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Abstract

Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1)
always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final
configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature
of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really
exists. It is the number of zero-one borders within the automaton’s binary configuration. An exponential formula in the
number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three,
five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the
empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood
three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.
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Introduction

From a mathematical point of view, cellular automata (CA) are

binary lattices that are updated iteratively. In the automata

discussed in this paper, the value of a cell is flipped based only on

the number of ones in the neighborhood of the cell to be updated.

We call an automaton synchronous if all cells are updated

simultaneously, respectively asynchronous if the updating affects

only one cell at a time.

We further call an automaton deterministic [5,6,17] if the

update follows deterministic rules, respectively probabilistic
[1-4,7,8,11,12] if at least one of the following holds:

N the updated cell is picked at random

N the local transition rule is probabilistic - e.g., a cell may flip

from zero to one with some probability p, and the same cell may

stay in zero with probability 1{p.

Probabilistic automata are suitable for Markov chain modelling,

since the future configuration of the automaton depends only on

its present state.

A finite homogeneous Markov chain is a stochastic process that

moves according to some probabilities within a finite set of states,

say S~f1,2,, . . . ,ng, with transition probability from state i to

state j (denoted pij ) depending only on states i and j. The square,

non-negative transition matrix P~(pij)i,j~1,n
gathers all the above

transition probabilities. Transition matrix of a Markov chain is

always stochastic - that is, the sum of probabilities in each row is

one, and since in our case the matrix does not change from an

iteration to another, it is called homogeneous.

A brief introduction to homogeneous Markov chains is given in

the following. For more detail, reader is referred to monographs

[10,13,14].

Definition 0.1. N A state i is absorbing if pii~1. An absorbing
state is never left, once it is entered.

N A stochastic matrix P is primitive if there is a positive integer t

such that Pt is (strictly) positive.
N A stochastic matrix is called stable if all its rows are identical.

N Let p(0) be a probability vector. If p(0) is the initial distribution of
the Markov chain with transition matrix P, then the distribution
after t steps is p(t), with p(t)’~p(0)’Pt, for all t§1. If p’~p’P, then
p is a stationary distribution.

Theorem 0.2. Let P be a primitive transition matrix. Then Pt

converges as t?? to a positive stable stochastic matrix P?~1p0,
and the rate of approach to the limit is geometric. Moreover, the
limit distribution p~p(0)’P? has the following properties:

N is unique regardless of the initial distribution p(0);

N has positive entries on all components;
N is also the unique stationary distribution of the associated

Markov chain.
There are many problems of interest in Markov chain theory

[13]. The short-term behavior implies the correct definition of the

transition matrix to be associated to some process. The long term-
behavior is even more important, opening the way for prediction;

that is strictly connected to the stationary distribution, and to

finding necessary and sufficient conditions that guarantee its

existence. Providing the stationary distribution in elegant,

analytical form would be a bonus - fortunately, this is the case

in our study. Finally, estimating the time the chain takes until
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convergence is also of interest - this topic is usually referred to in

literature as absorption time.

When it comes to CA, literature has focused so far only on the

first two topics. The computation of absorption time is also of

certain interest, at least for the class of deterministic automata with

two attractors, all zeros and all ones.

Deterministic Cellular Automata

The monograph of Wolfram [17] and the papers of Chua and

co-workers [5,6] are referential works in deterministic CA

literature. While Wolfram’s pursuit of explaining complexity uses

the empirical analysis of automata as a vehicle, Chua and co-

workers put on mathematically sound clothes to Wolfram’s

original approach, in form of nonlinear differential equations

[15,16]. To make things clear, let us see first a particular CA at

work.

Consider a two-state CA (the values of the states are set to 0 and

1 within this paper) with N cells i~1,2, . . . ,N and circular
connection - the left-hand neighbor of cell 1 is cell N. Cell i is

influenced only by itself and its nearest neighbors i{1 and iz1.

