensure

serializability.

In validation phase (Figure 4.3), OCC-PS employs two ags, fore and back , which in-

dicate the current �

cr

's place relative to �

v

in execution history. In read phase (Figure 4.4),

the algorithm maintains for each running transaction � , a set of recently-committed transac-

tions having a write-read conict with � . Let RCC(�) denote the set for � . RCC(�) contains

only relevant transactions in serializing conicts during � 's read phase. Those transactions

are detected when a write-read conict occurs between � and a validating transaction. Note

60

that the serialization order between � and �

rcc

in RCC(�) determined in the validation phase

of �

rcc

is � ! �

rcc

. If � reads a data item updated by �

rcc

, � has to restart, because � 's reading

from �

rcc

results in the serialization order of �

rcc

! � . If � writes on a data item that has

been read by �

rcc

, � also has to restart, because �

rcc

has not read the value written by � ,

while their order in history is �

rcc

! � . Finally, if � writes on a data item written by �

rcc

,

instead of restarting � , the OCC-PS algorithm applies the Thomas' Write Rule [6], i.e.,

guarantees serializability simply by not committing the write value of � to database. (A

late write value of � can be discarded from the private workplace as soon as it is known

that the write is late.)

Di�erent from the original OCC-PS algorithm, our Semantic Concurrency Control

(SOCC) algorithm makes use of certain semantic information of transactions during the

validation phase. For example, when a validating Class III transaction �

v

checks if any active

Class II transaction conicts with itself, it does only one type of conict (i.e., write-read

conict) since it is known Class II transaction is read-only. Furthermore, when a conict

is detected between �

v

and an active Class II transaction �

cr

, the validating transaction �

v

must be restarted, since �

cr

has more critical deadline than �

v

and should not be restarted.

In this situation, OCC-PS inserts �

v

to RCC(�

cr

) and immediately commits �

v

, so �

cr

should

be restarted if it reads any data item in WS(�

v

) sometime later.

61

Chapter 5

Cost and Performance Evaluation

In this chapter, we compare the performance of our integrated real-time transaction schedul-

ing algorithms to that of the various conventional algorithms through simulation study. We

also explore how much it costs to guarantee the timing constraints of real-time transactions

and their temporal consistency requirements under our system.

5.1 Simulation Model

This section outlines the structure and details of our simulation model and explains how

each class of data objects and transactions in our model is generated synthetically for the

experiments.

First of all, the assumptions we made in our simulation study are as follows:

� The system consists of a single processor and a large main memory. The database is

memory resident. This assumption simpli�es our model and provides a deterministic

data access time for a transaction.

� Timer-driven scheduler (or tick scheduler), described in the previous chapter.

� A context switch cannot occur between the ticks, implying that the regular clock

interrupt is the only scheduling point. Even though a transaction completes before

the next tick, the remaining CPU time cannot be utilized by the highest priority

waiting transaction.

� No failure situation is assumed, and hence no recovery procedure is provided.

62

� Only �rm deadlines for Class III transactions. A Class III transaction whose deadline

has expired (tardy transaction) will be discarded (aborted) at the earliest possible

time. This is to avoid the complexity of scheduling tardy soft deadline transactions,

which is beyond the scope of this research.

� Once released, each transaction is supposed to execute for its given worst-case execu-

tion time. That is, the gain time (di�erence between the worst-case execution time

and the actual execution time of a transaction) is always 0 and cannot be reclaimed

by the slack stealing algorithms.

We implement the timer-driven scheduler described in Section 4.2. One tick is a basic

scheduling unit, which is called a clock interrupt in an actual system. However, unlike

in the conventional simulation model, one tick is not the unit of simulation time. It is

1,000 time unit in our model, so that we can simulate the overheads due to tick scheduling,

which are included in the extended deadline-monotonic schedulability analysis described in

Section 4.2.

1 tick = 1,000 time units

actual transaction execution

scheduling overhead

The other overheads, such as transaction release delays, slack calculation, and concurrency

control, are also considered in our simulation model.

5.1.1 Workload Characteristics and Generation

To evaluate the cost and performance of our algorithms in a simulation program, we need

to generate synthetic real-time databases and transaction workloads.

63

Real-Time Databases

The real-time database used in the simulation is generated according to the model described

in Chapter 3. First, a given number of image objects are generated, each having an absolute

validity duration (avd). A number of derived objects is then generated, each with a set of

data objects that are used to compute the value of a derived object and its relative validity

duration (rvd). Finally, the number of discrete data objects in the database is determined.

Real-Time Transactions

The transaction loads for Class I and Class II transactions are simulated using groups

of transaction sets with utilization levels of 30, 50, and 70 %. The results presented in

subsequent sections are the averages over a group of �ve transaction sets. Each transaction

set is generated as follows. First, Class IA and Class IB transactions for each image and

derived object are generated. Then, a number of Class IC transactions are generated, each

with a randomly generated read set and the corresponding relative validity duration. The

periods and deadlines of Class I transactions are assigned, constrained by the equations

in Section 4.1. Execution times of Class I transactions are calculated, considering the

transaction processing overhead and data object access time. The transaction set for Class

I and Class II, generated as above, is then sorted into deadline monotonic priority order

and go through the schedulability test presented in Section 4.2. The above steps should be

repeated until a schedulable transaction set with a desired utilization level is obtained.

To simulate sporadic arrival of Class II transactions, each Class II transaction �

i

has

the following probability of arrival per tick (Prob

arr

�

i

) at time t:

Prob

arr

�

i

=

8

>

>

>

>

<

>

>

>

>

:

0 if �l

i

(t) < P

i

1

P

i

otherwise

;

where l

i

(t) is the time relative to t of the previous arrival of transaction �

i

.

The Class III transaction load is simulated by a pre-generated queue of transactions,

each having prede�ned attributes, such as deadline, execution time, read set, and write

64

Table 5.1: System Parameters

Parameter Name Description Base value

P CLK (TICK) P

clk

in Table 4.1 1000

C INT C

int

in Table 4.1 2

C QL C

QL

in Table 4.1 6

C QS C

QS

in Table 4.1 3

C IH C

IH

in Table 4.1 2

INIT TIME transaction initialization overhead 100

CLOSE TIME transaction closing overhead 100

READ TIME unit data object read time 10

COMP TIME unit data object processing time 5

WRITE TIME unit data object write time 20

VALIDATION TIME concurrency control overhead 100

SLACK CALC COST slack calculation overhead 500

SLACK CALC PERIOD slack calculation period 100

set. The value of each attribute is generated using an appropriate distribution function,

for example, uniform, triangular or Pearson type V [37]. The arrival times of the Class III

transactions follow an exponential random distribution over the test duration. The number

of Class III transactions is varied to produce a range of total processor utilization levels

(plotted on the x-axis of the graphs). That is, the workload generator generates transactions

until the sum of execution times is not greater than the test duration multiplied by the target

Class III utilization level. The mean inter-arrival time of Class III transactions is then the

test duration divided by the number of generated Class III transactions.

5.1.2 Simulation Parameters

Table 5.1 shows the names and meanings of the parameters that control system re-

sources. The values of P CLK, C CLK, C QL, C QS, and C IH are �xed throughout the experi-

ments as in the table, since their variation will a�ect the scheduling overhead of the system

65

Table 5.2: Workload Parameters

Parameter Name Description Base value

util ClassI utilization level of Class I transactions {

util ClassII utilization level of Class II transactions {

util ClassIII utilization level of Class III transactions {

MEAN AVD average absolute validity duration 100000

MEAN RVD average relative validity duration 100000

MEAN TRANS SIZE average transaction execution time 2500

MEAN PERIOD average transaction period 1000000

MIN SLACK minimum slack factor 2

MAX SLACK maximum slack factor 8

WRITE RATIO write probability of a Class III transaction 0.25

but will not change the relative performances of di�erent scheduling algorithms. The param-

eters INIT TIME, CLOSE TIME, READ TIME, COMP TIME, WRITE TIME, and VALIDATION TIME

are used to calculate the execution time of a transaction. For example, if a transaction �

updates N data objects, its execution time C

�

is INIT TIME + N * (READ TIME + COMP TIME

+ WRITE TIME) + VALIDATION TIME + CLOSE TIME. Since we use an optimistic approach,

the cost of concurrency control mostly comes from the validation phase of a transaction

processing and the parameter VALIDATION TIME represents the cost. SLACK CALC COST

is the overhead to calculate the slack at all priority levels in the HASS algorithm and

SLACK CALC PERIOD is the period of the slack calculation in the PASS and HASS algo-

rithms.

Table 5.2 summarizes the key parameters that characterize system workload and trans-

actions. The sum of util ClassI and util ClassII will be one of the values between 0.3

and 0.7, and the value of util ClassIII will be varied from 0.0 and 1.2 � util ClassI �

util ClassII in each experiment. The parameters MEAN AVD, MEAN RVD, MEAN TRANS SIZE,

and MEAN PERIOD are used to generate random values of the corresponding transaction and

66

data object attributes by a given distribution function (e.g., Pearson type V). The assign-

ment of deadlines to Class II and Class III transactions is controlled by the parameters,

MIN SLACK and MAX SLACK, which set a lower and upper bound, respectively, on a trans-

action's slack time. We use the following formula to assign a deadline to a transaction

� :

D

�

= uniform(MIN SLACK, MAX SLACK) * C

�

.

The base values for parameters shown in Tables 5.1 and 5.2 are not meant to model a

speci�c real-time application. They were chosen to be reasonable for a wide range of actual

database systems. The values of some parameters will be varied in each experiment, but

the others are �xed throughout the base experiments. The e�ects of the parameters whose

values are �xed in the base experiments will be explored in the separate experiments.

5.1.3 Performance Metrics

The key performance criteria used in this simulation study is the deadline miss ratio of

Class III transactions. Miss Ratio is calculated with the following equation:

Miss Ratio =

number of tardy jobs

number of jobs arrived

:

We use this criteria as it gives a measure of how early spare capacity can be made available

and how e�ciently the given spare capacity can be used for soft real-time transaction

processing. The deadline miss ratio of Class I and II transactions must always be 0 in

our scheduling framework, if our o�-line schedulability analysis is correct, but it would not

be the case for the conventional real-time transaction scheduling algorithms, where all the

transactions are equally treated.

Other important performance metric is the frequency of temporal consistency violation.

It must be 0 all the time if the static enforcement scheme presented in Chapter 4 is applied

to the transaction set, but it would not always be 0 if that scheme is not employed.

67

5.2 Experiments and Results

The simulation program is written in C++. For each experiment, we ran the simulation

with the same parameter values for at least 5 di�erent random number seeds. Each run

continues for up to 2,000,000,000 time units (= 2,000,000 ticks = 20,000 sec, if TICK = 10

ms). For each run, the statistics gathered during the �rst and the last 5% of the simulation

time (1,000 sec) were discarded in order to collect the stabilized system state after initial

and before terminal transient situation.

The experiments conducted for this study were designed to investigate the impact of

our real-time database model, static enforcement of temporal consistency, integrated trans-

action scheduling, and semantic concurrency control scheme, compared to the conventional

approaches. Hence, the following system con�gurations were implemented and tested for

experiments:

� A conventional scheduling policy for soft/�rm real-time transactions. We call this Blind

policy, since it is not aware of each transaction's distinct semantics and requirements,

although they are available in advance. That is, under the Blind scheduling policy,

hard and soft deadlines cannot be discriminated, and all transactions are scheduled

solely based on their arrival time (FCFS) or priorities (EDF, LSF).

� Our integrated scheduling scheme (Guaranteed) with the following variations:

1. Spare-Capacity Finding (SCF) policy {

a policy to exploit the spare capacity for Class III transaction execution in a

�xed-priority preemptive system, in the context of our framework:

(a) Background processing (Background) { the simplest and perhaps least e�ec-

tive approach is to execute Class III transactions at a lower priority level

than any Class I and Class II transactions.

(b) Optimal slack stealing (Optimal), described in Section A.3.

(c) Approximate slack stealing (PASS, HASS), described in Section A.4.

68

2. Class III scheduling (CIII) policy { priority assignment and concurrency control

algorithms for Class III transactions:

(a) FCFS without concurrency control (FCFS/NO-CC)

(b) EDF with concurrency control (EDF/CC)

(c) LSF with concurrency control (LSF/CC)

We also investigate the e�ects of changes in certain parameters, such as write ratio (conict

ratio) and slack calculation overhead, on overall performance of the system.

Note that, since our research intention is not to compare the conventional transac-

tion scheduling and concurrency control algorithms, but to investigate the impacts of their

integration into our framework, we do not implement many of them, but choose some of

the algorithms which are considered the best (and also practical in our framework) in each

category. For example, we use the semantic concurrency control scheme based on OCC-PS

(SOCC), described in Chapter 4, as the only concurrency control and conict resolution

policy in our simulation study, and do not consider any other policies like two-phase locking

(2PL) based ones. Their performances are already investigated in other work, as mentioned

in Chapter 2.

5.2.1 No Class I and II, but all Class III transactions

In this experiment there is no Class I and Class II transaction load. Since there are only

Class III transactions in the system, this can reproduce the results of the past research on

soft/�rm real-time transaction scheduling.

Figure 5.1 shows the results for the three di�erent priority assignment policies under

SOCC. As reported in [1], EDF and LSF perform better than FCFS. At lower load settings,

EDF perform close to LSF. As the load increases, the performance margin of EDF over

FCFS narrows and LSF becomes the best policy. Obviously, this is because EDF assigns

high priorities to transactions which have missed or are about to miss their deadlines.

Nevertheless, we will not use LSF for Class III transactions in the following experiments,

since most of the transactions in this class do not have the runtime estimates.

69

5.2.2 Cost of Timing Constraint Guarantee

The following experiments are performed to evaluate the cost of timing constraint guarantee

for Class I and Class II transactions and the performance of the various SCF policies in our

system.

E�ect of Spare-Capacity Finding policy

Figures 5.2 through 5.7 show the results of several SCF scheduling policies under the

EDF/SOCC Class III scheduling policy at three di�erent utilization levels for Class I and II

transactions. For comparison purposes, we include the result of the conventional real-time

transaction scheduling policy (Blind) at each graph.

As seen in Figures 5.2, 5.4 and 5.6, under Blind some of the Class I transactions

miss their deadlines, while under our integrated scheduling scheme (Guaranteed) all the

Class I transactions meet their deadlines. Note that the deadline miss ratio of a Class II

transaction is supposed to be not greater than its given guarantee ratio. It is achieved

under Guaranteed, but not under Blind. In fact, the actual deadline miss ratio of Class II

transactions is much lower than required (1:0 � guarantee level). In Figures 5.2 and 5.4,

all the Class II transactions whose guarantee levels are 99% meet their deadlines, but in

Figure 5.6 96% of Class II transactions whose guarantee levels are 80% meet their deadlines

under Guaranteed. This is because a Class II transaction whose execution time budget is

expired is processed in slack time, at the expense of Class III transactions.

We also observe that the performances of the Class I and Class II transactions under

Guaranteed are not a�ected by the Class III transaction loads; however, this is not the case

under Blind.

