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Abstract 
This paper presents an analysis of traffic flow 

management (TFM) events of two types: en route 
events in the Pennsylvania (PA) region of the U.S. 
and events affecting the Chicago O’Hare airport 
(ORD) terminal area. We present a method of 
accounting for uncertain weather information at the 
time of TFM decisions, based on Bayesian decision 
networks. However, we show that data from past 
TFM events is, by itself, insufficient to distinguish 
between the efficacy of different strategic TFM 
decisions, at least for delay, cancellation, diversion, 
and departure backlog performance metrics. Patterns 
in TFM performance metrics exist, but there is wide 
variability across TFM events. Other, less 
comprehensive metrics that address how well TFM 
plans execute without undesirable modifications may 
distinguish among TFM actions better.  Modeling as 
a means to augment data from actual TFM events is 
discussed. Learning and adaptation implications for 
the TFM system are presented. 

1.0 Introduction 
In the U.S., airline schedules are challenging 

even on good weather days. When bad weather limits 
the capacities of airports and airspace, U.S. Federal 
Aviation Administration (FAA) TFM specialists at 
the Air Traffic Control System Command Center 
(ATCSCC) may institute various TFM initiatives to 
manage excess demand. These actions are undertaken 
as part of a collaborative decision-making (CDM) 
process involving the FAA and major airlines. FAA 
TFM actions can be divided into strategic actions, 
which are typically taken at least 2 hours before 
weather is expected to affect operations, and tactical 
actions, which are taken within 2 hours of the 
weather. 

Strategic TFM actions include ground delay 
programs (GDPs), which reduce the demand to a 
given airport by spreading out the original schedule 
over time, and “playbook” actions, which reroute 
large blocks of traffic around regions of en route 
airspace according to predefined plans. Tactical TFM 

actions include ground stops (GSs), which stop 
flights on the ground that are due to arrive later at a 
given airport, coded departure reroutes (CDRs), 
which are reroutes for specific flights from a given 
airport, and reroutes around the weather. In addition, 
airlines may respond to weather or forecasted 
weather with flight cancellations and, if necessary, 
diversions. 

Strategic TFM decision making may take place 
in the context of significant uncertainty with respect 
to both demand and weather information. With the 
advent of CDM, there has been an overall 
improvement in the extent and quality of information 
exchanged regarding departure times and 
cancellations [1]. This paper does not specifically 
investigate demand uncertainty, but rather focuses on 
the effects of weather uncertainty. Weather forecasts 
may convey only a likelihood of weather problems, 
and may be uncertain in terms of intensity, location, 
time of onset, and duration. The capacities of 
National Airspace System (NAS) resources, 
including airports and airspace, depend critically on 
the nature and extent of weather problems. 

A key to improving TFM is to understand how 
to account for uncertainty in the demand and capacity 
of NAS resources. Recent analytic work on the 
demand side includes a study of GDPs simulated as 
single-server queuing systems, with demand 
uncertainty approximated in the form of 
cancellations, unexpected arrivals, and aircraft arrival 
time drift [2]. In operational decision making, a 
feedback process is needed to be able to learn from 
past experience, and the feedback must account for 
the fact that decisions are made with uncertain 
information. At ATM 2000 and 2001, we presented 
research on the application of agent-based modeling 
to understand TFM decision making with certain and 
uncertain weather information [3, 4]. This paper 
presents an analysis of uncertainty in weather 
predictions across two types of events in actual 
system operations during years 2000 to 2002, and 
relates this operational experience to the decision 
analysis approach presented at ATM 2001.  
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2.0 Types of TFM Events 
Considered in This Analysis 

2.1  En Route Weather Events in the PA 
Region 

En route airspace in the PA region is heavily 
traveled by flights to and from airports in the 
northeast U.S. Traffic to and from these airports, 
which include New York LaGuardia and JFK, 
Newark, and Philadelphia airports, has key economic 
and operational importance in the NAS. Under 
reduced en route capacity, airborne eastbound flights 
to the northeast airports have priority over outgoing 
westbound flights waiting on the ground. Arrivals 
may begin to deviate onto the departure routes, which 
limits the ability of the northeast airports to depart 
aircraft and leads to departure backlogs. These 
departure backlogs cause operational problems as 
large numbers of aircraft impair ground movement.  

