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Letter from the Editor 

Over the past two decades, the scientific community has discovered a number 
of large-scale ocean-atmospheric phenomena, which have been shown to be the 
leading drivers of year-to-year climate variability in many regions around the 
world.  Examples of these phenomena are the El Niño-Southern Oscillation 
(ENSO), the Arctic Oscillation (AO) and its regional manifestation the North 
Atlantic Oscillation (NAO), the Northern Pacific Decadal Oscillation (PDO).  
The ability to forecast these phenomena with useful lead-times will lead to 
significant improvements in the skill of seasonal forecasts over the U.S. and many 
other regions worldwide.  

 In the first article, Dr. Gilbert Compo and his co-authors, who are among 
the leading scientists in studying the dynamics of ENSO and its impacts, present 
their results on the predictability of anomalous storm tracks during El Niño and 
La Niña years.  In the second article, Dr. Balaji Rajagopalan and his co-authors, 
report the results of the Phase I of a NOAA-sponsored project, investigating the 
relationships between ENSO, NAO, and the Tropical North Atlantic (TNA) sea 
surface temperatures (SST) on “Named Storm” frequency and landfall in the 
Atlantic basin.  In the last article, Dr. Daoyi Gong, an associate professor at the 
Beijing Normal University, discusses the impacts of AO on the East Asian 
climate.   

 

Maryam Golnaraghi, Editor 
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Predictability of  Anomalous Storm Tracks 

By Gilbert P. Compo∗ , Prashant D. 
Sardeshmukh, and Cecile Penland 

* Corresponding author 

Introduction 
Given that El Niño/Southern 

Oscillation (ENSO) is arguably the 
largest predictable signal in the 
climate system on seasonal to 
interannual time scales, it is not 
surprising that numerous studies 
have been devoted to investigating its 
global impacts. Most of these have 
focused on seasonal mean changes, 
including the seasonal mean 
temperature and precipitation.  An 
ENSO event can, however, also 
affect the statistics of weather within 
a season, and perhaps even an 
individual storm.  These effects can 
be distinct from the effects on 
seasonal mean quantities, and can 
have important practical implications.  
For instance, one may imagine a 
situation in which El Niño alters the 
occurrence of both dry spells and wet 
periods in a winter.  The effect is a 
meaningful change in the risk of 
extreme weather, even though little 
seasonal mean signal is evident.   

Extreme weather is largely 
associated with day-to-day variations 
of storm activity.  Since the 1800’s, 
surface low pressure systems have 
been tracked on maps, and it has 
been noticed that they follow 
preferred paths, known as “storm 
tracks.” In the 1970’s, researchers 
found that the variance of 
fluctuations in the mid-troposphere 
(500 mb height) on a time scale of 
less than a week demarcated these 
storm tracks in the Pacific and 
Atlantic regions.  Following these 
variations in the vertical motions of 
the mid-troposphere (500-mb) 
represents a useful way of measuring 
the storm tracks.   

After the discovery of the storm 
tracks, researchers observed that they 
varied from year-to-year, and have 
linked their interannual variation, in 
part, to ENSO.  Seasonal mean 
precipitation, which is related to 
vertical motion in the atmosphere, 
also has interannual variations that 
are associated with ENSO. In this 
study we ask, how predictable are the 
ENSO effects on the storm tracks 
and seasonal mean precipitation?  
Are they related? And, what is the 
associated effect on the risk of 
extreme precipitation? 

Measuring predictability 
Usually, predictability is assessed 

for seasonal mean quantities, but it 
can equally be measured for the 
statistics of weather within a season.  
To assess the predictability, assume 
that a forecast system generates 
several possibilities, an ensemble, and 
issues the ensemble mean as the 
forecast.  The variance of this 
ensemble is the uncertainty or 
“noise” in the forecast.  If we 
evaluate the skill of the forecast using 
a correlation, ρ, between the 
forecasted mean, “the signal” and 
what actually happens, then the 
expected skill is known from 
analytical expressions and shown in 
Figure 1.  The signal-to-noise ratio, S, 
is the ratio of the forecasted mean to 
the forecasted spread or standard 
deviation. For the same S, the skill 
increases as the number of 
possibilities, the ensemble size used 
to make the forecast, varies from 1 to 
infinity.  These predictability curves 
are independent of the distribution 
that is being predicted.   It could be 
bell-shaped or not, and the 
relationship between S and ρ still 
holds.  The curve for an infinite 
ensemble, ρ∞, represents a hard 

predictability limit with a perfect 
model. It shows that to produce 
“useful” forecasts with anomaly 
correlations greater than 0.6, S needs 
to be greater than 0.75. To produce 
“excellent” forecasts, with anomaly 
correlations greater than 0.9, S must 
be greater than 2.  