Figures 5.3, 5.5 and 5.7 show the deadline miss ratio of Class III transactions under

various scheduling policies. At all utilization level of Class I and Class II transactions, the

Blind scheduling shows the better performance for Class III transactions than any other

Guaranteed schemes, but at the expense of Class I and Class II transactions. Class III

transactions under Guaranteed schemes miss more deadlines than under Blind, since they

70

are scheduled using only spare capacity after the o�-line guarantee on Class I and Class II

transactions. We thus consider this performance margin between Blind and Guaranteed as

the cost of guarantee on the timing constraints of Class I and II transactions. For example,

the cost of guarantee of HASS at 70% of total utilization in Figure 5.5 is about 0.18 (i.e.,

18% more Class III deadline miss). We can see that the cost of guarantee increases as

the Class I and Class II transaction load gets higher (from 30% to 70%). Obviously, there

are more chances to meet the deadlines of Class III transactions as more slack times are

available for them at low utilization level of Class I and Class II transactions.

Among the di�erent SCF policies, Background performs the worst and Optimal slack

stealing shows the best performance at all transaction loads, as expected. The performance

degradation of PASS over Optimal is due to its periodic calculation of slack, and the perfor-

mance of HASS su�ers comparing to PASS, since it includes the slack calculation overhead.

We also observe that the relative performances among slack stealing algorithms are not

much varied at di�erent Class I and Class II transaction loads.

E�ect of Priority Assignment Policy

Figures 5.8, 5.9, and 5.10 show the results of di�erent priority assignment policies for Class

III transactions. In all cases, FCFS performs the worst and LSF performs the best. The

performance margin between FCFS and EDF gets smaller as the total utilization level gets

higher under the Blind policy, since EDF gets worse more rapidly. However, it does not

seem to be the case under our Guaranteed policy. That is, EDF shows relatively better

performance under Guaranteed than under Blind.

The relative cost of guarantee seems to be similar among di�erent Class III scheduling

policies at all Class I and Class II transaction load, except one case: Class III transactions

may meet more deadlines under the Guaranteed policy than the Blind policy (no cost of

guarantee) if they are scheduled by FCFS and the combined load of Class I and Class II

transaction is low (Figure 5.8).

71

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1 1.2

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

FCFS
EDF
LSF

Figure 5.1: No Class I and II, Only Class III Transactions, SOCC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 I

an
d

II
de

ad
lin

e
m

is
s

ra
tio

Total utilization

Blind (ClassI)
Blind (ClassII)

Guaranteed (ClassI)
Guaranteed (ClassII)

Figure 5.2: 30% Class I and II, 99% Class II Guarantee Level, EDF

72

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind
Background

Optimal
PASS
HASS

Figure 5.3: 30% Class I and II Utilization, EDF

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 I

an
d

II
de

ad
lin

e
m

is
s

ra
tio

Total utilization

Blind (ClassI)
Blind (ClassII)

Guaranteed (ClassI)
Guaranteed (ClassII)

Figure 5.4: 50% Class I and II, 99% Class II Guarantee Level, EDF

73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind
Background

Optimal
PASS
HASS

Figure 5.5: 50% Class I and II Utilization, EDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

C
la

ss
 I

an
d

II
de

ad
lin

e
m

is
s

ra
tio

Total utilization

Blind (ClassI)
Blind (ClassII)

Guaranteed (ClassI)
Guaranteed (ClassII)

Figure 5.6: 70% Class I and II, 80% Class II Guarantee Level, EDF

74

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind
Background

Optimal
PASS
HASS

Figure 5.7: 70% Class I and II Utilization, EDF

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Blind/EDF
HASS/EDF

Blind/LSF
HASS/LSF

Figure 5.8: 30% Class I and II Utilization

75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Blind/EDF
HASS/EDF

Blind/LSF
HASS/LSF

Figure 5.9: 50% Class I and II Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Blind/EDF
HASS/EDF

Blind/LSF
HASS/LSF

Figure 5.10: 70% Class I and II Utilization

76

5.2.3 Cost of Temporal Consistency Guarantee

As we discussed in Section 4.1, enforcing the temporal consistency requirements of real-

time database statically may result in higher load of Class I transactions and consequently

greater deadline miss ratio of Class III transactions. In order to evaluate the cost of our

static temporal consistency enforcement scheme (STCE) at various situations, we conducted

experiments on three di�erent test applications: the utilization levels of the original sets

of Class I and Class II transactions (No STCE) are 9.5%, 30.2%, and 35.6%, and those of

the modi�ed sets according to STCE (STCE) are 19.1%, 31.2%, and 42.7%, respectively.

That is, the increased utilization level of Class I and Class II transactions due to the STCE

scheme varies at each test case. In all three experiments, we use EDF/SOCC as the CIII

policy and HASS as the SCF scheme.

As seen in Figures 5.14, 5.15, and 5.16, the temporal consistency is always maintained

by the static temporal consistency enforcement scheme under our integrated scheduling

mechanism (STCE/Guaranteed). However, if we don't apply STCE to the given set of Class

I and Class II transactions (No STCE/Blind and No STCE/Guaranteed), the signi�cant num-

ber of transactions will violate the temporal consistency requirements. Even though the

transaction set satis�es the STCE conditions, the temporal consistency cannot be guaran-

teed if one of the Guaranteed scheduling policies is not used (STCE/Blind).

We can also observe that the bigger increment of the Class I and II load due to STCE

results in the higher violation ratio of temporal consistency. In Figure 5.14 (Figure 5.15), the

Class I and II utilization increases by about 10% (1%), and then about 70% (15%) of Class I

transactions violate the temporal consistency requirements. The Class III transaction load

does not a�ect the temporal consistency violation ratio.

In Figures 5.11, 5.12, and 5.13, the performance di�erence between STCE/Guaranteed

and No STCE/Guaranteed represents the cost of the static temporal consistency guarantee.

The total cost of guarantee on timing constraints and temporal consistency requirements

is shown as the performance margin between STCE/Guaranteed and No STCE/Blind in the

graphs.

77

Unlike the temporal consistency violation ratio, the performance of Class III transac-

tions does not seem to be a�ected by the amount of the increased Class I and II utilization,

but it looks sensitive to the combined utilization level of Class I and II transactions. As the

utilization level of Class I and II transactions gets higher, the cost of guarantee increases.

5.2.4 E�ects of Various Parameter Settings

In the previous experiments, we used the �xed values for parameters SLACK CALC COST,

SLACK CALC PERIOD, VALIDATION TIME, and WRITE RATIO, as in Tables 5.1 and 5.2. In

the following experiments, we investigate the impacts of these parameters on the overall

system performance. The combined utilization of Class I and II transactions is set to 50%

throughout the following experiments.

Varying Slack Calculation Overhead

We did not perform the experiments for PASS with the various SLACK CALC PERIOD values,

since the impact of this parameter has been already studied in [12]. Typically, to achieve

close to optimal performance, the slack calculation period (SLACK CALC PERIOD) in the PASS

algorithm needs to be the same order of magnitude as the shortest minimum inter-arrival

time of any Class I or II transaction. Increasing the period of PASS results in increased

Class III deadline miss ratio. With a period close to the longest minimum inter-arrival time

of any Class I or Class II transaction, performance may be little better than the Background

processing.

Figures 5.17, 5.18, and 5.19 show the results of the HASS algorithms with the various

SLACK CALC PERIOD values under the EDF/SOCC Class III scheduling policy. Since under

the HASS algorithm the slack calculation is only performed in slack time, the performance

of Class III transactions su�ers at short SLACK CALC PERIOD values (e.g., less than 50 ticks).

As illustrated in the graphs, we can hardly determine a single SLACK CALC PERIOD value

which performs the best at all transaction loads. It heavily depends on the characteristics

of the given Class I and II transaction set. Fortunately, the performances of HASS with the

reasonably long SLACK CALC PERIOD values are comparable to each other.

78

Cost of Serializability

We can use the results of the experiment where concurrency control was turned o� to

understand how the enforcement of serializable schedules a�ects performance in terms of

missed deadlines. Figure 5.20 shows the performance of serialized (CC) and unserialized (No

CC) versions for EDF. The unserialized versions perform better than the serialized version

for each algorithms. This performance di�erence represents the cost of serializability (i.e.,

cost of logical consistency) and shows the e�ciency of the concurrency control algorithm.

Increasing Conicts

In this experiment we varied the value of WRITE RATIO from 0.0 to 1.0 in increments of

0.25. Since transactions access the same number of objects, the probability of conict gets

higher when WRITE RATIO increases. Thus we can see how our semantic concurrency control

(SOCC) algorithm performs as the number of conicts changes.

The experiment results show that at low WRITE RATIO (Figure 5.21) EDF performs

much better than FCFS. As WRITE RATIO increases, however, the performance margin be-

tween FCFS and EDF gets smaller (Figures 5.22 and 5.23), and �nally FCFS starts to perform

better than EDF at an extreme WRITE RATIO value (Figure 5.24). This is because the num-

ber of restarts (and thus the number of aborts) increases as the probability of conicts

grows under EDF, while FCFS (i.e., serial execution) does not su�er from the conicts.

One noteworthy observation is that the performance margin between FCFS and EDF

under our Guaranteed scheduling (i.e., HASS/FCFS vs HASS/EDF) is more rapidly closing

than under the conventional Blind scheduling (i.e,. Blind/FCFS vs Blind/EDF), as WRITE RATIO

increases.

Increasing Concurrency Control Overhead

In order to see how the overhead of our SOCC algorithm a�ects the overall system perfor-

mance, we varied the value of VALIDATION TIME from 0 to 1,000 (10ms), since the validation

phase is the main source of overhead in optimistic concurrency control algorithms. Thus, in

79

Table 5.3: Utilization Increment due to CC Overhead

Total utilization 0.6 0.7 0.8 0.9 1.0

(Class III utilization) (0.1) (0.2) (0.3) (0.4) (0.5)

VALIDATION TIME = 100 (1ms) 0.005 0.01 0.015 0.02 0.024

VALIDATION TIME = 500 (5ms) 0.055 0.05 0.075 0.1 0.12

VALIDATION TIME = 1000 (10ms) 0.05 0.1 0.015 0.2 0.24

this experiment, we can see how the performance of EDF/SOCC su�ers as the concurrency

control (CC) overhead increases, comparing to that of FCFS without concurrency control

overhead.

Figures 5.25, 5.26, 5.27, and 5.28 show the results of the experiment at four di�erent

CC overhead levels. Beware that these graphs may be misleading, since the lines for EDF

contain the CC overheads. That is, with the same set of Class III transactions, the CPU

utilization of the transactions under EDF/SOCC is greater than that of under FCFS without

any such overhead. We must consider this utilization increment when we read the graphs.

Since the unit overhead (VALIDATION TIME) is involved in each Class III transaction,

the utilization increment due to CC overhead can be calculated as VALIDATION TIME di-

vided by the mean inter-arrival time of Class III transactions at the given utilization level.

Table 5.3 shows some of the calculated values at each VALIDATION TIME value.

For example, in Figure 5.27, the Class III deadline miss ratio at the total utilization

0.9 under HASS/EDF is 0.35 and the utilization increment due to CC overhead is 0.1. Thus,

the comparable total utilization under HASS/FCFS is 0.8 (= 0:9 � 0:1), and the Class III

deadline miss ratio at this level is 0.29 (FCFS performs better than EDF!).

If we read the graphs in this way, we can observe that at low CC overhead (= 100,

5% of the mean execution time of a Class III transaction), EDF performs better than FCFS

under our Guaranteed scheduling algorithms (HASS in this experiment). However, as the

CC overhead increases the performance of EDF su�ers and at some point (= 500, 25% of

the mean execution time of a Class III transaction), it starts to perform worse than that

80

of FCFS. In other words, we can conclude that there is no bene�t from the priority-based

Class III scheduling algorithm (EDF) if the concurrency control overhead is too high.

One interesting observation to note is that EDF always performs better than FCFS

under the conventional Blind scheduling regardless of the CC overhead.

81

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.2 0.4 0.6 0.8 1 1.2

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

No STCE/Blind
No STCE/Guaranteed

STCE/Guaranteed

Figure 5.11: Combined Load of Class I and II: No STCE=9.5%, STCE=19.1%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

No STCE/Blind
No STCE/Guaranteed

STCE/Guaranteed

Figure 5.12: Combined Load of Class I and II: No STCE=30.2%, STCE=31.2%

82

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

No STCE/Blind
No STCE/Guaranteed

STCE/Guaranteed

Figure 5.13: Combined Load of Class I and II: No STCE=35.6%, STCE=42.7%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8 1 1.2

T
em

po
ra

l C
on

si
st

en
cy

 V
io

la
tio

n
R

at
io

Total utilization

No STCE/Blind
No STCE/Guaranteed

STCE/Blind
STCE/Guaranteed

Figure 5.14: Combined Load of Class I and II: No STCE=9.5%, STCE=19.1%

83

0

0.05

0.1

0.15

0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

T
em

po
ra

l C
on

si
st

en
cy

 V
io

la
tio

n
R

at
io

Total utilization

No STCE/Blind
No STCE/Guaranteed

STCE/Blind
STCE/Guaranteed

Figure 5.15: Combined Load of Class I and II: No STCE=30.2%, STCE=31.2%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

T
em

po
ra

l C
on

si
st

en
cy

 V
io

la
tio

n
R

at
io

Total utilization

No STCE/Blind
No STCE/Guaranteed

STCE/Blind
STCE/Guaranteed

Figure 5.16: Combined Load of Class I and II: No STCE=35.6%, STCE=42.7%

84

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

HASS-50
HASS-100
HASS-250
HASS-500

HASS-1000

Figure 5.17: 30% Class I and II Utilization, EDF/SOCC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

HASS-50
HASS-100
HASS-250
HASS-500

HASS-1000

Figure 5.18: 50% Class I and II Utilization, EDF/SOCC

85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

HASS-50
HASS-100
HASS-250
HASS-500

HASS-1000

Figure 5.19: 70% Class I and II Utilization, EDF/SOCC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS/NO-CC
HASS/FCFS/NO-CC

Blind/EDF/NO-CC
HASS/EDF/NO-CC

Blind/EDF/CC
HASS/EDF/CC

Figure 5.20: 50% Class I and II Utilization, No CC vs CC

86

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Blind/EDF
HASS/EDF

Figure 5.21: 50% Class I and II Utilization, WRITE RATIO = 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Blind/EDF
HASS/EDF

Figure 5.22: 50% Class I and II Utilization, WRITE RATIO = 0.5

87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Blind/EDF
HASS/EDF

Figure 5.23: 50% Class I and II Utilization, WRITE RATIO = 0.75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Blind/EDF
HASS/EDF

Figure 5.24: 50% Class I and II Utilization, WRITE RATIO = 1.0

88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Blind/EDF
HASS/EDF

Figure 5.25: 50% Class I and II Utilization, CC Overhead = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Bline/EDF
HASS/EDF

Figure 5.26: 50% Class I and II Utilization, CC Overhead = 100

89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Figure 5.27: 50% Class I and II Utilization, CC Overhead = 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

C
la

ss
 II

I d
ea

dl
in

e
m

is
s

ra
tio

Total utilization

Blind/FCFS
HASS/FCFS

Blind/EDF
HASS/EDF

Figure 5.28: 50% Class I and II Utilization, CC Overhead = 1000

90

5.3 Summary

Our simulation results have illustrated the tradeo�s between the conventional best e�ort

transaction scheduling algorithms and our integrated transaction processing schemes at

various workloads and parameter changes. It is di�cult to draw any de�nite conclusions,

but at least we believe the following statements hold from our simulation study.

� Under our integrated transaction scheduling schemes (Guaranteed), the required per-

formance level of each class of transactions can be achieved:

{ All the deadlines of Class I transactions are met, as guaranteed in the o�-line

schedulability test.

{ Statistical guarantee for Class II transactions is achieved. That is, the chances

that Class II transactions meet their deadlines are not lower than the given

guarantee levels. In fact, Class II transactions can meet much more deadlines

than required, since they utilize the slack time in case of overrunning.