When convective weather in the PA en route 
region is forecast, FAA can respond strategically 
with GDPs into the northeast airports as a means of 
limiting en route airspace demand. These GDPs are 
described as being in support of the Severe Weather 
Avoidance Plan (SWAP). Other strategic options 
include transcontinental playbook reroutes around the 
affected en route airspace, or simply waiting until the 
weather situation is clearer. As the scenario 
progresses, FAA’s tactical options include GSs into 
the northeast airports, CDRs from the northeast 
airports, and smaller tactical reroutes.  

Weather forecast information is from the 
Collaborative Convective Forecast Product (CCFP), 
which produces forecasts at 2-hour intervals.  
(However, during data collection for this study they 
were produced at 4-hour intervals.) The CCFP 
forecasts areas of convective activity. Associated 
with each area are coverage and probability (Table 
1). These forecasts are challenging for TFM 
operations because their uncertainty is so great. 

The analysis presented in this paper utilized 
historical data from 2000 and 2001 (September 9 and 
earlier), incorporating 338 days. Thirty-eight other 
days were discarded due to incomplete weather or 
TFM initiatives (TFMI) data. We classified 62 of the 
338 included days as days when the weather had a 
significant impact in the PA region. A significant 
impact was defined as a condition in which 
convective weather cells overlapped at least three 

major routes in the airspace. Out of 338 days 90 had 
GDP in support of SWAP or for en route weather. 
Not all of these GDPs were exclusively for weather 
in PA. Some were due to weather in other portions of 
the U.S., while some were for combinations of 
factors, such as winds followed by en route 
thunderstorms. 

Table 1. CCFP forecast levels 

Level Coverage Probability 
Low 25 - 49% 0 – 39% 
Medium 50 - 74% 40 – 69% 
High 75 - 100% 70 – 100% 
 

2.2  O’Hare Airport (ORD) Events 
To contrast en route weather events specific to 

the northeast U.S., the ORD scenario was chosen and 
analyzed. Like the PA en route events, ORD weather 
events have high economic and operational 
importance for the NAS. One major distinction in the 
terminal area is that non-convective weather, 
especially ceilings and winds, is very important. 
Another major concern for airports, in addition to 
weather directly over the terminal, is convective 
weather over the arrival and departure fixes. When 
weather affects or is forecast for the terminal, the 
FAA may respond strategically with a GDP into 
ORD, or tactically with departure delays or a GS. 
Ceilings, winds, and severe weather over the terminal 
and arrival and departure fixes are the most common 
reasons for implementing GDPs or GSs. Typically, 
en route weather beyond the arrival and departure 
fixes is not as crucial. But on rare occasions, en route 
convective weather, even hundreds of miles away, 
can be cause for a GDP or GS into ORD.  

Historical data for the period between April 1, 
2000 and June 30, 2000 was analyzed. Out of this 91-
day period, 38 days were classified as having a 
weather impact at ORD, and 24 of these days had a 
GDP. Non-convective weather or any type of 
convective weather within the terminal area defines 
weather impact. Convective weather impacts were 
also analyzed in the en route region. For this analysis, 
the en route region is defined as adjacent to the 
terminal area and extending a few hundred miles to 
the north, south, east and west. Weather forecast data 
also comes from the CCFP, and actual weather 
observations were taken from the National 
Convective Weather Forecast (NCWF) product. 
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2.2.1 Overall Characteristics of the ORD 
Events 

To gain a more complete understanding of ORD 
weather events in general, the 38 impacted days were 
further categorized by means of visual classification 
using the Real-Time Verification System (RTVS) 
and information obtained from messages within the 
Traffic Advisory Report produced by the ATCSCC. 
The RTVS displays CCFP polygons along with real 
weather data from the National Convective Weather 
Detection (NCWD) product on a U.S. map. The 
density of activity and its duration determined the 
categories of low, medium, or high convective 
weather. Non-convective days were derived from 
information in the traffic advisories. It should be 
noted that the categories of weather are for the 
terminal area only, defined as the region within the 
four ORD cornerpost fixes. 