Figure 1:  (a) Theoretical predictability 
curves for ensemble sizes of 1, 5, 25, and 
infinity as a function of the signal-to-noise 
ratio, S.  The solid vertical bar indicates the 
maximum distance (-0.25) between ρρρρ1 and 

ρρρρ∞∞∞∞ curves obtained at S=1/√√√√3.  (b) The ρρρρ1 
and ρρρρ∞∞∞∞ are copied from the upper panel.  
The dashed curves show the modified 
predictability ρρρρ∞∞∞∞ with a non-zero systematic 
error whose magnitude Se is 50% and 150% 
that of S. [From Sardeshmukh et. al., 2000.] 

The curves in Figure 1 also show 
the advantage of using several 
ensemble members to make a 
forecast.  Using a 25-member 
ensemble, ρ25 shows that the 
expected skill is nearly that of an 
infinite member ensemble.  
Unfortunately, to determine S 
accurately (say within ±30%) more 
than 45 members are needed.   
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Forecasting the storm tracks 
How might we make a forecast 

of the storm track for an individual 
season? One might think of 
approaching the problem empirically, 
using observations of the past 50+ 
winters. For example, one might fit a 
linear regression model of the storm 
tracks over the past 50 years to an 
index of ENSO such as central 
equatorial Pacific sea surface 
temperatures in the Niño3.4 region 
(5°S-5°N and 120°W-170°W).  For 
an individual season, using a forecast 
of Niño3.4, the linear regression 
model predicts the expected storm 
track strength and pattern.  The noise 
in this forecast might be the standard 
error of the regression fit.  This 
approach would assume that, 

i. The storm track response to 
ENSO is linear,  

ii. ENSO does not affect the 
noise of the storm track,  

iii. All the relevant probability 
distributions involved are 
Gaussian. 

A natural alternative is to 
approach the problem with a 
dynamical numerical model. It is 
reasonable to expect general 
circulation models (GCMs), with 
their comprehensive nonlinear 
dynamics and also with many more 
variables in space and time than can 
be treated adequately in the 
observational record, to perform 
much better than empirical models.  
Nonetheless, two factors work 
against the fulfillment of such 
expectations.  First, in a chaotic 
atmosphere a single run of GCM is 
only meaningful for two weeks at 
most.  This chaos is associated with 
unpredictable nonlinear interactions 
in the atmosphere.  The problem of 
predicting seasonal statistics becomes 
a probabilistic one, where the best 
one can do is use the same sea 

surface temperatures as a boundary 
condition and form an ensemble of 
possible climate outcomes by 
running the GCM many times from 
different atmospheric starting points 
(“initial conditions”). The mean of 
this ensemble becomes the expected 
value and is issued as the forecast. 
The spread of this ensemble is the 
uncertainty in the forecast. These two 
quantities, the forecast mean and 
spread, when the GCM ensemble has 
100 or more members, allow us to 
estimate the S in Figure 1, with some 
confidence. 

To the extent that the nonlinear 
interactions are unpredictable, or can 
be represented as linear plus noise, 
the GCM advantage over empirical 
methods is lost.  To have an 
advantage, a GCM must show 
nonlinear effects in the ensemble 
mean and spread of the response to 
ENSO conditions.  The recent work 
of Sardeshmukh et al. (2000) shows 
that a GCM can have a nonlinear 
response to ENSO in both the mean 
and the spread.  

Second, the systematic error of a 
GCM may be substantial enough that 
the skill is much lower than expected 
for a perfect model. This is shown in 
the lower panel of Figure 1 for 
systematic errors that are 50% larger 
and 50% smaller than the signal 
itself.  The flattening of the 
predictability curve when systematic 
error is included may help explain 
why many different GCMs have 
similar skill predicting the observed 
seasonal mean atmospheric 
circulation, but have widely divergent 
estimates of the signal-to-noise ratio. 