� Cost of guarantee on timing constraints

Class III transactions miss more deadlines under Guaranteed than under the conven-

tional best-e�ort scheduling (Blind), where some Class I and II transactions miss their

deadlines and sometimes violate the temporal consistency requirements. This cost of

guarantee varies, depending on how to �nd the spare-capacity for Class III transac-

tion processing (SCF), how to assign priorities to Class III transactions, and how to

resolve the conicts among concurrently-running transactions (CIII).

{ Among the SCF policies we studied, Optimal slack stealing minimizes the cost.

However, considering the implementation overhead, HASS may be a more realistic

choice.

{ Among the CIII policies, LSF/SOCC seems to be the best choice. However, since

LSF requires run-time estimates for Class III transactions which are not available

all the time, EDF/SOCC may be a more reasonable option. In fact, EDF/SOCC

shows relatively better performance under Guaranteed than under Blind.

91

{ Priority-based scheduling with concurrency control for Class III transactions

seems bene�cial even in memory-resident database environment, as long as the

data conict ratio and concurrency control overhead are reasonable.

� Under our static temporal consistency enforcement scheme (STCE), combined with our

integrated transaction scheduling (Guaranteed), temporal consistency requirements of

data and transactions are always ful�lled.

� Cost of guarantee on temporal consistency requirements

STCE causes higher utilization level of Class I transactions than necessary, and conse-

quently higher deadline miss ratio of Class III transactions. Furthermore, a modi�ed

transaction set according to STCE has more chances to fail the o�-line schedulability

test than the original transaction set, due to utilization level increase.

92

Chapter 6

Implementation Issues

Our RTDBS model and transaction processing schemes presented in previous chapters as-

sumed a deterministic subsystem support. That is, they are viable only when the underlying

subsystems provide deterministic services to transactions. In this chapter, we discuss how

such a platform can be provided, making use of the current real-time microkernel technol-

ogy and memory-resident databases. We also investigate how our experimental real-time

database testbed, called StarBase [49], which is currently supporting only �rm deadline

transactions, can be extended to provide predictable transaction processing.

First, we propose a conceptual structure for achieving a deterministic system. Then,

we briey describe the current status of StarBase. Finally, we discuss the practical issues

involved in implementing our RTDBS model and the integrated transaction scheduling

scheme on top of the StarBase platform.

6.1 Deterministic Subsystem Structure

A database system must operate in the context of available operating system services. In

other words, database operations need to be coherent with the operating system, because

correct functioning and timing behavior of database management systems depends on the

services of the underlying operating system. Because our real-time database model depends

on the predictable execution time of database access operations, we need to have determin-

istic operating system service times. Unfortunately, conventional operating system services

are not adequate for real-time transaction processing as mentioned in Section 2.5.

93

Resource

Managers

Layer

Real-Time

Database

Server Layer

Real-Time

Applications

Layer

. . . .

. . . .

. . . .

. . . .
Process

Manager

File

Server

Device

Driver

Real-Time

Applications

Real-Time

Applications

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

Memory

Manager

 IPC

Manager

Real-Time

Microkernel

Layer

Transaction

 Manager

Storage

Manager

 Real-Time

Data Object

 Manager

Recovery

Manager

Figure 6.1: Conceptual Structure of a Real-Time Database System

Our approach is to build a deterministic service interface for real-time data objects

on top of the real-time microkernel, and then develop predictable database management

functions based on this interface. This is basically a layered approach to organizing real-

time database systems (as shown in Figure 6.1).

The lowest level (Level 1) implements the microkernel itself, supporting a process

manager, a memory manager, and an IPC manager. Level 2 implements specialized resource

managers, such as device drivers and a real-time data object manager, which replaces an

unpredictable conventional �le system and bu�er manager. At Level 3, we have a real-

time database server, which consists of a transaction manager, a recovery manager, and

a storage manager. The real-time data object manager provides the real-time database

server with an interface which guarantees predictable data object access time. Having this

94

Sensors Actuators

Monitors

Real-Time Database System

worker threads

Archival

Storage

external

objects
external

objects

transactions

transactions

transactions

transactions

transactions

Root
Thread

Real-Time

Data Object

Repository

(Main Memory)

Real-Time Database ServerClass IA

Class IB

Class IC

Class II

Class III

Figure 6.2: Physical Structure of a Real-Time Database System

deterministic kernel, we can support predictable real-time transaction capability using the

proposed model.

The overall architecture of the target real-time database system are shown in Fig-

ure 6.2. The heart of the real-time database system is a real-time database server. It

receives all types of transactions from sensors and monitors, processes them through mul-

tiple worker threads interacting with the real-time data object manager, and sends some

results to actuators and monitors.

95

6.1.1 The Real-Time Database Server

Real-time transactions are processed by a multi-threaded real-time database server: each

periodic transaction (Class I) has a dedicated worker thread, and sporadic or aperiodic

transactions (Class II or Class III) are processed through one or more worker threads dy-

namically allocated by the root thread. Since each thread in this system is a schedulable

entity, we can implement a real-time transaction scheduling algorithm under this architec-

ture.

The Real-Time Database Server Layer (Level 3) consists of the following logical com-

ponents (Figure 6.1):

� Transaction Manager implements the integrated real-time transaction scheduling

and concurrency control schemes described in Chapter 4. It maintains all the necessary

information of real-time transactions submitted in the system and makes appropriate

scheduling decisions.

� Recovery Manager is responsible for abort and restart of Class III transactions. As

noted earlier, the other types of transactions do not require this kind of conventional

recovery scheme.

� Storage Manager supports an adaptive storage scheme for real-time data objects.

It guarantees memory residence of time-critical hard real-time data objects (gener-

ally, continuous data objects) and archives less time-critical data objects (generally,

discrete data objects) into archival storage without interfering with normal processing

of hard real-time transactions.

6.1.2 Interface of the Real-Time Data Object Manager

Conventional �le system abstraction and virtual memory management system are not ap-

propriate as a hard real-time database objects repository since they are disk based and rely

on unpredictable paging mechanisms. Even the most advanced recoverable virtual memory

management systems such as Camelot [18] do not support hard real-time applications well,

96

mainly due to their conventional rollback recovery mechanisms. We must develop a new

abstraction for real-time data objects, giving a predictable behavior, and de�ne a set of

interface functions to access them.

We propose a new abstraction for real-time data objects which provides the following

interface for the real-time database server:

� Create and delete a data object (create object, delete object)

� Open and close a data object with commit or abort ag (open object, close object)

� Map a data object into the user's address space (map object)

� Read and write a data object (read object, write object)

� Guarantee memory residence of a time-critical data object (pin object)

� Mark the non-time-critical part of the database, making it available for underlying

operating system kernel's page replacement mechanism (unpin object)

� Lock and unlock a data object (lock object, unlock object)

This real-time data object abstraction is implemented at Level 2 (Resource Managers

Layer) in Figure 6.1 as a Real-Time Database Object Manager.

The create object operation provides the semantic information of the real-time data

object to the system (e.g., data type, temporal property, etc.) and this information is

utilized by Storage Manager to determine the residency of the data object. Also, the

pin object and unpin object operations are used by Storage Manager to communicate

with the underlying memory manager. Furthermore, the other data object access operations

must work adaptively for di�erent types of data objects. For example, the write object

operation to a continuous data object does not make any log, but the operation to a discrete

data object include some type of logging actions for transaction recovery.

To provide the transaction concepts, such as serializability and recoverability, for Class

II and III transactions, and also implement the proposed optimistic concurrency control

97

scheme, we adopt the intentions list approach, and thus write object operation appends

an entry to a transaction's intentions list and actual write to the data object occurs when

the transaction is committed together with close object operation.

6.2 StarBase { The Current Status

The StarBase RTDBS is an attempt to merge conventional DBMS functionality with real-

time technology. StarBase supports the relational database model and understands a simple

SQL-like query language. The RTDBS maintains a centralized server to which local or re-

mote clients submit transactions. Transactions may execute concurrently and serializability

is the correctness criterion. In addition to this conventional functionality, StarBase seeks

to minimize the number of high-priority transactions which miss their deadlines. StarBase

uses no a priori information about transaction workload and discards tardy transactions

at their deadline points. In order to realize many of these real-time goals, StarBase is con-

structed on top of RT-Mach, a real-time operating system developed by Carnegie Mellon

University [76]. StarBase di�ers from previous RTDBS work [1, 25, 28], in that a) it relies

on a real-time operating system which provides priority-based scheduling and time-based

synchronization, and b) it deals explicitly with data contention and deadline handling in

addition to transaction scheduling, the traditional focus of simulation studies.

6.2.1 Database Overview

The StarBase system is organized as a multi-threaded server (Figure 6.3). It is assumed

that database clients are physically disparate from the server, so they pass messages to

communicate with the database server. Transaction requests are sent via RT-Mach's Inter-

Process Communication (IPC) mechanism and are queued at the server's service port.

RT-Mach provides a naming service with which StarBase registers its service port during

initialization. Clients look up the service port by querying the name server with StarBase's

well-known name.

When a request enters service, a transaction manager thread of execution is charged

98

.

.

.

CCMgr

(monitor)

RIOMgr

MemMgr

Service Port

Tr
an

sa
ct

io
n

R
eq

ue
st

 P
rio

rit
y

Q
ue

ue

.

.

.

TrMgr

DMgr

TrMgr

DMgr

TrMgr

DMgr

Tr
an

sa
ct

io
n

P
ro

ce
ss

in
g

D
at

ab
as

e
O

pe
ra

tio
ns

D
yn

am
ic

 M
em

or
y

R
el

at
io

n
O

pe
ra

tio
ns

C
on

cu
rr

en
cy

 C
on

tr
ol

Figure 6.3: StarBase Server Architecture

with ensuring it is properly processed. The transaction manager executes the appropriate

operations (e.g., read, write) as dictated by the content of the request. At the start of

transaction processing, the transaction manager starts a deadline manager thread to enforce

the transaction's deadline. A transaction needs certain resources to execute, including

mechanisms to acquire memory, read and write data from relations, and ensure that data

remains consistent. StarBase's three resource managers provide these services: the Small

Memory Manager (MemMgr), the Relation I/O Manager (RIOMgr), and the Concurrency

Controller (CCMgr). Each resource manager must ensure that transactions access their

resources in a consistent and orderly fashion. To prevent mayhem, two of the resource

managers are organized as monitors to synchronize the actions of di�erent transactions.

The services of the RIOMgr, however, are explicitly synchronized by the CCMgr.

StarBase uses optimistic concurrency control to ensure data consistency, allowing

transactions to proceed unhindered until they are ready to apply their updates to the

database.

99

6.2.2 Resource Contention and Transaction Scheduling

The StarBase system is highly reliant on its native operating system, RT-Mach, to pro-

vide the priority-cognizant services necessary for real-time resource scheduling. RT-Mach's

services in turn are based on two major ideas (among others) which have been developed

to ensure the allocation of resources to more important tasks in real-time systems. Those

ideas are priority-based CPU scheduling [53] and the Basic Priority Inheritance Protocol

(BPI) [60] for non-preemptible resources. With both ideas, tasks to be performed are ranked

by their relative priorities (a function of their criticality and/or feasibility), and the highest

priority tasks are granted access to the resource in question. RT-Mach provides several

priority-based scheduling regimes, including Fixed Priority, Earliest Deadline First, Rate

Monotonic, and Deadline Monotonic. RT-Mach's real-time thread model [76] distinguishes

real-time threads of execution from ordinary ones, requiring the explicit speci�cation of tim-

ing constraints and criticality on a per-thread basis. The timing and priority information

is then used as input to the RT-Mach scheduler. RT-Mach also has striven to implement

priority-based resource scheduling through its interprocess communication (RT-IPC) [34]

and thread synchronization (RT-Sync) [75] facilities. RT-Mach implements BPI itself as a

combination of priority queuing and priority inheritance. When a thread blocks on a mutex

variable or when a message cannot be immediately received because all potential receivers

are busy, RT-Mach queues the waiting thread or message in priority order and then boosts

the priority of the thread inside the critical section or the priority of one of the potential

receivers in accordance with the BPI protocol [60].

StarBase employs RT-Mach's priority-based CPU and BPI resource scheduling in

several ways: to determine the transaction service order, to provide high-priority transac-

tions the means to progress faster than low-priority transactions, and to provide priority-

consistent access to facilities such as the Small Memory Manager and Concurrency Con-

troller. For purposes of uniformity, StarBase adopts the same data type that RT-Mach

uses to convey priorities, facilitating the straightforward translation of StarBase to RT-

Mach priorities. Since the priority data type, rt priority t, includes a wide range of

100

criticality and timing information, major changes in scheduling policy (e.g., Fixed Priority

to Earliest Deadline First) are reduced to simple changes in the functions which compare

priorities (e.g., changing the comparison of criticalities to one of deadlines) without any

change in the client/server interface. StarBase itself must make priority-based decisions

(e.g., concurrency control), so its priority-based comparisons involve priorities expressed

as rt priority t-typed values. Of course, which policy is most appropriate di�ers from

application to application, so the policy is to be used is left as a compile-time constant.

Naturally, StarBase must use a consistent transaction scheduling policy across all of its

priority-based decisions.

Transaction Service Order

Since performance ultimately degrades as the number of threads of execution in a system

increase, and lazy allocation of resources adds unpredictability to the system, StarBase

maintains only a �xed number of preallocated transaction manager threads. At the same

time, since the StarBase RTDBS has no a priori knowledge of transaction workload, more

transactions may be submitted to the RTDBS than it can handle at any given time. In

order to throttle the ow in such circumstances, StarBase needs a mechanism to decide

which requests to admit into service, and RT-Mach's RT-IPC facilities do just that in a

convenient and priority-cognizant manner. To submit a transaction to the StarBase server,

a client places the transaction instructions and priority information into a message and

uses RT-IPC to send the message to the database server. Since RT-IPC queues incoming

messages in priority order, the next available transaction manager receives the next highest

priority unreceived message. Requests are therefore served in priority order and only the

highest priority outstanding requests are in service at any given time. If a high priority

transaction request cannot be serviced immediately because all transaction manager threads

are busy serving some lower priority requests, RT-IPC's priority inheritance expedites one

or more of the transaction managers so that the high priority request enters service at a

time bounded by the minimum of the in-service transaction deadlines.

101

Transaction Progress

Once transactions enter service, StarBase needs to ensure that high priority transactions

progress as quickly as possible. Since transactions require real-time execution, StarBase

creates one real-time thread for each transaction manager and relies on RT-Mach's real-

time CPU scheduling to schedule them. Transaction manager priorities are not speci�ed

explicitly by StarBase, however. Each obtains the correct priority assignment automatically

upon receipt of a new transaction via RT-IPC's priority hando� mechanism [34].

Memory Manager

Transactions, depending on the nature of their operations, require some dynamic alloca-

tion of memory during their execution. StarBase maintains a Small Memory Manager to

allocate and manage dynamic memory. Since transaction managers of di�erent priorities

may attempt to use it simultaneously, entry into the Small Memory Manager is guarded

by a real-time mutex variable to avoid the priority inversion problem and to ensure the

heap is accessed in mutual exclusion. To provide (relatively) predictable access to memory

allocated through the manager, the heap is wired so that it cannot be paged out of physical

memory.