Although some of the data sets are very small, 
there is a persistent increasing trend in average values 
for delays, diversions, cancellations, and holding as 
the weather becomes more severe (see Figures 1-5; 
weather severity increases to the right in these 
figures). But the data shows wide variation within 
each weather category. This analysis does not 
account for the operational TFM decisions made 
across different events, nor does it account for 
uncertainty in weather forecasts when decisions had 
to be made by the FAA and airlines. The next section 
uses a decision analysis approach based on Bayesian 
networks to attempt to fill these analysis gaps.  

 
Incoming Ground Delays at ORD
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Figure 1. Average minutes of ground delay (for 
delayed flights) per day per weather category. 
Large red dots show the average value within each 
weather category. Data comes from OPSNET total 
ground delays (EDCT + GS). 

Flights Held at ORD
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Figure 2. Number of flights held per day per 
weather category. Data comes from OPSNET 
arrival delays. 

 
Diversions for Impacted Days into ORD
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Figure 3. Number of diversions per day for each 
weather category. Data is derived from ETMS. 

Departure Backlog at ORD

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60 70 80 90

Ti
m

e 
(M

in
)

No Wx Non-Convective Low
Medium High Average Values  

Figure 4. Average minutes of departure backlog 
(for delayed flights) per day per weather category. 
Data comes from ASPM departure delays. 
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Cancellations at ORD
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Figure 5. Percentage of flights cancelled each day 
per weather category. Data comes from ASPM 
cancellation information.  

 

3.0  Bayesian Network Approach 

3.1  Decision Making for En Route Events 
on a Bayesian Network 

Application of decision analysis to TFM events 
[4] requires a representation of the decision process. 
The decision process for PA en route events was 
modeled around the Strategic Planning Telcons 
(SPT) collaborative process which involves the 
ATCSCC, certain FAA ARTCCs, Terminal Radar 
Approach Controls (TRACONs) and airport towers, 
and participating airlines. Constraints in the NAS are 
presented and solutions are discussed as part of the 
SPT process. The SPT is held every 2 hours at 1115, 
1315, etc., zulu (Z) time and the FAA issues a 
Strategic Plan of Operations (SPO) on the following 
hour. The SPO includes TFMI such as GDPs, 
playbook reroutes, potential GSs, miles-in-trail (MIT) 
restrictions, and tactical reroutes. 

Departure backlogs at the northeast airports are 
a key operational factor in these events, so this was 
chosen as the primary system performance factor in 
this analysis of weather information uncertainty. We 
also experimented with other possible performance 
factors, including departure delays for flights 
destined to the northeast airports, airborne holding 
times, diversions, cancellations, and a roll-up of 
various factors into an overall cost function. Results 
for all these factors were qualitatively similar. 

The decision process was evaluated using a 
Bayesian network (BN) [5]. The BN encodes the 
probability relationships between variables on a 

causal network.  With fairly extensive data available 
from TFM events in recent years, and a well-defined 
TFM process, we thought it might be possible to use 
a BN to quantify the relative effectiveness of 
different TFM decisions in PA en route events.  

Variables in the BN include actual weather 
(based on NCWF detection), forecasts (based on 
CCFP), and TFMI. To construct our BN, we made 
each of our variables discrete. The following list 
shows each variable used in the BN, followed by the 
discrete values the variable can take on, along with a 
definition of each discrete value: 

• Departure Backlog 
− 90 Plus: at least 10 flights with off-out time 

differences of 90 minutes or more at Newark 
(EWR) and Philadelphia (PHL) airports 

− 30 to 90: at least 10 flights with off-out time 
differences of 30 minutes or more at EWR 
and PHL 

− None: Other 
− (Note: LaGuardia (LGA) was omitted due to 

changes in the landing slot system between 
2000 and 2001) 

• Actual Weather (NCWF Detection) 
− Impact: at least 3 routes impacted (of 

J70/584/146/152/95/223/36/60/64/80) in the 
PA region 

− No Impact: Other 
• Weather Forecasts (CCFP) 

− High, medium, or low coverage on at least  
three of the routes listed above 

− No forecast 
• TFMI 

− GDP: GDP at EWR, LGA, or PHL 
designated as in support of SWAP or for en 
route weather 

− Playbook: One or more of the west-to-east 
transcontinental playbook reroutes 

The BN was set up to represent the sequence of 
weather forecasts, weather reports, and operational 
decisions made in actual TFM operations. Netica 
software produced by the Norsys Software 
Corporation was used to implement the BN [6]. The 
BN is shown in Figure 6, with time running along the 
horizontal axis. Figure 6 was generated using Netica 
software. Times of each event and the discrete values 
each variable can take are shown in the boxes. Within 
each box, the probability of each discrete value is 
shown; the user can select a value with certainty, and  



 

5 
 2003 The MITRE Corporation. 

