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One aspect of human image understanding is the ability to estimate missing parts of a natural image. This ability 
depends on the redundancy of the representation used to describe the class of images. In 1951, Shannon [Bell. Syst. 
Tech. J. 30,50 (1951)] showed how to estimate bounds on the entropy and redundancy of an information source from 
predictability data. The entropy, in turn, gives a measure of the limits to error-free information compaction. An 
experiment was devised in which human observers interactively restored missing gray levels from 128 X 128 pixel 
pictures with 16 gray levels. For eight images, the redundancy ranged from 46%, for a complicated picture of 
foliage, to 7 4%, for a picture of a face. For almost-complete pictures, but not for noisy pictures, this performance 
can be matched by a nearest-neighbor predictor. 

One of the distinguishing characteristics of intelligent sys-

tems is the ability to make accurate and reliable predictions 
from partial data. Our own ability to interpret the images 
that our eyes receive involves making inferences about the 
environmental causes of image intensities, often from in-
complete data. This ability to make predictions or infer-
ences depends on the existence of statistical dependencies or 

redundancies in natural images. Despite the fact that the 
prediction of information from natural images plays an im-

portant role in image understanding, there have been rela-
tively few quantitative studies of the ability of humans to do 
this. In this paper a simple example of this ability, that of 
restoring missing pixel gray levels in natural images, is ex-
plored. ·These results are, in turn, related to quantitative 
estimates of the redundancy of natural images. Although 

this is a simple prediction task, the technique should be easy 

to extend to the investigation of more-complicated aspects 
of our ability to predict picture information. 

Some years ago, Attneave1 and Barlow2·3 pointed out that 
a principal task of biological vision may be to encode the 
visual image into a less redundant form. In this context, 
rather than searching for features in an image, the visual 

system codes a given image with regard to its relation to the 
statistical properties of the set of natural images. Because 
the space of possible pictures is so great, it makes good sense 
to utilize naturally occurring redundancy to recode image 
information into a less redundant form. Efficient coding 
can result in the transmission of the same amount of irtfor-
mation with fewer neurons or with smaller dynamic range. 

In addition to numerous communication-engineering appli-
cations to image compaction,4 there have been recent quan-
titative explanations of nonlinear transduction, lateral inhi-
bition, and opponent-color processing as redundancy-reduc-
tion mechanisms.5-8 Further upstream, the image-
understanding tasks that the cortex faces may be simplified 
by a redundancy reduction in the image specification. For 
example, eigenvector transformation of pictures of faces can 

make possible a large reduction of dimensionality, which 

may be useful for economical representation and retrieval. 9 

Recent work on autoassociative networks is providing tools 
for searching for compact image or shape codes.1°·11 

In order to demonstrate the relationship between predict-
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ability and redundancy, Fig. 1(a) shows a 128 X 128 pixel 

image with 16 possible gray levels, where about 150 pixels 
have been deleted. Here, deletion means that the original· 
gray levels were replaced at random by one of the 16 gray 
levels chosen from a uniform distribution. The reader 
should have little difficulty spotting the deleted pixels, and, 
as will be shown below, it is fairly easy to make good guesses 
about what the gray levels should be. In Fig. 1(c) 150 pixels 

have also been deleted. Not only is it impossible to deter-

mine which pixels were deleted; it is also impossible to deter-
mine what gray levels should be used to replace them. Fig-
ure 1(a) belongs to the class of natural images, which is 
highly redundant. Figure 1(c) is an example of white visual 
noise with uniformly distributed gray levels, a class of pic-
tures that has no redundancy. 