Concurrency Controller

Although the StarBase concurrency controller is responsible for resolving contention at a

higher level (i.e., data contention), it still relies on RT-Mach to provide basic synchronization

and avoid the priority inversion problem. In particular, the concurrency controller must

keep its own data structures consistent and ensure that transaction commits occur without

interference. As such the concurrency controller is organized as a monitor, with a single

real-time mutex variable for the monitor lock, and one real-time condition variable for each

transaction manager.

To resolve data conicts, StarBase uses a concurrency control implementation which

draws heavily from the work of two research groups. First, Haritsa reasoned that optimistic

102

concurrency control can outperform lock-based algorithms in a �rm real-time setting [25].

He then developed a real-time optimistic concurrency control method, WAIT-X(S), which

he found empirically superior, over a wide range of resource availability and system workload

levels, to a previously proposed real-time lock-based concurrency control method called 2PL-

HP [25]. Second, Lee et al devised an improvement to the conict detection of optimistic

concurrency control in general (Precise Serialization) [41], which StarBase integrates with

Haritsa's WAIT-X(S). Detailed descriptions on their implementation for StarBase can be

found in [49].

6.2.3 Summary

We outlines the architecture to support �rm deadline transactions assuming no a priori

knowledge of transaction workload characteristics. Unlike previous simulation studies, Star-

Base uses a real-time operating system to provide basic real-time functionality and deals

with issues beyond transaction scheduling: resource contention, data contention, and en-

forcing deadlines. Issues of resource contention are dealt with by employing priority-based

CPU and resource scheduling provided by the underlying real-time operating system. Issues

of data contention are dealt with by use of a priority-cognizant concurrency control algo-

rithm with a special conict-detection scheme, called Precise Serialization, to reduce the

number of aborts. Issues of deadline-handling are dealt with by constructing deadline han-

dlers which synchronize with the start and end of a transaction and which do not interfere

with its execution until the deadline expires.

The next step is to extend these solutions to the situation in which transaction char-

acteristics are at least partially speci�ed beforehand. With prior knowledge, a RTDBS can

preallocate resources and arrange transaction schedules to minimize conicts, resulting in

more predictable service. Execution time estimates and o�-line analysis can be used to

increase system-wide predictability. Temporal consistency is also a matter to be explored.

Once the basic, real-time, POSIX-compliant functionality needed to support our RTDBS

model has been established, StarBase can be ported to other platforms. These issues will

be discussed in the following section.

103

6.3 Predictable Transaction Processing in StarBase

As described in the previous section, StarBase supports only Class III transactions of our

RTDBS model. This is partly because the current subsystem structure for StarBase lacks

some functionality to implement deterministic services on the database server. In this sec-

tion, we discuss how the current StarBase structure can be extended to provide guaranteed

scheduling for Class I and Class II transactions, and investigate what functionalities must be

supported by the underlying real-time operating system kernel to implement our integrated

transaction processing scheme on StarBase.

Real-Time Server Support

Real-Time Mach provides two computational environments for real-time applications: Unix

and Real-Time Server. Unix environment enables application programmers to compile,

test, and debug using UNIX tools such as cc, make and gdb without rebooting machines.

The environment is appropriate for debugging logical aspects of programs and makes the

speed of developing programs very fast. This is the main reason why the current StarBase

system has been implemented using the environment. However, the Unix server in RT-Mach

(UX server) do not provide bounded response time. This is �ne with the current StarBase

system, since it deals with only �rm deadline transactions in which bounded response time

is not absolutely needed.

More critical real-time applications require deterministic computing environment.

Real-Time Server (RTS) is a run-time environment for such applications on RT-Mach.

Since RTS is implemented as a real-time server, the response time can be bounded. RTS

provides a memory-resident �le system. Files are allocated as a continuous memory block.

Files can be mapped into a task's address space and shared among tasks. RTS also provides

a simple task management facility which allows creation, suspension, and termination of

tasks with low and bounded overhead. To support guaranteed transaction processing for

Class I and Class II, StarBase should be implemented on such deterministic environment

as RTS.

104

Class I and Class II Transaction Support

As described in the previous section, in the current StarBase system, only a �xed number

of real-time threads (worker threads) are maintained for transaction managers for Class III

transactions. Class III transactions arrive at the server aperiodically from separate client

tasks and are queued at a priority queue. One of the available worker threads is allocated

to run the transaction manager for a Class III transaction.

A Class I transaction, however, can be implemented as a dedicated periodic real-time

thread on the server, since its behavior is prede�ned. In this way, we can avoid message

passing delay between the server and client and thread switching overhead. For each Class

II transaction, a dedicated aperiodic real-time thread can be preallocated. It does not

require a delay queue, since only one instance of a Class II transaction can exist at the

same time. The transaction manager for a Class II transaction must be able to keep track

of the consumed run time by the transaction and mark it as \overrunning" when it spends

the given execution-time budget without completion. The overrunning Class II transactions

can be processed using slack time as explained in Section 4.2.

Class III Transaction Support

One additional real-time thread is required to support Class III transactions in our RTDBS

model: a Slack Stealer. It maintains a slack table for every priority level either statically

or dynamically, depending on the slack stealing algorithm used. For example, if the HASS

algorithm is employed, a periodic real-time thread is invoked with a speci�ed interval,

generates a Class III slack stealing transaction, and places it at the front of the Class III

transaction queue (i.e., it has the highest priority among Class III transactions). The slack

stealer then runs at the next available slack time and updates the slack table.

The global transaction scheduler always looks up the slack table, and it schedules the

highest-priority Class III transactions whenever slack time is available and no overrunning

Class II transactions exist.

105

Run-Time Pro�ling

The integrated transaction processing strategy for our RTDBS model must

1. accurately measure the computation time consumed by each transaction, and

2. be able to control the execution of Class III transactions which attempt to overrun

their prede�ned execution-time budget.

The �rst requirement demands precise performance monitoring software which typical op-

erating systems do not provide. Operating systems usually accumulate usage statistics for

each process by sampling during regular clock interrupts [42], but this information is not

very precise over short intervals. Furthermore, the execution behavior of the monitored

program must be independent of the sampling period. A more precise mechanism would

measure durations between context switches and would account for interrupt processing

time and other \system overhead".

Even if the system can accurately measure capacity consumption on a per-process

basis, other problems arise. Usage statistics in traditional operating systems consist of

system-level usage time and user-level time for each process [42]. For monolithic operating

systems, this approach is su�cient, but for microkernel systems where operating system

services are o�ered by di�erent user-level servers, the usage statistics of an activity cannot

found in the usage statistics of a single process. An activity may request services of several

di�erent operating system servers such as a name server, a �le server, or an I/O server.

To maintain an accurate picture of the activity's capacity consumption, the cost of these

services must be charged to the activity itself rather than to the individual servers.

The second requirement, that the scheduler be able to control the execution of Class III

transactions which attempt to overrun their reserved capacity, means that the system must

accurately measure the processor usage of each Class III transaction and that a mechanism

must exist to notify the scheduler when a program exceeds its computation time for the

current invocation. Whenever the scheduler dispatches a thread for a Class III transaction,

it computes the maximum duration of time the thread could execute based on its allocation

and its usage so far, and it sets a timer to expire after this duration.

106

Chapter 7

Query Processing and Recovery

Our RTDBS research presented in preceding chapters made some assumptions on trans-

actions and the operating environment. We regarded a transaction as a sequence of read

and/or write operations on data objects, but have not considered the computational as-

pects of transactions, such as query processing. We also assumed that there would be no

failure situation in our RTDBS and hence no recovery mechanism were provided. These

issues, however, may need to be addressed in designing a real RTDBS application. The

conventional approaches cannot be used directly in our RTDBS environment, since they are

designed to �t in the conventional disk-based non-real-time DBMS environment.

Also with the memory-resident database environment, di�erent performance metrics

and cost formulas must be applied for our RTDBS model, requiring new directions in

algorithms and data structures for query processing and recovery. In this chapter, we present

our ideas for query processing and recovery mechanisms in the context of the memory-

resident RTDBS.

7.1 Query Processing on Memory-Resident Databases

A number of di�erent indexing methods are applicable for use in database systems. In [45] an

indexing structure for use in memory-resident databases, called the T Tree was introduced

which was reported to perform signi�cantly better than the existing indexing methods for

memory-resident data retrieval. Memory-resident indexes are designed to reduce the overall

computation time while minimizing the amount of memory needed. Since relations are

107

stored in memory it is not necessary for the indexes to contain the actual data, pointers to

the data can be used instead. StarBase can support both disk and in-memory relations but

is geared towards the memory-resident relations. The T Tree was selected as the indexing

method because of its greater performance for in-memory data [19].

7.1.1 T Tree Index Structure

The T Tree is a new balanced tree structure that evolved from AVL and B Trees both of

which have certain merits for use in main memory. The AVL tree which has the advantage

of being fast since the binary search is intrinsic to the tree structure, has the disadvantage

of its poor storage utilization. The B trees which have the advantage of better storage

utilization however do not have the binary tree structure thus limiting the speed of access.

The T Tree is a binary tree and each node in it contains many elements thus providing good

storage utilization.

Associated with the T Tree is a minimum and a maximum count. Internal nodes keep

their occupancy in this range. The minimum and the maximum counts di�er slightly|

one or two data items|which is su�cient to signi�cantly reduce the tree rotations. As an

example of an operation, to insert an element into a T Tree, the node that bounds the insert

value is searched. If found the element is inserted there. If the insertion causes an overow,

the minimum element of that node is transferred to a leaf node, becoming the new greatest

lower bound for the node it used to occupy. If no bounding node can be found, then the

leaf node where the search ended is the node where the insert value goes. If the leaf node

is full, a new leaf is added and the tree is rebalanced.

7.1.2 The Join Algorithms

Of the relational operations required to study, join is the most crucial one owing to the

time complexity of the process. The parameters that were variable in the study undertaken

by [45] were:

� The relation cardinality (jRj).

108

Pt

Pv

100

100

Sigma = 0.1

Sigma = 0.8

Figure 7.1: Distribution of Duplicate Values

� The number of join column duplicate values (as a percentage of jRj).

� The semijoin selectivity { that is the number of values in the larger relation that

participate in the join expressed as a percentage of the larger relation.

To get a variable number of duplicates, a speci�ed number of unique values were gener-

ated and then the occurrences of each of these was determined using a random sampling

procedure with a variable standard deviation (as shown in the Figure 7.1). P

t

denotes the

percentage tuples and P

v

denotes the percentage values. In order to get a variable semi-

join activity, a smaller relation was built with a speci�ed number of values from the larger

relation.

The results that were obtained from the study of the various algorithms were based

on the following cases (jR1j denotes the outer and jR2j the inner relation);

� Vary Cardinality : Vary the sizes of the relation with jR1j = jR2j, no duplicates and

a semijoin activity of 100%.

109

� Vary Inner Cardinality : Vary the size of R2 (jR2j = 1 to 100% of jR1j) with jR1j =

30; 000, no duplicates and the semijoin selectivity of 100%.

� Vary Outer Cardinality : Very the size of jR1j (jR1j = 1 to 100%of jR2j) with jR2j =

30; 000, no duplicates and the semijoin selectivity of 100%.

� Vary Duplicate Percentage (skewed): Vary the duplicate percentage of both relations

from 0 to 100% with jR1j = jR2j = 20; 000, a semijoin selectivity of 100% and a

skewed (standard deviation of 0.1) duplicate distribution.

� Vary Duplicate Percentage (uniform): Vary the duplicate percentage of both relations

from 0 to 100% with jR1j = jR2j = 20; 000, a semijoin selectivity of 100% and a

uniform (standard deviation of 0.8) duplicate distribution.

� Vary Semijoin Selectivity : Vary the semijoin selectivity from 0 to 100% with jR1j =

jR2j = 30; 000 and a duplicate percentage of 50% with a uniform duplicate distribu-

tion.

In the following, we mention the various algorithms that were taken into consideration.

We describe them briey before we discuss the most e�cient

1

among them in detail. The

algorithms that were considered are:

� Nested Loops

� Hash Join

� Tree Join

� Sort Merge

� Tree Merge

1

By the most e�cient, we mean that it provides not only the best average-case performance but also

the minimum variance between the average- and the worst-case behavior. The algorithms used in real-time

systems need to be deterministic, as well as being fast.

110

The pure nested loops join is an O(N � N) algorithm. It uses one relation as the outer,

scanning each of its tuples once. For each outer tuple, the entire inner relation is scanned

looking for tuples with a matching join column value. As is evident this is the most naive

and also a very ine�cient process of performing the join operation.

The Hash Join and Tree Join algorithms are similar but they each use an index to

limit the number of tuples that have to be scanned in the inner relation. The Hash join

builds a Chain bucket hash index on the join column of the inner relation and then it uses

this index to �nd matching tuples during the join. The Tree join algorithm uses the tree

index on the inner relation to �nd the matching tuples. It may be noted that tree join is

a viable solution only if the T Tree index is already existing, if not the cost of building

one would certainly be greater than the hash join algorithm. It may be pointed out that

in the study undertaken, the cost of building hash table index was always included as the

likelihood of a hash table existing is relatively less.

The Merge Join algorithm was implemented using two index structures, an array index

and a T Tree index and the two deviants so obtained are the Sort-Merge and the Tree-Merge

algorithms. For the sort-merge algorithm, array indexes were built on both relations and

then sorted. The sort was done using quicksort with an insertion sort for subarrays of ten

elements or less. For the tree merge tests, T Tree indices were built on the join columns

of each relation and then a merge join was performed using these indices. It may be noted

that the graphs shown do not include the time taken for the construction of the T Trees as

Tree Merge is a viable solution only if the indices already exist. A study undertaken in [44]

reports that the arrays can be built and sorted in sixty percent of the time it would take

to build the trees.

Based on the performance curves presented in [45] we conclude that if the T Tree has

been built on the join columns in both the columns then Tree Merge is the best algorithm.

If the tree indices is not built on the join columns of the two relations Hash join is the most

e�cient algorithm. We describe the two protocols in greater details.

111

Tree Merge

If T Tree indices are on the join columns of the two relations, then a merge join is performed

using these indices. To compute a merge join, a pointer is associated with each relation.

These pointers initially assigned to the smallest data item. As the algorithm proceeds, the

pointers are moved successively to the next element in the sorted order. A group of tuples

of one relation with the same value on the join attributes is read. Then the corresponding

tuples of the other relation are read. Since the pointers progress in sorted order, tuples with

the same value on the join attributes are in consecutive order. This allows us to read each

tuple only once.

We present the algorithm in Figure 7.2. The functions that have been used in this

algorithm are smallest elements which return a pointer to the node that has the smallest

data item corresponding to the column by which it has been indexed. This is a very

straight forward process as we are basically looking for the leftmost leaf. The function

next element(cur item) returns the pointer to the node which contains the data item with

a value which is following the value of cur item. The value following the cur item may

be the same as the value of the cur item. Considering the present implementation of T

Trees in StarBase this function of �nding the next element in the sorted can very easily be

incorporated. Finally, the function, join tuple is the most basic join function that takes two

tuples and performs a join operation.