Departure delay situation

Time

Gray indicates known information

Others are unknown

Actual weather

Forecast information

TFM decision

 
Figure 6. Diagram showing the BN for PA en route events.  

 
 
the Netica software propagates the effect through 
the network.  

         Data corresponding to all 338 days of en 
route PA events were loaded into the BN, using 
the default method in Netica to update initial 
uniform probabilities based on new data. With 
these data loaded, the BN gave a picture of the 
estimated probability distribution of departure 
backlogs as a function of previous departure 
backlogs, actual weather, weather forecasts, and 
TFM decisions. Where no cases were observed, 
the network used the default values based on the 
initial uniform distributions across the possible 
discrete values of the variables in the model. 

3.1.1  Results and Discussion 
The BN captured certain limited aspects of 

decision making under uncertainty, but could not 
distinguish strategic TFM decisions in terms of 
their effect on system performance.  The reason 
is twofold.  First, for many important data 
categories, there are few or no data points based 
on past events.  Second, there is great variation 
in the metrics used to assess TFMI effectiveness 
among events with similar traffic and weather 
characteristics. 

For example, the distribution of actual 
weather in 1515 to 1715Z is conditioned on the 
1500Z 2-hour forecast and actual weather in 
1315 to 1515Z. There are only 2 days with 

medium coverage forecasts (April 20, 2000 and 
September 4, 2001). One day had no impact in 
the 1315 to 1515Z time period; and one day had 
an impact. This is not sufficient to determine the 
distribution of impact in the 1515 to 1715Z time 
period. This example can be overcome to an 
extent by using the forecast’s probability and 
coverage to determine the probability of impact, 
but the forecast would have to be extrapolated to 
our weather classification. 

The data set size of 338 days requires 
simplification of many relationships in the BN. 
For example, departure backlog is actually 
dependent on all TFMI implemented in prior 
periods. Thus, the distribution of departure 
backlog in the 2115 to 2315Z time period would 
have: (53 reasonable sets of TFMI decisions)*(3 
prior departure backlog levels)*(2 actual weather 
levels) = 318 combinations of the conditional 
variables, which guarantees very small numbers 
of data points in many categories, given 338 
days in the entire data set. 

We aggregated categories in an attempt to 
generate larger numbers of data points in each 
category. For example, the BN in Figure 6 uses 
only the coverage element of the CCFP. 
Probability is also a major element of the 
forecast, with high, medium, and low levels.  To 
cite another example, the TFMI variable ignores 
details of the decisions that are important, such 
as the amount of lead-time (time between the 
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issuance of the GDP and the time arrivals are 
impacted). The TFMI also treats two decisions in 
a time period as equivalent even though they 
could be almost 2 hours apart. 

We experimented with other BNs that 
aggregated variables to a much greater extent 
than shown in Figure 6. This increased the 
number of data points for some variable types, 
but did not increase the clarity of causal 
relationships in the BN. More highly aggregated 
BNs could not distinguish strategic TFMI in 
terms of effect on system performance.  

Regarding the large observed variation in 
metrics used to assess TMI effectiveness, the 
first three columns of Table 2 describe types of 
large-scale NAS uncertainty in general. Specific 
examples include: 

• The complicated and sensitive nature of 
weather’s impact on traffic. 

• Impacts on different combinations of routes 
can have different implications for traffic 
due to the complexity of the traffic flows. 
These differences can lead to variations in 
performance in a system near capacity that 
is sensitive to small changes in conditions. 

• Execution of TMIs may be complicated by 
multiple, simultaneous actions, such as MIT 
imposed on top of a GDP. In addition, there 

are “shaky hand” effects, such as non-
compliance to initiatives or ineffective 
communication of the start, end, or 
modification of an initiative. 