The redundancy for an information source was originally 

defined quantitatively by Shannon.12 Consider a class of 
digitized natural images that might be presented on a graph-
ics display. Suppose that they are specified by k pixels with 
m bits of gray-level resolution per pixel. The nth-order 

conditional entropy for this class of pictures, Fn, is the ex-
pected value of the negative log (base 2) of the probability of 
gray level i conditional on the values of n neighbors (over 

some defined neighborhood structure): 

Fn = - .2: p(i, bj)log2 p(ilb}, (1) 

lJ 

where bj is the jth block of the n neighborhood pixels (j = 1 
to 2mn, i = 1 to 2m). As n approaches k, Fn approaches the 

minimum average number of bits per pixel required to code 
this class, for arbitrarily small error. If the probability of 
pixel gray levels is constant and independent of all others, 
the entropy is a maximum value of m bits per pixel. This 
provides a useful baseline to quantify predictability and 
redundancy. Redundancyis 

Fn 
1--· (2) 

m 

In actual practice, it is impractical to calculate high-order 
conditional probabilities and thus redundancy. However, 
in the 1950's Shannon12 showed that if a device exists that 
can predict unknown alphabet members from known ones in 
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a text, it is possible to compute bounds on the entropy and 

the redundancy of a language. The redundancy estimates 

get better as the predictor approaches ideal. Although we 

are probably natideal predictors, human observers implicit-

ly possess an enormous store of knowledge about natural 

images. In this paper the human ability to predict missing 

pixel gray levels is measured and used to estimate image 

redundancy for a particular image quantization. 

In contrast to numerous applications of Shannon's guess-

ing game to language studies,I3 there have been only a few 

studies of the redundancy of pictures by using human pre-

diction. Two such studies14•15 investigated gray-level pre-

dictability for a small set of natural images, and a third16 

measured predictability in simple contour line drawings. In 

1965, Parks14 reported on the predictability of half-tone 

gray-level pictures covered by a 36 tile X 44 tile grid. Start-

ing with a completely covered picture, the subject chose a 

tile and guessed the gray level until the correct answer was 

obtained (binary guessing was used if the subject was un-

sure). This tile was removed, and the subject went on to the 

next tile. The gray level was estimated subjectively (for 

both the subject and the scorer) by comparison with a quan-
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Fig. 1. Picture hbb quantized to 128 X 128 X 4 bits. (a), (b), and 
(c) have increasing fractions of deleted pixels. About 1% and 100% 
of the pixels have been deleted from (a) and (c), respectively. 

tized gray-level card. Entropy was estimated as the ratio of 

the number of guesses to the number of tiles. For a picture 

of a girl (2.5 bits/tile) and a picture of sailor (3 bits/tile), the 

redundancy estimates were 60 and 74%, respectively. In 

another study, Tzannes et al,15 used the same measure of 

entropy for a 50 X 50 pixellunar-surface,photograph quan-

tized to 8 levels. Two subjects were familiarized with sam-

ples of images from a class of lunar-surface photographs. 

For the two subjects, the redundancies were 39 and 56%. It 

is shown below that the measure of entropy used in these 

studies typically underestimates the lower bound on redun-

dancy. 

In this study we extend previous work in several ways. 

Computer graphics makes it easy to improve the guessing 

game, over previous studies, by using interactive substitu-

tion. Here, the observer can see the results of a particular 

choice before making a commitment. This makes it reason-

able to use higher spatial resolution and more gray levels. 

The technique also promises to be a useful tool for future 

studies of the predictability of image features that are not 
pixel based. The performance of several simple nearest-

neighbor models are compared with human prediction per-
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formance. One of these nearest-neighbor models does well 

when the image is relatively noise free but breaks down for 

images that have a large fraction of deleted pixels. 

METHOD 

The experiment was set up as follows. Eight pictures were 

digitized to 128 X 128 pixelsP The pictures were a close-up 

of foliage (leaves), a stream in a woods (woods/stream), a 

cityscape consisting of skyscrapers (city), a woman's face 

(face), Half-dome at Yosemite Park (half-dome), a picture of 

four elderly people in a shack (four elders), a man's face 

(hbb), and a Gaussian pseudofractal image (fractal) with a 

power spectrum corresponding to a fractal dimension of 2.5 

and a rms contrast of 31%.18 Pictures with large areas of 

open sky or other regions of uniform gray level were not 

used. Each pixel subtended a 10 min X 7 min rectangle at 

the eye. The gray-level histogram was stretched to full 

range (0 to 255 gray levels), and then the gray-level scale was 

quantized to 16levels (4 bits). The dimmest and brightest 

pixels were 0.3 and 34 nits, respectively. The effective gam-

ma of the display was 1.3. The alphabet or basis set consist-

ed of these quantized pixels. The reason for using only 16 

levels was that this was judged to be the right compromise 
between having enough gray levels for image intelligibility 