The values of cells i{1, i and iz1 are the input of the process that

is going to change cell i. Such system is called 1-D three-

neighborhood CA.

In the deterministic case, each of the eight possible input

configurations f000, 001, . . . , 111g yields a certain output for

the central cell i. There are 28~256 different functions

f : f000, 001, . . . , 111g?f0,1g and each of these functions will

be assimilated to a local rule. If we denote

f (000)~b0, f (001)~b1, . . . , f (111)~b7, we have a one to one

mapping between the 256 functions and the set of Boolean vectors

(b0,b1, . . . ,b7). It is thus natural to identify each of the 256

functions by its associated decimal representation [5]

R~
X7

k~0

bk
:2k : ð1Þ

For example, the famous rule 110 - proved to be a universal
Touring machine [17] - is defined synthetically by the Boolean

vector (0,1,1,1,0,1,1,0), and explicitly by table 1. Notice that input

consists of the whole three-neighborhood, while output is the new

value of the central cell.

It is hard to find an intuitive interpretation of rule 110. Indeed,

neither majority, nor minority governs the CA in table 1: 000?0
would indicate a majority rule, while 111?0 points otherwise.

That is not the case with rule 232, which clearly defines a

majority decision model, table 2.

While Wolfram studied the 256 rules empirically, by running

extensive computer experiments [17], Chua and co-workers

proved rigorously that more insight into CA dynamic behavior

can be gained by associating local rules like the one above to the

attractors of so-called cellular neural networks (CNN).

As introduced in [5], CNN is a finite string i~1,2, . . . ,N with

circular connection, and a nonlinear dynamical system acting on

each cell i, defined by a state equation

x’i~ {xiz(Dxiz1D{Dxi{1D)½ �

z z2zc2D(z1zc1D(z0zb1ui{1zb2uizb3uiz1)D)½ � ð2Þ
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xi(0)~0 i~0,1, . . . , n:

and an output equation

yi(Q)~sgn z2zc2D(z1zc1D(z0zb1ui{1zb2uizb3uiz1)D½ �: ð3Þ

Equation (3) provides the steady state output Q of cell i for each

neighborhood input of type (ui{1,ui,uiz1), yet with symbol ‘0’

replaced by ‘-1’, e.g. (0,0,1) becomes ({1,{1,1). For each

deterministic local rule, one can set the parameters

z2,c2,z1,c1,z0,b1,b2,b3 in the above equations such that the

trajectory converges to an attractor Q with output yi(Q)
generating the -1/1 correspondent of the Boolean vector

(b0,b1, . . . ,b7) associated to the rule itself. For example, the state

and output equations in case of rule 110 read

x’i~({xizDxiz1D{Dxi{1D)z {2zD(ui{1z2ui{3uiz1{1)D½ �
xi(0)~0 i~0,1, . . . ,n

yi~sgn {2z (ui{1z2ui{3uiz1{1)j j½ �

8><
>: ð4Þ

Equations (2)-(3) define only one CA iteration. According to [5],

one can use a CNN chip to simulate ‘physically’ a local rule on all

cells simultaneously. Therefore, one can describe each local rule as

a nonlinear difference equation

utz1
i ~sgn z2zc2D(z1zc1D(z0zb1ut

i{1zb2ut
izb3ut

iz1)D
� �

: ð5Þ

In case of majority rule 232 the difference equation simplifies to

utz1
i ~sgn ut

i{1zut
izut

iz1

� �
: ð6Þ

In [17], Wolfram starts from a fixed initial initial configuration

u0
i , runs the 61-cell deterministic CA for each of the 256 local

rules, independently, stores the produced configurations in large

60|61 bi-colour arrays, then looks for similar patterns among

arrays corresponding to different rules. He proves that rule 110 is

universal Touring machine and, based on the geometrical

similarity, conjectures that three other rules, namely 124, 137
and 193 are also universal Touring machines.