All of these factors reduce predictability in 
performance and make it difficult for our BN to 
distinguish between the effectiveness of different 
TFMI. Figure 7 illustrates this issue in our 
particular BN. 

Figure 7 shows that there is not a very clear 
relationship between impacts in the PA region, 
measured by the number of observed periods of 
impact as defined in the BN, and the average 
out-to-off delay for PHL or EWR, even 
conditioned on the initiatives in place. Also, we 
cannot see a clear relationship between 
performance and TFMI, even normalized for 
weather impact. This demonstrates a 
fundamental limitation in a BN decision model 
based exclusively on data from past events. If we 
cannot distinguish performance based on TFMI 
or weather, there is no hope of offering decision 
support. 

However, the data used to populate the BN 
was adequate to show meaningful relationships 
between weather forecasts and actual weather, 
and the dependence of this relationship on 
weather at the time of forecast, which could be a 
useful input to operational decision making.

 
Table 2. Taxonomy of types of large-scale unpredictability in NAS operations 

 
Type of 
unpredictability 

Short general description Typical NAS manifestations  Modeling approaches 

 
Catastrophic 
events 

Relatively rare, major events 
typically related to factors 
external to system operations 

Terrorist attacks (e.g., 9/11),  or 
labor strikes that disrupt 
operations on a large scale 

Model representative scenarios at a high 
level 

 
Complicatedness 

Many factors interact and 
affect system behavior, 
making it difficult to predict 
what will happen 

Interacting traffic flows in 
congested airspace and around 
congested airports; network 
effects 

Model multiple interacting system 
elements 

Sensitivity to 
small changes 
(“criticality”) 

System elements are often 
“near the edge,” so behavior 
is sensitive to small 
perturbations 

Demand can be near or above 
capacity for some NAS 
resources, making the system 
sensitive to small changes  

Sensitivity analysis to changes in demand 
and capacity in the critical regime, where 
demand is near capacity 

 
Distributed, 
adaptive decision-
making 

Multiple decision-makers 
interact and adapt in their 
own self-interest, making the 
system outcome hard to 
predict  

Airspace users acting in self-
interest adapt to changing 
circumstances, but may over-
congest system resources 

Agent-based or game-theoretic modeling  

 
“Shaky-hand” 
effects 

When actions are taken, there 
are large errors (accidental or 
deliberate) in execution 

Large variance in actual aircraft 
arrival times compared to 
scheduled or GDP times; en 
route spacing almost 
independent of MIT restrictions 

Agent-based or other system performance 
models that permit sensitivity analysis on 
execution of decisions 

“Blurred vision” 
effects 

Decisions are made based on 
imperfect information 

Airline priorities are not well 
known to FAA; weather and 
demand forecasts are imperfect 

Decision analysis techniques (e.g., 
Bayesian networks) and through sensitivity 
analysis on information 
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Figure 7. The chart graphs, for en route PA events, average out versus off delay during the 1315Z to 
2315Z timeframe versus the number of periods from the BN with actual weather impact. The charts 
are conditioned on the airport and whether GDP was implemented. 

 

3.2  Decision Making for ORD Airport 
Events on a Bayesian Network 

In order to create a BN for ORD with 
reasonably populated events, a number of 
simplifications were made. First, the TFM decision 
was limited to either implementing a GDP or waiting; 
thus, decisions to execute a playbook or GS were not 
considered. Second, no distinction was made between 
probabilities of occurrence and coverage levels in 
weather forecasts, i.e., there was either a forecasted 
weather impact or no impact. Actual weather events 
were also categorized as having an impact or no 
impact. The airline decision, in response to any 
imposed GDP, was to make either few or many 
cancellations. These decisions and events were 
analyzed for the period of April 1, 2000 through June 
30, 2000. 