Empirical and GCM predicted 
storm track signals for El Niño 
and La Niña 

With these considerations in 
mind, we have estimated, using past 
observations, the storm track 
anomalies associated with ENSO for 

a particular set of winter [January 
through March, JFM] events: El 
Niño winter of 1987, and La Niña 
winter of 1989 given the historical El 
Niño and La Niña composite storm 
tracks.  The composites were derived 
from the storm tracks averaged 
separately over the 11 strongest El 
Niño events and 11 strongest La 
Niña events in the historical record 
from 1948-2000.  El Niño and La 
Niña are determined from the JFM 
average of the equatorial Pacific sea 
surface temperature anomaly in the 
Niño3.4 area.  The storm track 
averages were subtracted from the 
storm track average during the 17 
most neutral ENSO years to form 
the El Niño and La Niña storm track 
anomalies.  The observational 
prediction for the 1987 El Niño 
storm track is then the historical El 
Niño composite scaled by the 
magnitude of the 1987 Niño3.4 index 
relative to all El Niños.  The 1989 La 
Niña storm track prediction is 
formed similarly.  This provides us 
with an observational estimate of the 
storm track “signal” for 1987 and 
1989.  These storm track anomalies 
for El Niño and La Niña are shown 
in the upper panels of Figure 2.  
Anomalies that are larger than 
expected by chance are shaded, with 
increased storm activity indicated in 
blue, and decreased storm activity 
indicated in yellow. 

We then ask, how different are 
the signals the National Centers for 
Environmental Predictions (NCEP) 
atmospheric GCM predicts using the 
observed global sea surface 
temperature in JFM 1987 and JFM 
1989?  To make the GCM prediction, 
we run the model from 180 different 
atmospheric starting points (“initial 
conditions”) but using the same sea 
surface temperatures each time.  
Using these 180 initial conditions, we 
have made predictions for 1987 El 
Niño, for 1989 La Niña, and for 
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climatological sea surface 
temperatures (our analogue to the 
neutral ENSO average). Of these 
runs, we have 60 for El Niño, 60 for 
La Niña, and 90 for climatological 
SSTs available at daily resolution for 
our storm track analysis, and 180 
each for El Niño, La Niña, and 
climatological seasonal mean JFM 
precipitation.  This 540-member 
ensemble is the largest used to date 
for this type of analysis. 

Figure 2:  The storm track anomalies for the 
1987 El Niño and 1989 La Niña predicted 
from observations and GCM experiment.  
The storm tracks are represented by 500-mb 
vertical velocity fluctuations with periods 
between 2 and 7 days.  Statistically 
significant increased (decreased) storm 
activity is shaded blue (yellow).  The 
contour interval is 0.02 Pa/sec. 

The GCM predicted storm track 
anomalies are shown in the lower 
panels of Figure 2.  The comparison 
of the GCM prediction and 
observational prediction is not clean, 
in that the observational panels have 
used the average over several events, 
each with different sea surface 
temperatures, while the GCM 
predictions takes into account only 
the details of the individual 1987 El 
Niño and 1989 La Niña sea surface 
temperatures.  Despite these 
differences, in both the GCM and 
observational predictions, several of 
the gross features of the ENSO 
effect on storm tracks are seen, 
including shifted storm tracks over 

North America, with El Niño having 
more storm activity along the 
southern US and La Niña reduced 
storm activity in the southern US.  
The similarity then, is reassuring, in 
that this GCM is suitable for studying 
the ENSO effect on storm tracks and 
that El Niño and La Niña differences 
found in the large GCM sample may 
be realistic and meaningful. 

Several new features of the 
ENSO effect on storm tracks are 
evident in Figure 2 that are 
significant both because of the large 
number of samples and their mutual 
consistency.  For example, during El 
Niño, a belt of increased storm 
activity extends from South Asia, 
across the Pacific, North America, 
the Atlantic, and into Eurasia.  A 
region of decreased storminess lies to 
the north.  While consistent with 
previous regional studies, this 
coherent hemispheric response has 
not been previously observed.   

In the North Atlantic sector, the 
observational and GCM predicted 
signals for La Niña differ.  The result 
suggests that this region may have 
significant storm track changes from 
ENSO event to event or, of course, 
that model error may be large there.  

Predictable storm track 
anomalies 

Given the relatively good 
comparison between the 
observational and GCM predicted 
signals for the 1987 El Niño and 
1989 La Niña, the question remains 
as to the practical value of these 
signals.  This can be assessed using 
the signal-to-noise ratio and the 
expected anomaly correlation from 
Figure 1.  While the observational 
sample is too small to accurately 
estimate the signal-to-noise ratio, we 
have a sufficient sample from the 
GCM.   

The largest storm track 
anomalies, in terms of the signal-to-
noise ratio, are plotted in the top 
panels of Figure 3.  The red and 
yellow colors indicate where storm 
activity is decreased; the blues 
indicate where storm activity is 
increased.  The contour interval is 
0.25 with the 0 contour suppressed.  
The darkest reds and blues show 
where a useful forecast, with an 
anomaly correlation greater than 0.6, 
can be expected.  These regions are 
limited to the eastern Pacific and 
western North America.  Around the 
remainder of the hemisphere, for 
both El Niño and La Niña, signal-to-
noise ratio magnitudes for storm 
track anomalies range from 0.25 to 
0.5, which corresponds to expected 
correlations between 0.24 and 0.44.  
For some applications, expected skill 
of this magnitude may still be of 
value to decision makers. 