and not so many as to complicate the results by making the 

viewer unable to discriminate contrast. When 5 bits/pixel 

were used, it was difficult in some instances to discriminate 

one gray level from a nearby value in the picture. At the 

other extreme, binary pictures are often perceptually diffi-

cult to interpret. Under certain conditions, 3-bit/pixel 

quantization is adequate for recognition, so 4-bit/pixel 

quantization was about right.19 However, both spatial and 

gray-level quantization alter the statistical structure of a 

class of pictures in a way that may make it difficult to 

generalize redundancy to other quantizations (see the Dis-

cussion section). 

Before the observer was allowed to see the picture, a pre-

determined fraction of the 16,384 pixels was deleted (Fig. 1). 

For observer DJK, deletion was defined as above. For ob-
server DCK, deletion meant setting the gray level to zero. 

The observer's task was to set the level of a deleted pixel to 
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Fig. 2. The percentage of trials for which the observer got the right 
answer as a function of the per cent deleted and the number of tries 
(1 to 16) for observer DJK for the picture of the man's face (hbb). 
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what it had been before deletion. To do this, the observer 

requested the computer (by pushing the right-hand button 

of a mouse) to show which pixel was to be reset. This pixel 

would blink. When ready, the observer would try out vari-

ous gray levels from the palette shown beneath the picture. 

The computer painted the pixel with the gray level behind 

the cursor cross hairs on the palette. When satisfied with 

the choice, the observer would click the left-hand button. If 

the choice was right, the observer was informed of that fact 

and went on to the next pixel. If the choice was wrong, the 

observer kept guessing until he got it right. A marker was 

placed on the palette indicating wrong choices, so that the 

observer would not pick those again. Because there were 

only 4 bits/pixel, the maximum number of guesses for a pixel 

was 16. Several deletion levels were used, but most data 

were collected with only 1% deleted. There were 100 trials 
for each percent deletion. Both observers had normal acu-

ity. The author was one of the observers. 

RESULTS 

Figure 2 shows the percentage of trials in which the observer 
guessed the right answer as a function of the percent deleted 

and the number of tries for observer DJK for the picture of 

the man's face (hbb) in Fig. 1. When 100% of the pixels were 

deleted, the observer had no clue about what to guess, and to 

guess correctly took anywhere from 1 to 16 tries for a given 

pixel on a given trial. 20 At the other extreme, when only 1% 

of the pixels were deleted, the observer guessed the correct 

gray level on the first guess 78% of the time. More than 

three guesses were never required. 

Shannon12 showed that upper and lower bounds on the 

entropy, F, can be calculated from predictability data such 

as those in Fig. 2. If q;N is the proportion of trials in which 

the observer guessed right on the ith try, the bounds are 

given by 

2m 

upper bound = - I qr log2q;N, (3) 

i=l 

2m 

lower bound= -I i(q;N- qi+1N)log2i. (4) 

i=l 

For example, q(' is the value ofthe height of the bars in Fig. 2 

divided by 100. N is the number of known or undeleted 

pixels. The sum is taken over the 2m gray levels for a given 

N. The upper entropy bound provides an upper limit on the 

average number of bits per pixel required to encode the class 

of pictures considered with an arbitrarily small error. The 

lower bound is provisional in that it is guaranteed to be valid 

only if the predicting device is ideal. Ideal prediction means 

choosing, for the first guess, the mode of the probability of 

the pixel gray-level distribution conditional on the known 
pixel values. If the first guess is wrong, the second guess 

should be the next most probable, and so forth. Because of 

this, the lower entropy bound is of limited meaning. It 

should be made clear that entropy is an ensemble statistic. 