The performance metrics used to illustrate the 
impacts of weather and decisions include en route 
holding, incoming ground delays, diversions, 
departure backlogs, and total delays.  They were 
taken from operations network (OPSNET), Aviation 
System Performance Metrics (ASPM), and enhanced 
traffic management system (ETMS) data; each day 
was then classified as having either high holding or 
low holding, high ground delays or low ground 
delays, etc. Specifically, high en route holding, taken 
from OPSNET arrival delays, was defined as any day 
in which more than 25 flights had any holding into 
ORD. High incoming ground delays, from OPSNET 
total ground delays (a combination of estimated 
departure clearance time (EDCT) and GS delays), are 
days with average delays greater than 60 minutes. 
Departure backlog data was taken from OPSNET 
departure delays. A high departure backlog day was 
defined to be a day in which more than 75 flights had 
any kind of departure delay. High total delays, from 
OPSNET total delay times, had an average of more 
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than 60 minutes of delay. Diversions were derived 
from ETMS data and days with more than 10 
diverted flights were categorized as high. Information 
on cancellation decisions was obtained from ASPM 
data. Days with high cancellations were defined as 
those in which more than 10% of arriving flights 
were cancelled (the percentage was calculated as 
cancelled arrivals/scheduled arrivals for metric 
computation). 

As for the PA en route event BN, the ORD 
terminal event BN does not yield useful results for 
strategic decision making. The BN indicates that the 
best decision is to always make few cancellations and 
not implement a GDP regardless of weather forecasts 
or actual weather impacts. The input data for some of 
the nodes was also surprising. For instance, there is a 
greater chance of having high airborne holding when 
there is weather, many cancellations, and high 
incoming ground delay than when there is weather, 
low incoming ground delay, and few cancellations. 
One would expect that when there are many 
cancellations and flights held on the ground there 
would be less need for airborne holding. Similarly, 
when given a GDP with many cancellations there is a 
greater chance of having high delays than when given 
a GDP and few cancellations. One explanation is that 
most severe weather days fall into the high 
delay/many cancellations or GDP/many cancellations 
categories, and thus all metrics are high as a result of 
the weather severity rather than as a result of any 
TFM decision.  If there had been no GDP or few 
cancellations on the most severe weather days, 
holding and other metrics would probably be even 
higher.  However, there was only one such day with 
severe convective weather, few cancellations, and no 
GDP. This lack of data for specific event types is 
similar to that observed for PA en route events. 

3.3  A More Focused Analysis of PA 
Events 

3.3.1  Approach 
This analysis isolated all days in 

Spring/Summer 2002 that had weather in the PA en 
route region and where GDP SWAP was 
implemented. On these days, the beginning of the 
estimated arrival period was identified. A weather 
index for that time was computed. The weather index 
tracks weather impacts at specific locations in the 
NAS. The locations were obtained from the 

SPT/Severe Weather and Route Management 
document, available on the FAA’s Operational 
Information System (OIS). In total, 308 navigation 
aids (NAVAIDS), 231 fixes, 28 airports, and 78 jet 
routes (1107 route segments) were tracked. Scores 
for regions were computed by counting the number 
of locations impacted in the region at a given time. 
The PA region selected for analysis overlaps the 
border between the New York and Cleveland 
ARTCCs (ZNY and ZOB). 

The analysis attempts to isolate the 
effectiveness of the plan by evaluating how well the 
plan was executed without significant modifications. 
To do this, each GDP was evaluated manually. The 
frequency, scope, and reasoning behind each GS 
during that program were considered. Each GDP 
SWAP event was classified as low, medium, or high, 
indicating the extent of GS overlap in the GDP.  GS 
for en route weather during a GDP were used to 
compute the overlap. However, GS implemented at 
the issuance of a GDP were not included in the 
overlap since they may be part of the strategic plan to 
help set up the GDP. Also, GS for terminal 
thunderstorms during a GDP for en route weather are 
not included, since GS are often expected under those 
conditions. 

3.3.2  Discussion 
This more focused analysis has several 

advantages over the comprehensive BN approach 
described earlier. First, no CCFP data are included, 
minimizing the data requirements. Second, GDP 
categorization into 2-hour bins is no longer an issue. 
The GDP timing is evaluated relative to the weather. 
Third, the weather is treated as a continuous variable. 
This does not account for all of the complex issues, 
but it does significantly improve the distinction 
between weather events of different scopes. 