Hash Join

If the T Tree indices are not on the join columns, the Tree Merge algorithm is not a viable

solution and Hash Join is the most e�cient solution. The Hash Join builds a Chain Bucket

Hash index on the join column of the inner relation and then uses this index to �nd matching

tuples during the join. Chained Bucket Hashing is a static structure used both in memory

and on disk. It is very fast because it is a static structure { it never has to reorganize its

data. This however requires that the size of the hash be appropriately estimated. Tests

reported in [45] show that the optimal table size for a given number of relations has an

112

Algorithm Tree Merge (*R1, *R2)

begin

S1 = smallest element(struct tnode *R1);

S2 = smallest element(struct tnode *R2);

while S1�>val != NULL and S2�>val != NULL do

/* �nd the nodes in the tree that have the same value on the join column */

while S1�>value != S2�>value do

if S1�>value < S2�>value then

next element(S1);

else if S2�>val < S1�>val then

next element(S2);

end

end

join tuple(S1, S2);

/* Join the remaining group of tuples with the same value of join */

S1 restore = S1;

S2 restore = S2;

do begin

S2 = S2 restore;

while S1 restore�>val == next element(S2)�>val do

S2 = next element(S2);

join tuple(S1, S2);

end

S1 = next element(S1);

until S1 restore�>val != S1�>val end

end

end

Figure 7.2: Tree Merge Algorithm

113

Algorithm Hash Join (*R1, *R2)

begin

/* Initialize P1 to point to the �rst tuple of R1. */

while P1 != NULL do

/* proceed for all the tuples in R1 */

Bucket = Hash function(P1�>val);

while (P2 = scan bucket(Bucket)) != NULL do

if P2�>val == P1�>val then

join tuple(P1, P2);

end

end

P1 = next tuple(P1);

reset bucket(Bucket);

end

end

Figure 7.3: Hash Join Algorithm

average of only two items per hash value.

We present the algorithm for the hash join protocol in Figure 7.3. Here Hash function

is the function that is used to determine the appropriate bucket. The function scan bucket

takes as an argument the bucket number and scans through the bucket to return pointer

to next node present. Since the pointer progresses successively through the list of nodes in

the bucket, after the entire bucket has been scanned the pointer is made to point to the

�rst node using the reset bucket function. The function join tuple is very similar to the one

described in the Tree Merge algorithm and takes two tuples and performs the join operation

on them and returns the attributes that are desired.

114

7.1.3 Hybrid Join Approach

As has been pointed out in the discussion of the Tree Merge algorithm the Tree Merge

algorithm performs better than the other algorithm if the tree indices are on the join

column. If not the performance of the other algorithms is better than the Tree Merge. As

is reported in [44], arrays can be built and sorted in 60% of the time to build trees, and

also arrays can be scanned in about 60% of the time taken to scan a tree.

With the above argument in mind, we have explored the best algorithm given that

the tree indices do not exist on the join column and we observe that Hash join performs the

best in that scenario. However since StarBase has the T Tree as the index structure it may

be a better idea if the T Tree structure could be bene�ted in some way instead of creating

a new index structure that would entail additional expense. With this in mind we explore

the possibility of an alternative structure.

In the Hash join approach we observe that in one of the relations the tuples are scanned

only once while in the second relation (on whose data items hash is created), the tuples are

accessed multiple times. Hence an improvement would be to hash that relation that has

fewer number of tuples, so that the elements of the larger relation are accessed only once.

Hence for the relation with larger number of tuples the tree is maintained and the tree is

scanned. The hash function is applied to the data item of the join column and then the

hash bucket is searched to look for the existence of tuples with the same data value on the

join column. It may be noted that the tree may be scanned in any order, need not be in a

sorted order.

We do not envision any mechanism of avoiding the creation of a hash bucket to take

care of the additional increase in the space without trading o� the performance of the join

operation. However we suggest a mechanism where the process of join may be expedited in

the case where the tree is indexed on one of the multiple join columns, by taking advantage of

the T Tree structure that would already be existing. This is accomplished by the observation

that the entire T Tree would be scanned while the chained hash bucket is being created and

the T Tree structure renders some ordering to the data elements.

115

If the T Tree is indexed on one of the multiple join columns, we note that the tuples

can very e�ciently be scanned in the sorted order (of the indexed column). The following

algorithm can be used to e�ectively create the hash buckets and perform the join operation.

Let us call the relation with large number of tuples (and hence the tree with greater

number of nodes) L, and the relation with lesser number of tuples as S. Initially, assign

pointers to the node that has the smallest data item of the join column(s) that are indexed.

For instance, if the join be on columns A, B, C and D and the index be on A, B and G,

then assign pointers to the smallest data item of the A and B column. As the algorithm

proceeds the pointers are incremented to the next node. If the value of the data items in

the two trees match, a hash function is applied on the data values of the columns that are

not in the index, for instance in this example on C and D, and a hash bucket is created. If

the two data value do not match the pointers are incremented and no hash is created.

Algorithmically, it may be expressed as in Figure 7.4. The algorithm is used to assign

buckets to the appropriate elements of the smaller relation. The functions smallest element

and next element are similar to the ones used in the previous algorithm except that here only

those indexed keys that are present in the join column are considered while determining the

order. The function create bucket is used to determine the bucket to which the node/element

under consideration should be added to. The algorithm that is used to determine the

appropriate bucket while performing the join operation is similar to the above algorithm

and is presented in Figure 7.5.

Here rest val refers to the keys of the join column barring the ones that are present in

the index. The function next bucket element is used to determine the next element present

in the bucket. The remaining functions are similar to the ones in the preceding sections.

It may be observed that the performance gain obtained is as a result of two factors.

Firstly, the hash function need to be applied to a fewer number of keys and the perfor-

mance gain may be substantial if the function is complex. The second factor leading to

a performance gain is the fact that while creating the hash buckets we are simultaneously

eliminating out the tuples that do not have any chance to be present in the join operation.

Hence saving the time for creating a bucket, the space associated and �nally the reduced

116

Algorithm Hybrid Join 1 (*L, *S)

begin

S1 = smallest element(struct node *L);

S2 = smallest element(struct node *S);

while S1 != NULL do

/* perform until all the elements of the bigger relations are accounted for */

while S1�>val >= S2�>val do

if S1�>val == S2�>val then

create bucket(S2�>val);

end

S2 = next element(S2);

end

S1 restore val = S2�>val;

/* skip all the elements in the larger relations which have been accounted for

or those which do not have a corresponding join element in the smaller relation */

while S1 restore val =< S1�>val do

S1 = next element(S1);

end

end

end

Figure 7.4: Hybrid Join Algorithm (1)

117

Algorithm Hybrid Join 2 (*L, *S)

begin

S1 = smallest element(struct node *L);

S2 = smallest element(struct node *S);

while S1 != NULL do

while S1�>val >= S2�>val do

if S1�>val == S2�>val then

�nd bucket(S2�>val);

end

while S1�>rest val != S2�>rest val or End Of Bucket do

S2 = next bucket element ;

end

if S1�>rest val == S2�>rest val then

join tuple(S1, S2);

end

S2 = next element(S2);

end

S1 restore val = S2�>val;

/* skip all the elements in the larger relations which have been accounted for

or those which do not have a corresponding join element in the smaller relation */

while S1 restore val =< S1 val do

S1 = next element(S1);

end

end

end

Figure 7.5: Hybrid Join Algorithm (2)

118

search time (fewer elements would mean lesser search time).

7.1.4 Summary

The motivation of this work was to �nd the algorithm that would be the most e�cient one

in the scenario where T Tree indexing is present. We have determined that Tree-Merge is

the most optimal solution if the indices of the T Tree are on the join column. If not then

Hash Join is the most optimal algorithm as the cost of building a T Tree on the join columns

is very high. However, if space be a constraint then we propose a hybrid algorithm where

the number of elements that have to be put into the hash and hence the number of elements

that have to be searched is reduced and hence is bene�cial in terms of both performance

and storage space.

7.2 Recovery in Memory-Resident Real-Time Databases

Memory-resident data can mean large gains for database systems, since much of a trans-

action's lifetime is spent waiting to access data on disks. The increased performance is,

however, not without its problems. In this section, we will concern ourselves with the

problem of recovery in memory-resident databases. Speci�cally, we will be concerned with

three subtasks of the recovery process { logging, checkpointing and restart after failure. We

use the term checkpointing to refer to the maintenance of a copy of the memory-resident

database on secondary storage. Logging is the maintenance of a sequential record of transac-

tion activity that has occurred since the most recent checkpoint. In case of a failure, a new

up-to-date database can be created by the Restart procedure, which reads in the secondary

copy (from the most recent checkpoint) and brings that up-to-date using the information

in the log.

Recovery in memory-resident databases is di�erent from that in disk-based systems

for the following reasons:

� In disk-based systems, I/O operations from disk to memory are the main criteria

for determining which recovery technique is the best. In memory-resident database

119

systems, processor costs are the most critical.

� The cost of recovery management, relative to the cost of executing a transaction will

be much greater in a memory resident system than in a disk-based one.

� In disk-based systems, transaction processing may be halted while a checkpoint is

taken. This is reasonable if the amount of main memory is small, since transactions

will be halted only for a short time. Memory-resident databases will have much more

primary memory and therefore, checkpointing and transaction processing must be

concurrent.

Recovery mechanisms directly conict with the real-time needs of a database. In disk-

based databases, normal transaction processing is a�ected during the process of logging,

when the log items of a transaction are written to stable storage or when a checkpoint

is taken. As a result, valuable time is lost, which could otherwise have been used to-

wards meeting the deadlines of currently executing transactions. Logging and checkpoint-

ing techniques that do not interfere with normal transaction processing are desirable. In

conventional databases, when a failure occurs, a Restart procedure restores the database

to some previous consistent state. This approach, however, is unsatisfactory for a real-time

database, since data items may have temporal constraints. Rolling back might leave the

database in a consistent state with respect to the correctness criteria, but the database may

be inconsistent with respect to the temporal constraints. Some sort of forward recovery

mechanisms may be necessary after a failure. Also, restart usually takes time of the order

of half an hour to one hour, which means that all normal transaction processing has to be

blocked for that period of time. This is totally unacceptable in a real- time system.

Memory-resident databases have been suggested as a good model for a real-time

database, mainly because of their faster and deterministic database access time. Recovery in

memory-resident databases is, however, the primary barrier to the use of memory-resident

databases for real-time systems, mainly due to the reasons discussed in the previous para-

graph (the issues raised are applicable even to memory-resident databases, since recovery

mechanisms need substantial I/O with the disk).

120

As the basis of our solution to the problem of recovery in memory-resident real-time

databases, we draw from two di�erent approaches. The �rst, a memory-resident database

design proposed in [46], uses a dedicated recovery processor to handle all recovery tasks

that need disk access. The second is a slack stealing framework discussed in Section 4.2.2

and Appendix A. Our aim is to integrate these two approaches and provide a recovery

mechanism that guarantees a certain level of deadline-cognizance.

In the following subsections, we will discuss the memory-resident database recovery

approach proposed in [46], which will be integrated with the slack stealing approach, and

present a composite recovery scheme. Further, we will briey discuss other possible ap-

proaches to recovery.

7.2.1 A Memory-Resident DBMS Structure

In [43], a complete architecture for a memory-resident relational DBMS is presented, with

a new index structure, new recovery methods and possibly new concurrency control ap-

proaches. As opposed to most previous work in memory-resident database recovery, where

the database is regarded as a single entity, recovery is done at the relation or index level,

providing a form of demand recovery.

The memory-resident recovery component as shown in Figure 7.6, consists of two

independent processors, a main processor and a recovery processor; a portion of main mem-

ory is assumed to be stable, comprising two di�erent log components, a Stable Log Bu�er

and a Stable Log Tail. The two processors have logically di�erent functions. The main

CPU is responsible for transaction processing, while the recovery CPU manages logging,

checkpointing operations and archive storage. The two processors run independently and

communicate through a bu�er area in the Stable Log Bu�er. Main memory is assumed to

be organized as a sequence of partitions. All recovery actions { logging, checkpointing and

restart { will be performed at the partition level.

121

Memory

Resident

Database

 Stable Log
 Buffer Memory

Stable Log
Tail Memory

Log Disk

CPU

 CPU

(recovery)

(main)

Disk Copy
Database

Figure 7.6: Recovery Mechanism Architecture for a Memory-Resident DBMS

Logging

The main CPU performs normal transaction processing. When a transaction completes,

it writes its REDO log records to the Stable Log Bu�er. This is the only contribution of

the main CPU to the logging process. The recovery transaction, running on the recovery

CPU, reads records in the Stable Log Bu�er and places them in bins in the Stable Log Tail

according to their partition address. Each partition having outstanding log information is

represented in the Stable Log Tail by such a partition bin. The partition bin pages are

written to disk when they become full.

Checkpointing

The main purpose of a checkpointing operation is to bound the log space for partitions by

writing to disk those partitions that have a prede�ned number of log records (maintained

in a variable update-count for each partition). Its secondary purpose is to reclaim the log

122

space of partitions that have to be checkpointed because of age. When the recovery manager

(running on the recovery CPU) decides that a partition has to be checkpointed, either due

to update count or due to age, the following steps are taken:

� The recovery CPU issues a checkpoint request containing a partition address and a

status ag in the Stable Log Bu�er.

� The transaction manager, running on the main CPU, checks the checkpoint request

queue in the Stable Log Bu�er between transactions. For each partition checkpoint

request that it �nds, it starts a checkpoint transaction to read the speci�ed partition

from the database and write it to the checkpoint disk. It also sets the checkpoint

status ag to in-progress.

� The checkpoint transaction sets a read lock on the partition's relation or waits until

it is granted. This is necessary to ensure that the partition in a transaction-consistent

state.

� The checkpoint transaction then allocates a block of memory large enough to hold

the partition, copies the partition into that memory and releases the read lock. The

checkpoint transaction then writes the partition to disk and commits. The status of

the check- point operation is changed to �nished.

� The recovery manager then ushes the partition's remaining log information from the

Stable Log Bu�er to the log disk. This step has to be taken, since this information is

needed to recover from media failure.

The only problem with this approach is that the main processor is responsible for copying the

partition to disk. This can be avoided if the recovery processor had access to the checkpoint

disk and if the Stable Log Bu�er were large enough to hold a number of partitions at a

time. The main processor could copy the partition to be checkpointed to the Stable Log

Bu�er and the recovery processor could then copy the partition to disk. In this way, regular

transaction processing being suspended, while the main processor performs a disk copy

could be avoided.

123

Restart

Restoring the database after recovery from a failure involves reading in the previously

checkpointed version of all partitions into main memory and applying the log information

to the checkpointed version to bring it back to a consistent state. Restart usually takes

time of the order of hours to complete. To amortize interference of the Restart process with

normal transaction processing, a \recovery on demand" approach is proposed in [46].

During its initialization phase, each transaction declares the set of relations and in-

dices that it will need. The transaction manager checks the relation catalog to see if they

are memory resident. If they are not, it initiates a set of recovery transactions to recover

them, one per partition. A recovery transaction for a partition reads the partition's check-

point copy from the checkpoint disk and issues a request to the recovery CPU to read the

partition's log records and place them in the Stable Log Bu�er. Once the partition and the

log records are available, the log records are applied to the partition to bring it up to its

state preceding the crash. Then, between regular transactions, a system transaction issues

recovery transactions at a lower priority for partitions that have not yet been recovered and

that have not been requested by regular transactions.

7.2.2 An Integrated Recovery Scheme

As discussed earlier, a failure recovery scheme must ensure minimal interference of the recov-

ery procedures with normal transaction processing. In addition, recovery operations must

not be responsible for transaction deadline misses, or at least the deadline miss percentage

must be minimized. In this subsection, we propose a method to integrate the recovery

methods discussed in [46] with the slack stealing framework described in Section 4.2.2, to

introduce a certain level of deadline cognizance into the recovery techniques.