Using Felix Klein’s Vierergruppe V, Chua and co-workers

obtain a classification of the 256 rules into 89 global equivalence

classes [5]. Rules 110, 124, 137 and 193 fall into the same class,

which gives a rigorous proof to Wolfram’s conjecture. From a

nonlinear dynamics point of view, these four rules are identical. As

for the majority rule 232, it forms a class by its own, there are no

other rules equivalent to it. Another interesting application of this

analysis is to the problem of density classification, see e.g. [9].

Probabilistic Cellular Automata

In order to describe a probabilistic CA consider the 1-D three

neighborhood automaton from the previous section, but with some

randomness added to the local transition rule.

Consider first the model of an asynchronous CA - only one cell is

flipped (at most) per iteration. We pick the cell for the flip

uniformly - each cell with equal probability 1=N. Once selected,

the value of cell i changes according to some local probabilities,
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depending on the number of ones within the significant

neighborhood fi{1,i,iz1g, see table 3, where E,a[(0,1) are the

two parameters of the model.

Table 3 considers all possible transitions, even the virtual ones.

For instance, if value of cell i is 1 and there are two ones in the

current neighborhood, cell i will ‘transit’ to 1 with probability

1{a. In other words, transition 1?1 is still considered a flip.

Compared to Wolfram’s model of deterministic CA, the proba-

bilistic model of table 3 allows for a unitary interpretation of local

rules. Indeed, it makes no difference between local configurations

(110) and (101) as they both have two ones, yet that does not

mean that the middle cell will transit to the same value - it still

depends on randomness.

The Markov model of the asynchronous three-neighborhood

automaton has been introduced in [4]. There are 2N states in the

Markov chain, consisting of all binary configurations of length N.

For an arbitrary state i - here i denotes a CA configuration, not a

single cell - there are precisely Nz1 positive entries in row i of the

global transition matrix, namely the (global) transitions to states

that differ from i on a single cell, plus the element on the main

diagonal.

The off-diagonal probabilities pij take values from the set

fE=N,a=N,(1{a)=N,(1{E)=Ng depending on the 0=1 distribu-

tion of cells in the significant neighborhood of the cell in i that

should undergo a flip to get j. The diagonal probability pii is equal

to one minus all off-diagonal probabilities in row i. Since piiw0 for

E,a[(0,1), transition matrix is primitive. Then theorem 0.2

guarantees the existence of the limit distribution, also the (unique)

stationary distribution of the Markov chain.

We found formulas for the stationary distribution of various

asynchronous cellular automata [1,3,4], and we connected our

findings to existent results from Ising and exponential voter model

[2]. The most important results are presented in the following.

Definition 0.3. A border occurs in a CA configuration between
two different successive cells, like in 01 or 10. The total number of
borders within configuration i is denoted b(i).

Next theorem induces a class property on the set of

configurations, revealing the stationary distribution as function

of the number of borders.

Theorem 0.4. The stationary distribution of transition matrix
P of asynchronous three-neighborhood CA is p, whith

pi~
1

Z

E
1{a

� �1
2
b(i)

ð7Þ

and Z a normalization factor.
The computation of Z is solved by the following.

Lemma 0.5. The number of configurations with 2k borders is

2C2k
N , for all k~0,½N=2�.

Before moving further let us explain the practical meaning of

the above results. The stationary distribution of the automaton is a

probability vector with strictly positive components. That means

the CA will not converge to a single state, but it will journey

through all states, the sojourn time of each state being proportional

to the corresponding probability in the stationary distribution. The

succession of states in the journey remains unpredictable. What we

can predict is that some configurations will have larger sojourn

times than others, and formula (7) maps the sojourn time of a

configuration to an exponential function of the number of borders

within that configuration. Lemma 0.5 shows how many config-

urations fall in each class. Within a particular class, all

configurations have exactly the same probability in the stationary

distribution, thus their sojourn times will be the same.

It is also worth mentioning that the initial CA configuration

does not influence the long term behavior of the probabilistic

automaton, since the stationary distribution is independent of the

Markov chain’s starting point.