In this experiment, the pixel gray-level predictability data 

are averaged over space for a single picture. Ergodicity is 

assumed, and ensemble averages are replaced by spatial 

averages. In two other pixel-based studies, entropy has 

been estimated by the ratio of the number of guesses to the 

number of trials.l4•15 However, this estimate, in all cases 
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Table 1. Upper Entropy Bounds Estimated from Gray-Level Predictability 

Upper Entropy Bound (bits/pixel) 

for the Followin!l Ima11e 
Observer or Predictor Leaves Woods/Stream City 

DJK 2.06 1.34 1.70 
DCK 2.23 1.66 1.00 

Third-order serial 2.59 2.38 2.44 
entropy 

Mode predictor 2.70 1.97 2.52 
Average predictor 2.14 1.73 2.00 
Median predictor 2.14 1.45 1.15 

ENTROPY BOUNDS 4 x 128 x 128 Picture: HBB 
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Fig. 3. Upper and lower entropy bounds, in bits per pixel, are 
shown for the picture of the man's face as a function of the number 
ofundeleted pixels, that is, the number of known pixels for observer 
DJK (triangles). Upper entropy bounds are also shown (squares) 
for a median predictor that chooses the second brightest gray-level 
of the four nearest neighbors as its first guess (see the text for more 
details). 

studied here, produces entropy estimates higher than that of 

Eq. (3). For example, the data for the eight pictures from 

observer DCK (Table 1) give a mean ratio of guesses re-

quired to trials of 1.7 bits/pixel, an average of 0.23 bit too 

high. 

Figure 3 shows upper and provisional lower entropy 

bounds, in bits per pixel, for the picture of the man's face 

(hbb) as a function of the number of undeleted pixels. As 

more and more pixel information becomes available to the 

observer, the predictability increases, and the entropy 

bounds decrease. As one would expect, with all the pixels 

deleted (left-hand side of the graph), we have upper-bound 

estimates of about 4 bits/pixel (not shown) and, with 10,000 

undeleted pixels, 2 bits/pixel. By the time most of the 

original pixel values are available (right-hand side of the 

graph), the estimated entropy is no more than 0.9 bit/pixel. 

The second observer, DCK, produced similar results. The 

most interesting entropy bounds are the small values on the 

far right-hand side of the graph. They can be interpreted as 

estimates of upper and lower entropy bounds for the class of 

128 X 128 X 4 bit natural images with no deleted pixels. 

Table 1 shows the estimated upper entropy bounds in bits 

per pixel for the eight pictures with only 1% of the pixels 

deleted for the two observers. Also shown in Table 1 are the 

results for three simple nearest-neighbor predictors and the 

Half-Dome Four Elders hbb Fractal Average SE 

1.30 1.05 0.89 1.27 1.32 0.13 
1.47 1.61 1.20 1.38 1.47 0.13 

2.24 2.19 1.55 1.79 2.15 0.14 

2.20 2.04 1.27 1.83 1.99 0.17 
1.90 1.69 1.16 1.53 1.71 0.10 
1.68 1.47 1.03 1.38 1.42 0.12 

third-order serial entropy (discussed below). The average 

upper entropy bounds across the pictures are 1.32 and 1.47 

bits/pixel for observers DJK and DCK, respectively. The 

values range from slightly more than 2 bits/pixel to slightly 

less than 1 bit/pixel. The average provisional lower bounds 

were 0.78 (standard error of 0.1) and 0.95 [standard error 

(SE) = 0.09] bits/pixel for DJK and DCK, respectively. 