As seen in the previous section, the logging process does not result in any perceptible

overhead for the main CPU. All that the main CPU has to do is to copy the log records for

each transaction to the Stable Log Bu�er. The copy to disk is taken care of by the recovery

processor. As a result, the time taken for logging can be neglected. Similarly, even during

124

checkpointing, the main CPU is concerned only with the copy of the concerned partition to

the Stable Log Bu�er and so time taken for its execution can be ignored.

The Restart procedures are time-critical operations, since the database system cannot

function until failure recovery is completed. Normal transaction processing cannot continue

until the database has been brought back to a consistent state by the Restart operation. In

the preceding section, a \recovery on demand" approach was explained. To integrate this

technique into our real-time transaction processing framework presented in Section 4.2, each

recovery action can be treated as a Class III aperiodic task. The deadline of this aperiodic

task, D

r

, is set by the following expression:

D

r

= D

i

� c

i

� k;

where D

i

is the deadline of transaction �

i

that \demanded" the recovery action, c

i

is the

worst-case execution time of the remaining actions in �

i

after the recovery action is de-

manded, and k is a constant safety factor. Also, if D

r

� t

cur

< C

r

, where t

cur

is the current

time and C

r

is the worst-case execution time of the recovery action, then this means that

the time taken for recovery plus the time for completion of execution of the transaction is

greater than the deadline of the transaction and hence the transaction can be discarded.

Each recovery task also has a priority associated with it. In most cases, the priority of

the recovery action is the same as the priority of the transaction that demanded it. However,

it could also be assigned a higher priority depending on how important the relation(s) that

it is recovering happens to be, where importance is measured by the number of transactions

(and their priorities) that would be needing the recovered relation(s) in the near future. A

similar priority assignment approach can be adopted for recovery tasks that recover relations

that have not yet been requested, which would normally be executed at the lowest priority.

There are a number of limitations to this approach:

� For regular actions in a transaction, estimation of worst-case execution time is not

very di�cult, because all data required is in random access main memory. However,

for a recovery task, interaction with the disk is involved and estimation of execution

times of actions involving dynamic I/O from/to disk would result in a very pessimistic

125

estimate. As a result, the schedulability analysis is also too pessimistic and certain

transactions may be rejected even though their corresponding recovery actions would

actually meet their deadlines.

� Secondly, the above approach of slack stealing for recovery actions is based on the

assumption that enough slack time is available for the recovery tasks to run. This

assumption may not be valid immediately after failure. This is because, there are

a number of transactions that have been blocked during the failure period and a

majority of them would be close to their deadlines when the system comes up. Since

the deadline-monotonic approach is used, these transactions would have a high priority

leaving very little slack for recovery actions.

� The equation above is valid only if t

cur

+C

r

+ c

i

is not greater than D

i

(i.e., the time

taken for recovery plus the time taken to complete the rest of �

i

must not exceed the

deadline of �

i

. Since the worst-case execution time estimate is bound to be pessimistic,

this problem should certainly be considered serious.

A number of heuristics can be used to decrease the deadline miss percentage of transactions

immediately after recovery. First of all, immediately after the system is powered up after a

failure, there exist a number of transactions whose remaining worst-case execution time is

greater than their deadline. These transactions can be immediately discarded. Secondly, to

further reduce interference of Restart with normal transaction processing, only the minimum

number of relations as \demanded" by a transaction are recovered. This reduces demanded

recovery time for each transaction to a minimum. Thirdly, if the workload level is very

high, then one could consider discarding some lower priority transactions and using the

time gained to perform critical recovery operations that recover relations which would be

used later by higher priority transactions.

7.2.3 Other Recovery Techniques

There are a few limitations to the recovery scheme discussed in the previous sections. First

of all, the scheme requires the presence of a dedicated recovery processor. Although this is

126

not an unfair assumption in a real-time system where cost is a less important issue than

the meeting of timing constraints, there might exist systems where this assumption is not

valid.

Secondly, the system does not take into account the tradeo� between time spent on

checkpointing and the time spent on Restart. The greater the degree of consistency of the

checkpoint, the lesser the work done by Restart and vice versa. To minimize the time spent

on checkpointing, the scheme discussed provides no guarantees on the consistency on the

checkpoint. This means that Restart has to do a lot of work to bring the database back to

a consistent state. Again, this is not an unfair policy, since typically, checkpoints are many

and failures are few. However, if this were not true, then more consistent checkpoints are

desirable. In this subsection, we will discuss some alternative approaches to the recovery

actions in memory-resident databases.

Logging

In the event that a separate recovery processor is not available, the following logging tech-

nique can be used:

� When a transaction commits, it writes its log records to a stable portion of main

memory.

� A separate recovery transaction for the transaction is generated, whose task is to copy

the log records to disk. This transaction is assigned the lowest existing priority and

can be modeled as a Class III aperiodic task in our RTDBS model.

� If slack time is not available for the recovery task, the priority of the logging task is

gradually increased with increasing time.

Checkpointing

In this subsection, two approaches to checkpointing in a memory-resident database that

guarantee a certain degree of consistency are presented { Black/White Policies [56] and

127

an interference-free checkpoint mechanism surveyed in [65]. In the Black/White policy,

the database is colored \read" or \not read yet" (by the checkpointer). A transaction can

continue processing as long as it modi�es only information that has already been read by the

checkpointing procedure or has not been read yet. Transactions that have written \read"

data must wait before writing \not read yet" data until after the checkpoint process has

read it. Transactions that have modi�ed \not read yet" data and desire to write \read"

data are aborted.

A second approach to designing checkpointing mechanisms that do not interfere with

transaction processing is presented by Son [65]. The principle here is to create a separate

state of the system such that the checkpointing mechanism can view a consistent state that

could result by running to completion all the transactions that are in progress when the

checkpoint begins, instead of viewing a consistent state that actually occurs by suspending

further transaction execution. If main memory were big enough to hold the snapshot, then

the snapshot could be placed in main memory itself. As and when the snapshot reaches a

consistent state, it is copied to disk. If a recovery processor were present, then this copy

could be taken care of by the recovery processor, but if this were not the case, then the copy

to disk would have to be done by the main processor, eating into time that could be used

for normal transaction processing. This approach is ideal for systems where the average

transaction size is small; i.e., the snapshot reaches a consistent state very quickly. However

if transactions are long, it takes a long time to complete the checkpoint and if a failure

occurs during the checkpoint, the transactions whose e�ects have not been reected in the

snapshot must be re-executed, wasting all the resources used for the initial execution of the

transaction.

Summary

As is clear from the issues involved in checkpointing, there is a tradeo� between the time

spent on checkpointing (the level of consistency that a checkpoint guarantees) and the time

spent by Restart. If the checkpointing method guarantees consistency of the checkpoint,

then Restart reads less log information that it would have to if a fuzzy checkpointing

128

scheme [22] were used. In the presence of a secondary processor, the method of choice

seems to be the non-interfering checkpoint method [65], since the overhead involved in

generating a commit consistent checkpoint is taken care of by the recovery processor. A

factor to be kept in mind is the frequency of failure in the system. If the failures are very

frequent, then Restart would have to be optimized; i.e., commit consistent checkpoints are

desirable. However, if failures are few and far between, then a more e�cient checkpointing

mechanism is desirable. In such a case the partition-level checkpointing scheme [46] would

be most appropriate.

7.2.4 Temporal Constraints

Typically, a real time system consists of a controlling system and a controlled system. The

need to maintain consistency between the actual state of the environment and the state

as reected by the contents of the database leads to the notion of temporal consistency.

Usually the purpose of most periodic transactions, like Class IA and IB transactions in

our model, is to keep individual data items up to date with respect to the state of the

environment. Temporal constraints are the main reason why traditional backward recovery

methods are considered inappropriate in a real-time database system. The very idea of

rolling back to a previous consistent state seems to go against the goal of maintaining

the state of the environment, since the only consistent state is the current state of the

environment. Unfortunately, designing a forward recovery mechanism is not easy and very

few results are available in the literature. The di�culty is mainly because in most cases, it

requires a perfect understanding of the application semantics and in some cases it is just

not possible without the execution of a new transaction called a compensating transaction

to determine the current value of the temporally inconsistent data and update it.

Two things need to be done to handle the problem of temporally inconsistent data {

on failure recovery, the temporally inconsistent data must be marked \invalid" and secondly,

critical \invalid" data must be brought back to a temporally consistent state. The �rst part

is easy { on recovery, if a data item does not satisfy a temporal constraint, just mark it as

invalid. All transactions that try to access this data item are either blocked until the data

129

item is restored to a consistent state or are aborted and restarted. The second part requires

a slightly more sophisticated mechanism. Speci�cally, the concept of active databases could

be put to good use. Triggers could be associated with critical data. Triggers could be

used to �re o� transactions to update the data items, once their temporal consistency is

violated. The priority of such transactions could be �xed based on the importance of the

data item (whether it could possibly be accessed by a hard deadline transaction) and the

likelihood of the data item being read in the near future. The main drawback is that these

update transactions are eating into an already scarce resource { time. The priority of these

transactions must, therefore, be �xed very carefully, so that other important transactions

in the workload do not miss their deadline.

There seems to be no general solution to the problem of preserving temporal con-

straints after recovery, but depending on the application various approaches are possible.

Firstly, it might be the case that some data in the database is time-dependent; i.e., its

value at the current instant can be extrapolated from its value at some previous instant.

One could also visualize a situation in which some data returned by the database system

is better than no data, i.e., instead of returning temporally inconsistent data, an approxi-

mation to the current value of the data could be computed, based on the condition of the

other parameters in the environment. These solutions, however, vary depending on the

application semantics.

7.2.5 Future Research Issues

In all of the previous sections, we have only discussed heuristics, i.e., methods that incorpo-

rate a certain level of \deadline cognizance" into the recovery techniques, but which do not

provide any guarantees on the meeting of timing constraints of transactions in the work-

load. We have discussed how interference of the Restart procedure with normal transaction

execution can be reduced through a \recovery on demand" approach, but we have not pro-

vided any rigorous estimates of the level of interference (the fraction of time taken away

from normal transaction processing), a characterization of the number of transactions that

would miss their deadlines after failure recovery, given the workload level, the deadlines of

130

each transaction in the workload, number of relations that have to be recovered and the

worst-case execution time of the recovery process.

We have seen how the presence of a separate recovery processor has provided substan-

tial improvement in response time. This is especially true with logging and checkpointing,

where the recovery process is independent of normal transaction processing, where the main

processor can continue to process transactions with near negligible overhead for the recov-

ery operation. For Restart, however, an additional processor did not provide that great

a speedup, mainly because normal transaction processing has to be suspended while the

recovery operation is processed. In this case also, some speedup can be obtained if the

recovery of the relation is delegated to the recovery processor, the transaction that \de-

manded" the recovery operation is suspended and some other transaction that does not

immediately require recovery of a relation is processed.

Finally, a general framework is required, where for each data item or groups of data

items, temporal constraints, possible future values of the data item, depending on the state

of the environment, limitations on such a calculation can be speci�ed. In addition, a formal

framework can be speci�ed for de�ning the semantics of a transaction, steps that need to

be taken for forward recovery, in the event of a failure, etc.

131

Chapter 8

Conclusions

Transactions with soft or �rm deadlines can be processed successfully by using time-cognizant

transaction scheduling algorithms that make no special assumptions on data and transaction

semantics. This is because the performance goal of the scheduler is not to guarantee timing

constraints of individual transactions, but rather to make a best e�ort to minimize the

deadline miss ratio of transactions (or to maximize the total value of �nished transactions

when transactions have di�erent values) under the given processing capability.

However, if there exist some hard deadline transactions in a real-time database ap-

plication, the scheduling algorithm must guarantee that all the hard deadline transactions

will complete by their deadlines and then make a best e�ort for the remaining soft or �rm

deadline transactions. This goal cannot be achieved without the support of a deterministic

subsystem and a priori analysis of its data and transactions. Furthermore, RTDBS must

satisfy the temporal consistency requirements of real-time data, which are sometimes more

important than the logical consistency requirements of data in real-time databases.

We observe that no transaction scheduling algorithms proposed so far completely

satisfy all these requirements even though several papers in the real-time database �eld have

pointed them out [66, 4, 50, 5]. The goal of our research is to investigate a comprehensive

model for real-time data and transactions which can be applicable to a broad range of real-

time database applications, and to develop a predictable transaction processing scheme for

the proposed model which can satisfy the individual performance constraints of each class

of transactions.

132

8.1 Summary

Our research carried out in this thesis can be summarized as follows:

� We classi�ed data objects and transactions found in typical real-time database ap-

plications, considering their di�erent characteristics and requirements. Each type of

real-time data objects has its own correctness criteria, di�erent from the conventional

one. Real-time transactions are categorized, according to their timing constraints,

arrival patterns, data access patterns, availability of data and run-time requirements,

and accessed data type. Our model is a superset of the conventional models; it includes

both hard and soft real-time transactions, and supports the temporal consistency as

well as the logical consistency of a database.

� Since each class of transactions has di�erent performance requirements and data access

constraints, it should be processed by a distinct scheduling mechanism and also its

processing results must be predictable. Our integrated transaction processing scheme

extends a �xed-priority-based task scheduling framework for mixed task sets into a

transaction processing environment, combining with best-e�ort real-time transaction

scheduling algorithms. It provides predictability for a RTDBS in the sense that under

our transaction processing scheme it is guaranteed that every application in the system

will achieve its own performance goals.

� We developed a scheme called STCE that can enforce temporal consistency of database,

one of the most important requirements of RTDBS, statically. In STCE, temporal con-

sistency requirements are transformed into timing constraints of transactions. Thus,

as long as the timing constraints of transactions are satis�ed in the system, temporal

consistency of the system follows automatically.

� To synchronize the transactions' concurrent accesses to the data objects and maintain

logical consistency of the database, we provided a concurrency control and conict

resolution scheme called SOCC for our RTDBS model. It is semantic-based in the

context that it can utilize the available semantic information about di�erent classes

133

of transactions to make more e�cient control decisions, consequently increasing the

concurrency level of the system. In SOCC, however, serializable schedules are not

always achieved for every class of transactions, since meeting their timing constraints

is sometimes more important than maintaining the logical consistency of some types

of data objects in a RTDBS.

� Our system allows the application developers to specify multiple guarantee levels for

di�erent applications. We performed a simulation study to identify the costs of these

guarantees realized in our integrated transaction processing scheme. As expected, we

found that the higher level of guarantee requires more system resources and therefore

costs more non-guaranteed transactions.

� To support our RTDBS model, we designed a deterministic computing structure for a

real-time database system, utilizing a memory-resident real-time data object abstrac-

tion and a real-time microkernel architecture. The proposed architecture eliminates

sources of unpredictable behavior of the system related with dynamic I/O such as

bu�er management, dynamic paging, and disk scheduling. We developed a real-time

database server called StarBase, which is currently supporting only �rm real-time

transactions, running on the top of the Real-Time Mach microkernel.

� We discussed issues related with query processing and recovery in memory-resident

real-time database environment, and suggested some solutions to the problems. The

proposed approaches extend the existing algorithms for the conventional memory-

resident databases into our RTDBS model.

8.2 Future Work

Our research work has many possible future directions. First, our RTDBS model can be ex-

tended to accommodate more complicated applications in various computing environments:

134

� Some types of real-time transactions can hardly be included in our current RTDBS

model. For example, there can be a hard real-time aperiodic transaction which up-

dates some discrete data objects. We excluded such cases from our model regarding

them as infeasible, but in a future more complex real-time system it may become

feasible. Scheduling models and concurrency control mechanisms should be extended

to adapt such cases.