The majority model fulfils Ev1{a, so the basis of the

exponential function (7) is sub-unitary, and the larger the number

of borders within a configuration, the smaller the time spent by the

automaton in that configuration. Consequently, configurations all
zeros and all ones, which both belong to class b(i)~0, have the

largest sojourn times, while configurations 1010 . . . and 0101 . . .
(with maximal number of borders) have the smallest sojourn times.

Needless to say, situation reverses completely if Ew1{a.

In case of the five-neighborhood CA, there is one more

parameter involved, call it b, table 4, and the generalization of

theorem (0.4) requires a supplementary condition on E, a and b,

which ensures the so-called detailed balance equation.

A refinement of the border definition is first needed.

Definition 0.6. A k-border occurs between two different cells
situated at distance k from each other. E.g., in 001 we have a 2-

border between first and third cell, and a 1-border between second
and third cell.

Theorem 0.7. If the following holds

E~
a2(1{a)

(1{b)2
, ð8Þ

then the stationary distribution of transition matrix P of asynchro-
nous five-neighborhood CA is p, with

pi~
1

Z

a

1{b

� �1
2

b1(i)zb2(i)½ �
ð9Þ

and Z a normalization factor.

An analogous of lemma 0.5 also holds.

Lemma 0.8 The number of configurations with b order-1
borders and t order-2 borders is

2 C
b{t=2
b

:C
t=2{1
N{b{1zC

b{t=2
b{1

:C
t=2
N{b

� �
: ð10Þ

Numerical Simulation

Using computer experiments we test the generality of the

stationary distributions from previous section. Our assumption is

that synchronous automata obey the same probability laws as their

asynchronous counterparts. In order to build a synchronous CA,

we drop the ‘only one cell per iteration undergoes a flip’ condition,

Table 3. Local transition probabilities, 1-D three-
neighborhood CA.

No. of ones Probability ?1 Probability ?0

0 E 1{E

1 a 1{a

2 1{a a

3 1{E E

doi:10.1371/journal.pone.0108177.t003

Cellular Automata

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e108177



and update all the cells in the same iteration, one by one from left

to right.

For each numerical simulation we run n CA iterations starting

from an arbitrary configuration and store the next n iterations in

order to build an empirical stationary distribution - n ranges

between 104 and 106.

Consider the three-neighborhood automaton. Formula (7)

stands for the theoretical distribution, with constant Z provided

by lemma 0.5. We set local probabilities to E~0:2 and a~0:4, and

the length of CA to N~10; that yields the following partition

of the configuration space w.r.t. the number of borders:

f0,2,4,6,8,10g.
Figure 1 shows a perfect match between the theoretical

distribution and the empirical distribution of asynchronous CA,

with n~105 and n~106, respectively. The value of n has no

influence on the numerical results.

We consider next the five-neighborhood CA. The following

lemma explains the partition of the configuration space in this

case.

Lemma 0.9. The partition induced by formula (10) on the five-
neighborhood CA with length N~10 is given in table 5.

Proof. We need to consider all possible cases w.r.t. the sum of

order-1 and order-2 borders, and for each case we should count

the configurations with formula (10). Notice that the number of

borders is always even, regardless of the order.

Class 0
There are only two configurations in this class, namely all zeros

and all ones.
Class 2
One can easily check that this class is empty: there is no

configuration with 2 order-1 and 0 order-2 borders, nor vice versa.

Class 4
The only non-void combination of borders in this class is

(2z2), that is, 2 order-1 and 2 order-2 borders. Formula (10)

provides in this case

2 C1
2
:C0

7zC1
1
:C1

8

� 	
~20:

Class 6
The only cases in this class are (4z2) and (2z4), for which we

compute

4z2 : 2 C3
4
:C0

5zC3
3
:C1

6

� 	
~20

2z4 : 2 C0
2
:C1

7zC0
1
:C2

8

� 	
~70:

Class 8
The only cases in this class are (4z4) and (6z2), for which we

compute

4z4 : 2 C2
4
:C1

5zC2
3
:C2

6

� 	
~150

6z2 : 2 C5
6
:C0

3zC5
5
:C1

4

� 	
~20:

Class 10

Table 4. Local transition probabilities, 1-D five-neighborhood
CA.