Our interest here is not in the 
storm track anomalies alone, but how 
they relate to the predictable seasonal 
mean precipitation. The signal-to-
noise ratios for GCM predicted JFM 
precipitation anomalies for the 1987 
El Niño and 1989 La Niña are shown 
in Figure 3.  The strongly predictable 
precipitation signals correspond well 
with the predictable storm track 
regions.  Over the hemisphere the 
patterns also agree well.  Over the 
central US during El Niño, no 
significant precipitation signal is seen 
despite the significant storm track 
anomalies.  Our research suggests 
that this may be a region where 
sensitive cancellations can occur 
between storm track anomalies and 
the seasonal mean flow.  Because the 
storm track variations are only weakly 
governed by the seasonal mean flow, 
these relations between the daily 
weather statistics and the seasonal 
precipitation suggest that improved 
prediction of seasonal mean 
precipitation will require improved 
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representation of storm activity in 
global models.  It also suggests that 
empirical prediction methods of 
seasonal mean precipitation may be 
improved by including storm track 
variations. 

In regions where the seasonal 
mean precipitation anomaly is not 
highly predictable, but still has a 
significant signal, does useful 
information remain?  The altered risk 
of extreme anomalies is one such 
piece of information that may be of 
value to a wide-range of decision 
makers.  The four lower panels of 
Figure 3 show the altered risk of 
extreme seasonal mean precipitation 
for El Niño and La Niña.  Several 
regions where the risk has changed 
by more than 100% are evident in the 
darkest red and blue shading.  The 
original risk of wet conditions is 
defined as the probability of 
exceeding the climatological local 
mean plus one standard deviation. 
The altered risk is the difference 
between the original risk and the risk 
under El Niño or La Niña 
conditions.  We divide the altered 
risk by the original risk to get percent 
changes in risk, and this is plotted in 
the lower panels of Figure 3.  The 
contour interval in Figure 3 begins at 
a 50% change in risk, with contours 
every 25% thereafter.  Given our 
large sample size, altered risks of 
50% or more are significantly greater 
than what one would expect by 
chance.  For extreme wet conditions, 
blue shading denotes increased risk 
of wet, and reds denote decreased 
risk of wet.  For extreme dry 
conditions, increased risk of dry is 
denoted by red and decreased risk of 
dry is denoted by blue.  The darkest 
reds and blues correspond to a 100% 
change in the risk.  Note that 
decreases in risk cannot be less than 
100%. 

The altered risks in Figure 3 
correspond well with the significant 

signals seen in the seasonal mean 
precipitation panels.  Some regions 
show substantial differences in the 
magnitude of the altered risk.  For 
instance, over Florida, El Niño 
doubles the risk of wet conditions 
while only halving the risk of dry.  
The altered risk can also be in the 
same direction for both El Niño and 
La Niña.  Over western Africa, both 
show a decreased risk of dry 
conditions, while El Niño also shows 
a decreased risk of wet conditions.  
Similarly, over the Middle East, both 
El Niño and La Niña show an 
increased risk of dry conditions.  
Such nonlinear changes are difficult 
to detect using empirical methods 
given the small sample size of the 
observational record.   

Summary and conclusions 
We have demonstrated that a 

large ensemble of atmospheric 
general circulation model runs can be 
used to estimate the predictable 
signals associated with El Niño and 
La Niña. Some of those signals may 
be nonlinear and difficult to detect 
with empirical methods that must 
rely on the small sample size of the 
historical record.  The number of 
GCM runs needed to estimate 
predictability is much larger than is 
currently being used for similar 
studies; 100 or more GCM runs are 
needed for each ENSO event, rather 
than the 8-30 usually made.   

Because of the relatively small 
signal to noise ratio, S, the expected 
predictability of the seasonal mean 
storm track and precipitation is 
relatively small, except in a few areas 
over the Pacific and western Atlantic.  
Accurate determination of S is still 
important, and may be dependent on 
the details of the individual ENSO 
event, so a large number of samples 
is needed.  The advantages of an 
accurate determination of S may 
seem moot.  It is not.  For a large S, 

say greater than 3, only a few 
ensemble members are needed to 
make an excellent forecast. For a 
small S, say less than 0.5, the large 
number of ensembles still does not 
make a forecast with useful skill.  
However, for the intermediate values, 
the advantage of a large ensemble is 
useful for making a better forecast 
and for estimating the expected skill 
of that forecast.  Figure 1b, though, 
reminds us that the systematic error 
in a forecasting system can 
completely eliminate this gain in 
forecast skill. 