� The transaction characteristics of each class, listed in Table 3.1, are just the minimum

requirements for a transaction to be classi�ed into the class. For example, for a Class

III transaction its data and run-time requirements may be known in advance. Also,

each Class III transaction can have a di�erent value function. The current transaction

scheduler, which assumes only �rm deadline equal-valued Class III transactions, can

be augmented to utilize such additional information and consequently maximize the

total value of the system.

� As microprocessor technology matures and high performance microprocessors are

available at low cost, it becomes feasible to construct a real-time system in a multipro-

cessor environment. Since our current model assumes a single processor environment,

it must be changed to be applied to such settings. For example, if a data acquisition

or slack stealing task is executed in a dedicated processor, the transaction model and

the related supporting mechanisms also need to be reconsidered.

� Multimedia applications may need a real-time database support. Our memory-resident

data object model is well-suited for process control applications, but may have some

limitations to support a large amount of multimedia data. Furthermore, a multimedia

database system may have much di�erent kinds of timing and consistency constraints

on its data and transactions.

Second, some parts of our approach may need further elaboration. For instance,

� Our STCE scheme may be too conservative. We may �nd less conservative conditions

to guarantee temporal consistency of continuous data objects and develop approaches

135

to relax these conditions according to the semantics of the given application.

� In this study, we used approximate methods based on dynamic slack stealing algo-

rithms to �nd spare capacity for non-guaranteed transaction processing. However, in

some system environments, a static approach may be more appropriate. For example,

dynamic slack calculation costs may not be justi�ed in some applications. It would

be interesting to compare the performance of dynamic methods with that of static

schemes in various situations.

Finally, it would be necessary to investigate how diverse real world real-time database

applications can be speci�ed under our model and how our integrated transaction processing

scheme can be implemented to support the applications on top of a speci�c operating

system kernel. First of all, the right real-time operating system kernel platform capable of

supporting our RTDBS model should be identi�ed. The current StarBase testbed can be

used for this purpose if the underlying RT-Mach kernel becomes mature enough to fully

satisfy the basic kernel requirements of our model. Once a kernel platform is decided and

a real-time database server is implemented as proposed in Chapter 6, the schedulability

analysis formula presented in Section 4.2 may need to be adjusted to reect the speci�c

system overheads involved in the kernel. It would be interesting to evaluate the cost and

performance of our real-time transaction processing schemes using practical workloads on

an actual system platform and compare them with our simulation results which are obtained

using synthetic workloads.

136

Appendix A

Slack Stealing Algorithms for

Fixed-Priority Preemptive Systems

Recent research for jointly scheduling transactions with both hard and soft time constraints

has focused on the development of optimal slack stealing algorithms. In this appendix, we

will review the dynamic slack stealing algorithms developed by Davis et al [14, 12].

In Section A.1, we outline the computational model and assumptions used. Section A.2

presents analysis of the maximum amount of slack which may be stolen at each priority

level. This is used as the basis for the optimal dynamic algorithm described in Section A.3.

In Section A.4, we discuss the implementation of two approximate slack stealing algorithms

which are used in our simulation study.

A.1 Computational Model and Assumptions

In �xed-priority preemptive scheduling, each transaction is assigned a unique priority. Then

at run time, the processor is allocated to the highest-priority runnable transaction. Each

transaction is assumed to have a base priority i, in the range 1 to n where n is the number

of transactions. 1 is the highest priority level and n the lowest. hp(i) is used to denote

the set of transactions with a higher base priority than i. Similarly, lp(i) denotes the set

of transactions with priority i or lower. The set of all periodic and sporadic transactions

(i.e., in our model described in Chapter 3, Class I and Class II transactions) is denoted

by T

G

. Each sporadic transaction gives rise to an in�nite sequence of invocation requests,

137

separated by a period P

i

. Thus periodic transactions may be viewed as a special case of

sporadics. Each invocation of transaction �

i

performs an amount of computation between

0 and C

i

(its bounded worst-case execution time) and has a deadline D

i

measured relative

to the time of the request.

In subsequent sections, the following assumptions apply:

� The transaction set T

G

is assumed to be schedulable using �xed-priority preemptive

dispatching with a priority ordering determined by some means such as deadline-

monotonic priority assignment.

� Transactions cannot voluntarily suspend themselves.

� Transaction deadlines are assumed to be less than or equal to their periods.

� Transactions do not exhibit blocking or release jitter,

1

and context switch times are

zero.

A.2 Schedulability Analysis

In this section, we determine the maximum amount of processing time which may be stolen

from an invocation of a guaranteed transaction without causing its deadline to be missed.

The analysis stems from considering the schedulability of each transaction �

i

in T

G

at some

arbitrary time t. It is assumed that at time t, the following data is available via the operating

system, (typically derived from data stored in a process control block):

l

i

(t) The time at which �

i

was last released.

x

i

(t) The earliest possible next release of �

i

. Typically, x

i

(t) = l

i

(t) + P

i

.

d

i

(t) The next deadline on an invocation of �

i

.

c

i

(t) The remaining execution time budget for the current invocation of �

i

.

1

When a transaction is subject to a bounded delay between its arrival and release, it is said to exhibit

release jitter [2].

138

Note that if the current invocation of �

i

is complete, then d

i

(t) = x

i

(t)+D

i

, i.e., d

i

(t) is the

deadline following the next release. c

i

(t) can be found by subtracting the execution time

used from the worst-case execution time, C

i

. Note that if �

i

is complete at time t and thus

awaiting release, then c

i

(t) = 0.

We now focus on �nding the maximum amount of slack time, S

max

i

(t), which may be

stolen at priority level i, during the interval [t, t+d

i

(t)), while guaranteeing that �

i

meets its

deadline. Note that S

max

i

(t) may not actually be available for non-guaranteed transaction

processing due to the constraints on transactions in T

G

with priorities lower than that of

�

i

. To guarantee that �

i

will meet its deadline, we need to analyze the worst-case scenario

from time t onwards. It is therefore assumed that all transactions �

j

are re-invoked at their

earliest possible next release x

j

(t) and subsequently with a period of P

j

.

In attempting to determine the maximum guaranteed slack, S

max

i

(t), it is instructive

to view the interval [t, t + d

i

(t)) as comprising a number of level i busy and idle periods.

Any level i idle time between the completion of �

i

and its deadline could be swapped for �

i

computation without causing the deadline to be missed. Hence the maximum slack which

may be stolen is equal to the total level i idle time in the interval. This result is used to

calculate S

max

i

(t).

The method for �nding the level i idle time relies on two equations: one determines

w

i

(t), the length of a level i busy period with starts at time t, and the other determines

the length of a level i idle period given its start time. By combining these two equations,

S

max

i

(t) can be found by iterating over the interval [t, t+d

i

(t)), totaling up all the idle time.

The �rst equation is derived using techniques given in [2]; two components determine

the extent of busy period:

1. The level i or higher priority processing outstanding at time t.

2. The level i or higher priority processing released during the busy period.

The second component implies a recursive de�nition. As the processing released increases

monotonically with the length of busy period, a recurrence relation can be used to �nd

139

w

i

(t):

2

w

m+1

i

(t) = S

i

(t) +

X

8j2hp(i)[i

c

j

(t) +

&

w

m

i

(t)� x

j

(t)

P

j

'

0

C

j

!

(A.1)

The term S

i

(t) represents level i non-guaranteed transaction processing released at time t

and executing in slack time.

The recurrence relation begins with w

0

i

(t) = 0 and ends when w

m+1

i

(t) = w

m

i

(t)

or w

m+1

i

(t) > d

i

(t). Proof of convergence follows from the analysis of similar recurrence

relations by Audsley et al [2]. The �nal value of w

i

(t) de�nes the length of the busy period.

Alternatively, we may view t+ w

i

(t) as de�ning the start of a level i idle period.

Given the start of a level i idle period, within the interval [t, t+ d

i

(t)), the end of the

idle time, which may be converted to slack, occurs either at the next release of a transaction

of priority i or higher or at the end of the interval. The second equation gives the length,

v

i

(t; w

i

(t)), of the level i idle period.

v

i

(t; w

i

(t)) = min

0

B

B

B

B

@

(d

i

(t)� w

i

(t))

0

;

min

8j2hp(i)[i

�l

w

i

(t)�x

j

(t)

P

j

m

0

P

j

+ x

j

(t)� w

i

(t)

�

1

C

C

C

C

A

(A.2)

Combining equations (A.1) and (A.2), the method for determining the maximum

slack, S

max

i

(t), proceeds as follows:

1. The slack which may be stolen, S

i

(t), is initially set to zero.

2. Equation (A.1) is used to compute the end of a busy period in the interval [t, t+d

i

(t)).

3. The end of the busy period is used as the start of an idle period by Equation (A.2)

which returns the length of contiguous idle time.

4. The slack processing, S

i

(t) is incremented by the amount of idle time found in step 3.

5. If the deadline on �

i

has been reached, the maximum slack which can be stolen is

given by S

i

(t). Otherwise, steps 2 to 5 are repeated.

This method can be implemented as shown in Figure A.1.

2

Note, (x)

0

is notational shorthand for max(x; 0), i.e., the minimum value of (x)

0

is zero.

140

/* Determine the maximum level i slack at time t */

/* Note: ", set to the granularity of time, is a mathematical device */

/* used to force the recurrence relation to continue. */

Algorithm �nd slack (i, t, S

max

i

(t))

begin

S

i

(t) = 0;

w

m+1

i

(t) = 0;

while w

m+1

i

(t) � d

i

(t) do

w

m

i

(t) = w

m+1

i

(t);

w

m+1

i

(t) = S

i

(t) +

P

8j2hp(i)[i

�

c

j

(t) +

l

w

m

i

(t)�x

j

(t)

P

j

m

0

C

j

�

;

if w

m+1

i

(t) == w

m

i

(t) then

S

i

(t) = S

i

(t) + v

i

(t; w

i

(t));

w

m+1

i

(t) = w

m+1

i

(t) + v

i

(t; w

i

(t)) + ";

end

end

S

max

i

(t) = S

i

(t);

end

Figure A.1: Algorithm for Determining the Level i Slack

141

We note that the algorithm in Figure A.1 may be used to calculate the maximum

slack which may be stolen from a transaction �

i

which is either periodic or sporadic.

A.3 Optimal Dynamic Slack Stealing Algorithm

The previous analysis is used as the basis for a dynamic slack stealing algorithm. Non-

guaranteed transactions need to be executed as soon as possible, while the deadlines of all

guaranteed transactions are still met. In the case of strictly periodic transactions, this can

be achieved by serving non-guaranteed transactions at highest priority, when there is slack

available at all priority levels. However, when hard sporadic transactions are considered,

there are problems with this approach.

Suppose, at time t there are non-guaranteed transactions pending and the highest-

priority runnable transactions in T

G

is �

k

. Further, suppose a sporadic transaction with

priority higher than k has zero slack (say D = C) and could arrive at any time. This

sporadic transaction may never arrive, preventing slack from ever being available at all

priority levels.

To avoid the above problem, a di�erent criteria is used for determining when non-

guaranteed transactions may execute. The analysis guarantees that, provided level k non-

guaranteed transaction processing is limited to S

max

k

(t) in the interval [t, t + d

k

(t)) then

transactions in T

G

at priority levels k and higher will meet their deadlines. As the deadlines

of all guaranteed transactions in T

G

must be met, non-guaranteed transaction processing

is only permissible at priority k while there is slack present at priority level k and all lower

levels:

min

8i2lp(k)

S

i

(t) > 0 (A.3)

Note, for completeness, when there are no hard transactions runnable, it is regarded

that there is in�nite slack available at priority level n+1. Provided Inequality (A.3) is true,

non-guaranteed transactions can execute at priority level k in preference to the guaranteed

transaction �

k

.

Using the above result, the dynamic slack stealing algorithm is formulated as follows:

142

Whenever there are non-guaranteed transactions pending, the algorithm in Figure A.1 is

used to �nd the slack available at each priority level lower than or equal to k, where k

is the priority level of the highest-priority runnable transaction in T

G

. Inequality (A.3) is

then used to determine if non-guaranteed transaction processing can proceed immediately

in preference to �

k

. This dynamic slack stealing algorithm has been proved optimal in [14].

Note that the dynamic algorithm, described above, potentially requires the slack at

each priority level to be re-computed at each time increment. To reduce the run-time

overheads of this algorithm, it needs to examine how the slack at some later time t

0

(t

0

> t)

may be derived from the set of lower bounds on slack at time t. If the processor serviced

non-guaranteed transactions or was idle between t and t

0

then slack is consumed at all

priority levels:

8�

j

2 T

G

: S

i

(t

0

) = S

i

(t)� (t

0

� t) (A.4)

Whereas, if the processor was busy with the guaranteed transaction �

j

, then slack is con-

sumed at all priority levels higher than j:

8�

i

2 hp(j) : S

i

(t

0

) = S

i

(t)� (t

0

� t) (A.5)

The above equations represent a generic set of methods for maintaining the slack at each

priority level. These methods accurately maintain the level i slack provided that �

i

does

not complete during the interval [t; t

0

) and that all transactions �

j

of priority i or higher are

released at their earliest next release and periodically thereafter. If these conditions do not

hold, then the above equations still maintain valid lower bounds on the slack available at

each priority level, although the degree of pessimism in these bounds is potentially increased.

Hence, for strictly periodic hard transaction sets (i.e., a set of Class II transactions T

II

= ;),

optimal slack scheduling can be achieved by re-calculating the exact level i slack each

time transaction �

i

completes, while using equations (A.4) and (A.5) to maintain the slack

counters at other times. In contrast, for transaction sets containing sporadics (i.e., T

II

6= ;),

optimal slack scheduling is only possible if the exact slack at all priority levels is recalculated

every clock tick.

143

A.4 Approximate Slack Stealing Algorithms

In this section, approximations to the optimal dynamic slack stealing algorithm is discussed.

The aim is to produce slack stealing algorithms which are e�cient enough for run-time usage.

For hard deadline periodic transaction sets, the slack available at priority level i only

increases when �

i

completes. Optimal slack stealing can be achieved by using the algorithm

in Figure A.1 to calculate S

max

i

(t) at each completion of �

i

. Equations (A.4) and (A.5) are

then used to keep track of the slack available at other times. The overhead of computing

the slack can be reduced by a priori calculation of the least additional slack, S

add

i

, which

becomes available at every completion of �

i

. This enables a less pessimistic initial value for

S

i

(t) to be used in algorithm of Figure A.1, thus reducing computation.

The least additional level i slack is generated when �

i

completes as late as possible

(i.e., at its deadline) and the subsequent invocation is subject to the maximum interference

from higher priority transactions. Maximum interference occurs when all higher priority

transactions are released at the above deadline. This is e�ectively a critical instant for �

i

.

Thus S

add

i

is equivalent to the level i idle time in the interval [0; P

i

) where time 0 is a critical

instant. The algorithm in Figure A.1 may be used to calculate the value of S

add

i

o�ine.

Periodic Approximate Slack Stealing Algorithm

The Periodic Approximate Slack Stealing (PASS) algorithm combines both the static and

dynamic methods of calculating slack. The static method is to increment the available level

i slack by S

add

i

at each completion of �

i

, while the dynamic approximation is to periodically

re-evaluate the slack available at every priority level. Recall that to maintain the exact

slack at all priority levels in a system containing sporadic transactions potentially requires

that the slack at every priority level be re-evaluate every clock tick. Clearly this is infeasible

in practice. However, the PASS algorithm approximates to this optimal approach. Varying

the period of the PASS algorithm enables the overhead of slack calculation to be traded o�

against a decrease in the performance of non-guaranteed transactions. A very short period

minimizes the deadline miss ratio of non-guaranteed transactions at the expense of a large

144

overhead. While a very long period minimizes the overhead and increases the deadline miss

ratio. This trade o� has been further examined in [12].