No. of ones Probability ?1 Probability ?0

0 E 1{E

1 a 1{a

2 b 1{b

3 1{b b

4 1{a a

5 1{E E

doi:10.1371/journal.pone.0108177.t004

Figure 1. Three-neighborhood stationary distribution: Theoretical vs. empirical.
doi:10.1371/journal.pone.0108177.g001
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The only cases in this class are (10z0) - for which there are

only two configurations, namely 0101010101 and 1010101010,

respectively (8z2), (6z4) and (4z6), for which we compute

8z2 : 2 C7
8
:C1

1zC7
7
:C1

2

� 	
~20

6z4 : 2 C4
6
:C1

3zC7
7
:C1

2

� 	
~150

4z6 : 2 C1
4
:C2

5zC1
3
:C3

6

� 	
~200:

Class 12
The only cases in this class are (8z4), (6z6) and (4z8), for

which we compute

8z4 : 2 C6
8
:C1

1zC6
7
:C2

2

� 	
~70

6z6 : 2 C3
6
:C2

3zC3
5
:C3

4

� 	
~200

4z8 : 2 C0
4
:C3

5zC0
3
:C4

6

� 	
~50:

Class 14
The only case here is (6z8), for which we compute

6z8 : 2 C2
6
:C3

3zC2
5
:C4

4

� 	
~50:

Summing up the number of configurations in each class

completes the proof.

Basically, we performed the same tests as for the three-

neighborhood automaton, with n~105. There is a difference,

though. Theorem 0.7 provides the exponential form of the

stationary distribution, but only under condition (8), which ensures

detailed balance equation for the associated Markov chain. So it

makes sense to test numerically whether this condition is really

necessary. We present below results for the five-neighborhood

synchronous CA, under two different settings of local transition

probabilities: one arbitrary, (E,a,b)~(0:2,0:3,0:4), not fulfilling (8),

and the other, (E,a,b)~(0:0(8),0:2,0:4), in perfect agreement with

(8) and denoted DBE in figure 2. For Theory we used the

theoretical stationary distribution (9) of the asynchronous case.

The fact that the empirical distribution of the automaton with

arbitrary local probabilities is far from the theoretical formula

proves that condition (8) can not be removed.

Discussion

Classification and prediction are the key issues in cellular

automata. In the deterministic case, Wolfram relied on the

inspiration of a computer analyst to derive patterns from the

experimental simulation of different local rules. Chua and co-

workers took the analysis a step further by demonstrating

rigorously that every local rule can be mapped to a nonlinear

dynamical system whose attractors encode accurately that very

rule.

The situation is different with Markov chains. Here, predict-

ability takes the form of the stationary distribution, which gathers

T
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the long-term sojourn times of each and every state of the system

under consideration. For large systems like cellular automata, the

existence of the stationary distribution alone is not very helpful,

unless we have also an analytic formula able to connect the

probabilities in the stationary distribution to some intrinsic features

of the automaton configurations. Such fortunate situation is

demonstrated in the paper, with an exponential stationary

distribution, function of the number of borders within the

configuration. The formulas, rigorously proved in previous papers

for the asynchronous case, have been successfully tested via

computer simulation on synchronous automata.

So far, the validation is only numerical, but the very good

agreement between the (theoretical) formula and the (empirical)

stationary distribution of synchronous automaton is a clear

indication of the generality of the formula. As usually the case in

theoretical computer science, the experimental results open the

way for rigorous mathematical proofs, as well as for enlarging the

test-bed by considering different variants of cellular automata.

Another direction for future research is the stochastic analysis of

absorption time, in case of the automata converging to the

extreme configurations all zeros and all ones.
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