It is convenient to measure entropy relative to the number 

of bits per pixel required if there were no statistical depen-

dencies among pixels and if each gray level were equally 

likely. Recall that redundancy is defined as 1 minus the 

ratio of the actual entropy to the maximum entropy (which 

is 4 bits/pixel in our case). The average lower and (provi-

sional) upper bounds on redundancy for observer DJK were 

67 and 81%, respectively. For observer DCK, the average 

lower and upper redundancy bounds were 63 and 76%, re-

spectively. If DJK is an ideal gray-level predictor, then, 

allowing for sampling error, 81% is an actual upper bound on 

redundancy for the class of 4 X 128 X 128 bit images. How-

ever, it is not clear how close people are to being ideal predic-

tors. We have calculated the actual redundancy for the 

class of Gaussian pseudofractals from which the fractal pic-

ture was drawn to be 69%.21 The estimated upper and lower 

redundancy bounds based on predictor DJK are 81 and 68%, 

respectively. In this case, the lower bound is close to the 

actual redundancy, and the provisional upper bound is con-

servative. 

DISCUSSION 

Tb.e processes of spatial averaging and quantization used to 

generate the 128 X 128 X 4 bit pictures will, in general, alter 

the conditional probabilities. This makes it difficult to gen-

eralize the redundancy estimates obtained to other quanti-

zation levels.22 However, the processes of spatial averaging 

and quantization are inherent to the degradation of an image 

by any optical device. Even under the best of conditions, 

because of the particle nature of light, an ideal sensor effec-

tively quantizes the range of light levels that it receives 

according to Poisson statistics. Further, because of the 

wave nature of light, diffraction limits the spatial resolution, 

causing spatial averaging, and thus reduces the effective 

number of pixels. In addition, biological eyes spatially 

quantize images because of discrete receptor spacing, and 

intensity quantization occurs because of stochastic neural 

codes. Consider a picture that subtends a 1 deg X 1 deg 

square at the eye and is on for 33 msec, with a luminance 

range of 1-10 nits (at 555 nm) and viewed with a pupil size of 
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3 mm. It is effectively quantized to about 125 X 125 X 4 bits, 

about the same quantization used in these experiments.23 

The problem of spatial resolution used in a predictability 

experiment would be of greater importance if we wanted to 

estimate the entropy of a more narrowly defined source, for 

example, a collection of human faces viewed from 1 m with a 

specified imaging system. Here, the spatial scale would be 

important. On the other hand, a property of many natural 

images is scale invariance.Is 

We can use the redundancy bounds to answer the some-

what whimsical question, How many meaningful pictures 

could be presented on a 128 X 128 X 4 bit screen? To the 

extent that the reader is willing to believe that the pictures 

used were a representative sample of the class of natural 

images (and any natural image is meaningful), an upper 

entropy bound of about 1.4 bits/pixel, that is, 65% redundan-
cy, translates into not more than 106905 (2L4XI28Xl28) natural 

pictures of a total possible number of 1019,728. Because of 

the coarse quantization, these should all be discriminable, 

albeit with painstaking scrutiny. This is a substantial re-

duction over the number of possible pictures but, of course, 

still a ridiculously big number. 

There are at least two ways in which predictability mea-

sures may be useful for understanding human vision. One 

approach is to understand what limits human performance 

at pixel gray-level predictability. Here, the goal is to seek 

models that can account for human performance. A second 

method is to measure predictability for alternative basis 

elements. The goal, in this case, would be to search for a 

minimal but perceptually complete scheme for describing 

images, a scheme that yields chance performance at the 

predictability test. If found, this scheme would provide a 

better answer to the question of the number of meaningful 

pictures. 

To pursue the first direction, Table 1 shows results from 

three simple predictors that come close to matching human 

performance under some conditions. Table 1 shows mode, · 

mean, and median predictors that use gray-level data from 

the nearest neighbors. For comparison, third-order entro-

pies have been directly computed from adjacent pixels along 

a horizontal raster. This calculation makes use of the gray 

levels of the two previous adjacent pixels.24 The average 

third-order entropy is 2.15 bits/pixel.25 The mode predictor 

compiles a histogram based on the gray levels of the eight 

nearest neighbors and then guesses the most-frequent level, 

the next-most-frequent level, and so forth. Because there 

are more possible levels than neighbors, this predictor makes 

random guesses once it reaches the zero entries. Its average 

upper bound is 1.99 bits/pixel. The average predictor uses 

the quantized average over the four nearest neighbors as the 

first guess. If wrong, it chooses the next-dimmer value. If 

this is wrong, it chooses the next-brighter value above its 
initial guess and continues alternating until it is correct. 