Hyperperiod Approximate Slack Stealing Algorithm

The overheads of the PASS algorithm are clearly dependent on its period and the cardi-

nality of the transaction set T

G

. Consider the performance of the PASS algorithm when

the calculation of slack is performed on the same processor which is executing the transac-

tions. This requires the addition of a special high-priority transaction which performs the

necessary slack calculations. Unfortunately, the presence of such a transaction may render

the guaranteed transaction set infeasible. The PASS algorithm should be modi�ed so that

the calculation of slack has no e�ect on the processing capacity available for guaranteed

transactions. The new algorithm is called the Hyperperiod Approximate Slack Stealing

(HASS) algorithm.

Under the HASS algorithm, the dynamic calculation of slack is only ever performed

in slack time. A special soft transaction SC is used to calculate the slack at all priority

levels. Upon release, SC is placed at the head of the queue of non-guaranteed transactions

awaiting execution. When there is slack available, SC executes re-calculating the slack

at each priority level. Finally, when SC completes at time t, its next release is set for

t + P

HASS

, where P

HASS

is the period of the HASS algorithm. This approach guarantees

that the calculation of slack cannot interfere with the execution of guaranteed transactions

while ensuring that it is performed as promptly as possible.

145

Bibliography

[1] R. Abbott and H. Garcia-Molina. Scheduling Real-Time Transactions: A Performance

Evaluation. ACM Transactions on Database Systems, 17(3):513{560, September 1992.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying New

Scheduling Theory to Static Priority Pre-emptive Scheduling. Software Engineering

Journal, 8(5):284{292, September 1993.

[3] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time

Scheduling: The Deadline Monotonic Approach. In Proceedings of the 8th IEEE Work-

shop on Real-Time Operating Systems and Software, Atlanta, GA, May 1991.

[4] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Absolute and Relative

Temporal Constraints in Hard Real-Time Databases. In Proceedings of 1992 IEEE

EuroMicro Workshop on Real Time Systems, February 1992.

[5] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Data Consistency

in Hard Real-Time Systems. Technical Report YCS203, Department of Computer

Science, University of York, March 1992.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Addison-Wesley, Reading, MA, 1987.

[7] A. Buchmann et al. Time-Critical Database Scheduling: A Framework for Integrating

Real-Time Scheduling and Concurrency Control. In Proceedings of the 5th International

Conference on Data Engineering. IEEE, February 1989.

[8] A. Burns. Scheduling Hard Real-Time Systems: A Review. Software Engineering

Journal, 6(3):116{128, 1991.

[9] A. Burns and A. J. Wellings. Implementing Analysable Hard Real-time Sporadic Tasks

in Ada 9X. Technical Report YCS209, Department of Computer Science, University

of York, September 1993.

[10] A. Burns, A. J. Wellings, and A. D. Hutcheon. The Impact of an Ada Runtime

System's Performance Charactersitics on Scheduling Models. In Proceedings of the

12th Ada Europe Conference, LNCS 688, pages 240{248. Springer-Verlag, 1993.

[11] P. Dasgupta and R. J. LeBlanc Jr. Clouds: A Support Architecture for Fault Tolerant,

Distributed Systems. Technical report, School of Information and Computer Science,

Georgia Institute of Technology, 1985.

146

[12] R. I. Davis. Approximate Slack Stealing Algorithms for Fixed Priority Preemptive

Systems. Technical Report YCS217, Department of Computer Science, University of

York, November 1993.

[13] R. I. Davis. Scheduling Slack Time in Fixed Priority Preemptive Systems. Technical

Report YCS216, Department of Computer Science, University of York, November 1993.

[14] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling Slack Time in Fixed Priority

Pre-emptive Systems. In Proceedings of the 14th Real-Time Systems Symposium, pages

222{231, Raleigh-Durham, NC, December 1993.

[15] D. J. DeWitt et al. Implementation Techniques for Main Memory Database Systems.

In Proc. ACM SIGMOD Conference, June 1984.

[16] H. Diel et al. Data Management Facilities of an Operating System Kernel. In Proc.

ACM SIGMOD Conference, pages 58{69, Boston, June 1984.

[17] M. H. Eich. MARS: The Design of a Main Memory Database Machine. In Proc. of the

International Workshop on Database Machines, October 1987.

[18] J. L. Eppinger. Virtual Memory Management for Transaction Processing Systems.

PhD thesis, Department of Computer Science, Carnegie-Mellon University, February

1989. Also available as technical report CMU-CS-89-115.

[19] David W. George. Implementation of indexing and concurrency control mechanisms in

a real time database. Master's thesis, Department of Computer Science, University of

Virginia, February 1993.

[20] Michel Gien. Micro-kernel Architecture { Key to Modern Systems Design. Unix Review,

November 1990.

[21] M. Guillemont. Microkernel Design Yields Real Time in a Distributed Environment.

Computer Technology Review, pages 13{19, Winter 1990.

[22] R. B. Hagmann. A Crash Recovery Scheme for a Memory-Resident Database System.

IEEE Transactions on Computers, C-35(9):839{843, September 1986.

[23] J. Haritsa, M. Carey, and M. Livny. Dynamic Real-Time Optimistic Concurrency

Control. In Proceedings of the 11th Real-Time Systems Symposium, pages 94{103,

Orlando, FL, December 1990.

[24] J. Haritsa, M. Carey, and M. Livny. On Being Optimistic About Real-Time Con-

straints. In Proceedings of the ACM Symposium on Principles of Database Systems,

April 1990.

[25] J. R. Haritsa. Transaction Scheduling in Firm Real-Time Database Systems. PhD

thesis, University of Wisconsin{Madison, August 1991.

147

[26] J. R. Haritsa, M. Livny, and M. J. Carey. Earliest Deadline Scheduling for Real-Time

Database Systems. In Proceedings of the 12th Real-Time Systems Symposium, pages

232{242, December 1991.

[27] R. Haskin et al. Recovery Management in QuickSilver. ACM Transactions on Computer

Systems, 6(1):82{108, February 1988.

[28] J. Huang. Real-Time Transaction Processing: Design, Implementation, and Perfor-

mance Evaluation. PhD thesis, University of Massachusetts at Amherst, May 1991.

[29] J. Huang, J. A. Stankovic, et al. Experimental Evaluation of Real-Time Transaction

Processing. In Proceedings of the 10th Real-Time Systems Symposium, Santa Monica,

CA, December 1989.

[30] J. Huang, J. A. Stankovic, et al. On Using Priority Inheritance in Real-Time Databases.

Technical Report COINS TR 90-121, University of Massachusetts, November 1990.

[31] J. Huang, J. A. Stankovic, et al. Experimental Evaluation of Real-Time Optimistic

Concurrency Control Schemes. Technical Report COINS TR 91-16, University of Mas-

sachusetts, January 1991.

[32] D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering and Analysis of Fixed

Priority Schedulers. IEEE Transactions on Software Engineering, 19(9), September

1993.

[33] Young-Kuk Kim and Sang H. Son. An Approach Towards Predictable Real-Time

Transaction Processing. In Proceedings of the 5th Euromicro Workshop on Real-Time

Systems, pages 70{75, Oulu, Finland, June 1993.

[34] T. Kitayama, T. Nakajima, and H. Tokuda. RT-IPC: An IPC Extension for Real-Time

Mach. Technical report, Carnegie-Mellon University, August 1993.

[35] V. Kumar and A. Burger. Performance Measurement of Some Main Memory Database

Recovery Algorithms. In IEEE Transactions on Knowledge and Data Engineering,

pages 436{443, 1991.

[36] Tei-Wei Kuo and Aloysius K. Mok. SSP: A Semantics-Based Protocol for Real-Time

Data Access. In Proceedings of the 14th Real-Time Systems Symposium, pages 76{86,

Raleigh-Durham, NC, December 1993.

[37] Averill M. Law and W. David Kelton. Simulation Modeling & Analysis. McGraw-Hill,

Inc., 1991.

[38] E. F. Lazowska et al. The Architecture of the Eden System. In Proceedings of the

8th Symposium on Operating System Principles, pages 148{159, Paci�c Grove, Calif.,

December 1981. ACM.

148

[39] J. Lee and S. H. Son. Using Dynamic Adjustment of Serialization Order for Real-Time

Database Systems. In Proceedings of the 14th Real-Time Systems Symposium, pages

66{75, Raleigh-Durham, NC, December 1993.

[40] J. Lee and S. H. Son. Deadline-Sensitive Conict Resolution for Real-Time Optimistic

Concurrency Control. submitted for publication, 1994.

[41] J. Lee and S. H. Son. Precise Serialization for an Optimistic Concurrency Control

Algorithm. submitted for publication, 1994.

[42] S. J. Le�er, M. K. McKusick, M. J. Karels, and J. S. Quarterman. The Design and

Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, Reading,

MA, 1989.

[43] T. J. Lehman. Design and Performance Evaluation of a Main Memory Database Sys-

tem. PhD thesis, University of Wisconsin{Madison, August 1986.

[44] T. J. Lehman and M. J. Carey. A Study of Index Structures for Main Memory Database

Management Systems. In Proc. 12th Conf. on Very Large Data Bases, pages 294{303,

Kyoto, Japan, August 1986.

[45] T. J. Lehman and M. J. Carey. Query Processing in Main Memory Database Manage-

ment Systems. In Proc. ACM SIGMOD Conference, pages 239{250, Washington D.C.,

May 1986.

[46] T. J. Lehman and M. J. Carey. A Recovery Algorithm for a High-Performance Memory-

Resident Database System. In Proc. ACM SIGMOD Conference, pages 104{117, San

Francisco, CA, May 1987.

[47] J. P. Lehoczky. Real-Time Resource Managenment Techniques. In J. J. Marciniak,

editor, Encyclopedia of Software Engineering, pages 1011{1020. John Wiley and Sons,

New York, 1994.

[48] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for Scheduling Soft-

Aperiodic Tasks in Fixed-Priority Preemptive Systems. In Proceedings of the 13th

Real-Time Systems Symposium, pages 110{123, Phoenix, AZ, December 1992.

[49] Matthew R. Lehr and Sang H. Son. Managing Contention and Timing Constraints in a

Real-Time Database System. Technical Report CS-94-19, University of Virginia, May

1994.

[50] K.-J. Lin. Consistency Issues in Real-Time Database Systems. In Proceedings of the

22nd Hawaii International Conference on System Sciences, January 1989.

[51] K.-J. Lin, F. Jahanian, A. Jhingran, and C. D. Locke. A Model of Hard Real-Time

Transaction Systems. Technical Report RC No. 17515, IBM T. J. Watson Research

Center, January 1992.

149

[52] Y. Lin and S. H. Son. Concurrency Control in Real-Time Databases by Dynamic

Adjustment of Serialization Order. In Proceedings of the 11th Real-Time Systems

Symposium, pages 94{103, Orlando, FL, December 1990.

[53] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environment. Journal of the ACM, 20(1):46{61, 1973.

[54] H. Nakazato. Issues on Synchronization and Scheduling Tasks in Real-Time Database

Systems. PhD thesis, University of Illinois at Urbana-Champaign, January 1993. Also

available as UIUCDCS-R-93-1786.

[55] P. E. O'Neil, K. Ramamritham, and C. Pu. Towards Predictable Transaction Execu-

tions in Real-Time Database Systems. Technical Report CS-TR-92-35, University of

Massachusetts at Amherst, 1992.

[56] Calton Pu. On-the-Fly, Incremental, Consistent Reading of Entire Databases. Algo-

rithmica, 1(4):271{287, December 1986.

[57] Krithi Ramamritham. Real-Time Databases. International Journal of Distributed and

Parallel Databases, 1(1), 1992.

[58] K. Salem and H. Garcia-Molina. System M: A Transaction Processing Testbed for

Memory Resident Data. IEEE Transactions on Knowledge and Data Engineering,

2(1):161{172, March 1990.

[59] L. Sha, R. Rajkumar, and J. Lehoczky. Concurrency Control for Distributed Real-Time

Databases. ACM SIGMOD Record, 17(1):82{98, March 1988.

[60] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach

to Real-Time Synchronization. IEEE Transactions on Computers, 39(9):1175{1185,

September 1990.

[61] L. Sha, R. Rajkumar, S. H. Son, and C. Chang. A Real-Time Locking Protocol. IEEE

Transactions on Computers, 40(7), July 1991.

[62] S. H. Son. Real-Time Database Systems: A New Challenge. IEEE Data Engineering,

13(4):39{43, December 1990.

[63] S. H. Son, J. Lee, and Y. Lin. Hybrid Protocols Using Dynamic Adjustment of Seri-

alization Order for Real-Time Concurrency Control. Journal of Real-Time Systems,

4(3):269{276, September 1992.

[64] S. H. Son, S. Park, and Y. Lin. An Integrated Real-Time Locking Protocol. In Proceed-

ings of the 8th IEEE International Conference on Data Engineering, pages 527{534,

Phoenix, AZ, February 1992.

150

[65] Sang H. Son. An Adaptive Checkpointing Scheme for Distributed Databases with

Mixed Types of Transactions. IEEE Transactions on Knowledge and Data Engineering,

1(4), December 1989.

[66] X. Song and J. Liu. Performance of Multiversion Concurrency Control Algorithms in

Maintaining Temporal Consistency. In Proceedings of the IEEE 14th Annual Interna-

tional Computer Software and Applications Conference (COMPSAC), October 1990.

[67] B. Sprunt. Aperiodic Task Scheduling for Real-Time Systems. PhD thesis, Department

of Computer Science, Carnegie-Mellon University, August 1990.

[68] B. Sprunt, J. Lehoczky, and L. Sha. Exploiting Unused Periodic Time for Aperiodic

Service Using the Extended Priority Exchange Algorithm. In Proceedings of the 9th

Real-Time Systems Symposium, pages 251{258, December 1988.

[69] J. Stankovic. Real-Time Computing Systems: The Next Generation. Technical Report

TR-88-06, University of Massachusetts, Amherst, January 1988. Also available as

Misconceptioins about Real-Time Computing, IEEE Computer, October 1988.

[70] J. A. Stankovic and W. Zhao. On Real-Time Transactions. ACM SIGMOD Record,

17(1):4{18, March 1988.

[71] M. Stonebraker. Virtual Memory Transaction Management. ACM Operating Systems

Review, 18(2):8{16, April 1984.

[72] M. Stonebraker, D. DuBourdieux, and W. Edwards. Problems in Supporting Database

Transactions in an Operating System Transaction Manager. ACM Operating Systems

Review, 19(1):6{14, January 1985.

[73] H. Tokuda. RT-Thread Model for Real-Time Mach. In IEEE Workshop on Real-Time

Operating Systems and Software, May 1991.

[74] H. Tokuda and C. Mercer. ARTS: A Distributed Real-Time Kernel. ACM Operating

Systems Review, 23(3), July 1989.

[75] H. Tokuda and T. Nakajima. Evaluation of Real-Time Synchronization in Real-Time

Mach. In Proceedings of the Second USENIX Mach Workshop, October 1991.

[76] H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: Towards Predictable Real-

Time Systems. In Proceedings of the USENIX 1990 Mach Workshop, October 1990.

[77] I. L. Traiger. Virtual Memory Management for Data Base Systems. ACM Operating

Systems Review, 16(4):26{48, October 1982.

151