The main disadvantage is that the analysis no 
longer integrates the forecast into the analysis. This 
approach leaves the forecast integration to a second 
step where forecast uncertainty is incorporated into 
the decision process. A specialist faced with a GDP 
SWAP decision must make an estimate of his/her 
belief in the forecast and balance the perceived 
benefit of the GDP SWAP against the possible cost 
of a GDP SWAP if the weather does not materialize 
as forecast. Unfortunately, we cannot provide the 
performance benefit for the GDP SWAP or the wait-
and-see alternative, but our analysis can support TFM 
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specialists’ expectations about how the GDP will 
evolve. We also cannot give weather index scores for 
the CCFP based on the weather forecast since the 
forecast is not fully defined in terms of probabilities. 
For example, a medium probability forecast of 
medium coverage leaves open the possibility of low 
coverage or no coverage at all. These probabilities 
are not explicitly defined in the forecast. Also, the 
probability and coverage ranges in the CCFP are 
enormous. The low probability designation covers 
1% to 39% and the low coverage designation covers 
25% to 49%, which includes a wide range of 
different situations. 

Finally, the methodology for scoring the 
execution of a GDP SWAP event needs to be 
formalized. Specific rules on acceptable and 
unacceptable GS within a GDP should be developed. 

3.3.3  Preliminary Results 
Several days were removed if the GDPs were 

put in at widely varying times, often due to other 
conditions at the terminals, such as low ceilings or 
wind. The results are presented in Table 3. 

Table 3. GDP/GS overlap analysis results 
Date GDP/GS Overlap Score at GDP Start

5/9/02 Low 0
4/28/02 Low 10
5/28/02 Medium 8
6/26/02 Medium 11
7/19/02 Medium 18
6/27/02 High 28
7/23/02 High 26  

 
There are too few points to draw any solid 

conclusions from the data, but the results do offer 
some insight into effective implementation of GDP 
SWAP. Higher weather index scores at the time of 
GDP implementation correlate with increasing GDP 
SWAP execution problems.  

3.4  Approaches to Augmenting Data from 
Actual Events 

The BN approach, while appealing in its 
completeness and simplicity, requires far too much 
data to be practical. The inability to account for all 
relevant factors in the system makes TFM 
performance assessment an elusive target. Two 
possibilities to address this problem are to 
incorporate subjective input to augment the data, and 

to augment the data with modeling and simulation 
results. 

TFM shows wide variability in outcome metrics 
across different events. Generic approaches to 
modeling complex systems with such “fat-tailed” 
outcome distributions include models of self-
organized criticality (SOC) [7], Highly Optimized 
Tolerance (HOT) [8], and the NK model of biological 
evolution [9]. However, these models would need 
considerable adaptation to be applicable to TFM 
modeling. We propose modeling TFM events in 
reference to the taxonomy of sources of 
unpredictability in the NAS. Table 2 lists an approach 
to modeling each different source of unpredictability; 
these would need to be combined to form a complete 
picture of predictability and uncertainty in TFM 
events. 

4.0  Conclusions 
System-level performance metrics are highly 

variable across individual TFM events, but there are 
recognizable patterns. Data from past TFM events is 
not sufficient to distinguish between strategic TFM 
decisions in a Bayesian decision network, in terms of 
metrics based on overall delays, cancellations, 
diversions, and departure backlogs. However, our 
results show that useful information can be extracted 
from data on past TFM events by focusing on 
specific elements of the strategic TFM process rather 
than the entire process comprehensively. 

The difficulty in creating a usable Bayesian 
decision network highlights how difficult it is to learn 
to make better strategic TFM decisions from past 
decision-making experience. At a tactical level the 
TFM system is remarkably adaptive in responding to 
changing circumstances. This implies that models of 
TFM decision making should emphasize tactical 
adaptation and learning with respect to specific 
elements of the strategic TFM process, rather than 
learning at a comprehensive strategic level. 

Further research is needed to complete the link 
between the strategic and tactical levels of TFM. 
Modeling and simulation may provide a useful 
framework to do this, and we present a taxonomy of 
sources of uncertainty and modeling approaches to 
address these (Table 2). Use of relatively simple 
models may be the best way to proceed in this 
research [10]. The issues addressed here are 
pervasive in complex adaptive systems and may be of 
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central importance to improving aviation operations 
to meet the future needs of the flying public. 
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