The average upper entropy bound for the average predictor 

is 1.71. The median predictor resembles the average predic-

tor except that its first guess is the third brightest gray level 

of the four nearest neighbors. The usual convention of 

taking the mean of the two middle values yielded slightly 

poorer prediction. The median predictor produces an up-

per entropy bound of 1.42 bits/pixel, which is quite close to 

the estimates based on data from the human predictors. 

The median predictor seems to cope with edges better than 

the average predictor. At first glance, the close match of the 
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median predictor's performance to that of human predictors 

suggests that it may be a good model of human gray-level 

prediction. Although this may be true for relatively noise-

free images, Fig. 3 shows that when a large fraction of pixels 

is deleted, human observers do better than the median pre-

dictor, probably because of the ability of humans to make 

use oflong-range information. We have collected some data 

on the predictability of gray levels as a function of the size of 

the neighborhood. For human subjects, there is little im-

provement in performance beyond the eight nearest neigh-

bors. Observer DCK scored average upper-bound entropy 

estimates of 1.43 [standard error (SE) = 0.1) and 1.47 (SE = 

0.19) with 8 and 1224 nearest neighbors visible, respectively. 

Although the information from the nearest neighbors may 

be sufficient to match human performance in the relatively 

noise-free case, it is not necessary for better-than-chance 

prediction. When a 3 X 3 black annulus surrounded each of 

the 100 pixels to be estimated, the upper entropy bound for 

observer DJK (picture hbb) rose from 0.89 to 2.43 bits. In 

contrast to the first-order entropy of 3. 76, this is substantial-

ly better. 

The fact that a simple median predictor does so well when 

the image is relatively noise free suggests that more-sophis-

ticated predictors may give us even better estimates of re-

dundancy. Communication-engineering research has pro-

duced image-compaction algorithms that can reduce 8-bit/ 

pixel images to less than 1 bit/pixeJ.4 Much of this work 

depends on the high correlations between nearby pixel gray 

levels exemplified by Gaussian Markov-source models.26·27 

In addition to reducing redundancy, these algorithms 

achieve part of their success by tolerating distortion to which 

human observers are insensitive. Thus it is difficult to pre-

dict the success of these algorithms when adapted to the 

gray-level predictability test. One error-free scheme pre-

sented in Ref. 28 yielded 1.4, 2.1, and 3.8 bits/pixel for 4-bit 

original pictures of a girl's face, the cameraman photograph, 

and a crowd, respectively. Although difficult to compare 

directly, these results correspond to an average redundancy 

of 39%, somewhat lower than the 65% obtained in this study. 

Rather than trying to account for gray-level ability, we 

could ask, How predictable are alternative basis elements? 

It is clear that the simple pixel-based description used here 

is analogous only up to receptor coding. Studies of human 

and primate vision have suggested minimal but perceptually 

complete basis sets to describe images and thus to allow for 

distortion tolerance.29-31 However, our ability to discrimi-

nate two images does not necessarily imply that we can 

replace a missing basis element in a natural image. This 

suggests the following challenge of the predictability test. 

Given a minimal but perceptually complete representation 

to describe the class of natural images, how predictable is a 
missing element? If a missing part is very predictable, giv-

ing a high redundancy figure, then there is higher-level cod-

ing that needs to be understood. On the other hand, if 

missing components are hard to predict, that is, if one possi-

bility is as good as another, we have arrived at a code, not 

necessarily unique, that embodies the observer's knowledge 

of natural images. 
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