The ρ∞ curve in Figure 1 strongly 

Figure 3:  (Upper four panels) The predictable
storm track and seasonal mean precipitation
anomalies for the 1987 El Niño and 1989 La
Niña as measured by the signal-to-noise ratio
S. from the GCM experiment Contour interval
is 0.25 with the 0.0 contour suppressed.
Positive (negative) values are shaded blue
(red).  (Lower four panels).  Altered risk of
extreme seasonal mean precipitation.  Risks
are shown relative to climatological risk.
Contour interval is 25% beginning at 50%.
Darkest colors show 100% change in risk.  In
the Wet risk panels, reds indicated decreased
risk, blues indicate increased risk.  In the Dry
panels, reds indicate increased risk, blues
indicate decreased risk.  In all panels, blues
correspond to wetter conditions, reds to drier
conditions. 
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constrains the predictability of 
seasonal statistics during ENSO 
events, and because of this, even a 
perfect GCM’s advantage over 
empirical forecasting methods may 
be small.  The results here show, 
however, a GCM’s ability to predict 
changes in the mean and the 
variability for an individual event give 
it a potentially huge advantage for 
predicting the altered extreme risk of 
seasonal mean precipitation and 
other quantities.  The altered risk can 
be the same for El Niño and La 
Niña.  Accurate estimates of these 
risks for future ENSO events will 
benefit not only from model 
improvements, but also from running 
large ensembles.  
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Introduction 
Tropical and extra-tropical 

cyclones (hurricanes) lead to major 
natural disasters at sea and in the 
regions of landfall.  These severe 
storms are characterized by intense 
precipitation and high winds. Named 
Storms (NS) include all tropical 
cyclones reaching a maximum 
sustained wind speed of at least 18 
m/s (Neumann, et al. 1993). Their 
impact along the Atlantic Coast of 
North and Central America is often 
catastrophic to life, ecology, property, 
wetlands and coastal estuaries. The 
severity and frequency of major 
tropical storms is consequently of 
great interest for disaster planning 
and mitigation. 

Over the years, investigators 
have identified large-scale climatic 
factors, such as the El 
Niño/Southern Oscillation (ENSO), 
Quasi Bi-ennial Oscillation (QBO)1, 
Atlantic Sea Surface Temperatures 
(SSTs), and rainfall over Africa’s 
Sahel region, that appear to affect the 
year-to-year variability in tropical 
cyclone activity (Gray, 1984a and 
Gray, 1990; Goldenberg and Shapiro 
1996; Shapiro, 1982; Shapiro, 1989; 
Shapiro and Goldenberg, 1998; Bove 
et al., 1998). Recently, Elsner and 
Kocher (2000) found links between 
tropical cyclone activity and the 
preceding winter state of the North 

                                                           
1 QBO is a zonal wind index in the tropics. 
For more information see, 
http://tao.atmos.washington.edu/data_sets/
qbo/. 
 
 

Atlantic Oscillation (NAO). 
Mechanistically, all these climatic 
phenomena are believed to regulate 
tropical storm formation via their 
effects upon upper tropospheric 
wind shear (Landsea, 1998). Events, 
which increase shear lead to a weaker 
hurricane season while events, which 
lower wind shear, make for an active 
season. These findings led to the 
development of statistical forecasting 
schemes for indicators of tropical 
cyclone activity during the stormy 
season (Gray 1984b; Gray et al., 
1992,1993,1994; Hess et al., 1995).  

The forecasting schemes by Gray 
and others typically predict the total 
number of named storms in a given 
year in the Atlantic basin. While these 
forecasts have been very useful, risks 
from hurricanes at a given coastal 
location are only indirectly reflected.  

There are efforts underway to 
issue probabilistic forecast of 
landfalls at a few locations on the 
eastern coast of USA (Gray 1998; 
Gray et al., 2000). One step towards 
improving regional landfall 
forecasting is to examine the spatial 
variability of tropical named storm 
activity in the entire basin relative to 
various large-scale climate indicators. 

 This study explores the regional 
effects of climate indicators such as, 
ENSO, NAO and Tropical North 
Atlantic (TNA) SSTs, on named 
storm activity. A “bootstrap”2 
                                                           
2 The bootstrap technique involves shuffling 
the data and randomly picking a data point 
(i.e., observation) year with replacement. 
Traditionally, the bootstrap has been used to 
estimate confidence limits on sample statistics 
like mean, standard deviation. Recent 
modifications to this technique have been 
applied to time series re-sampling and 
scenario generation. 

method is developed and used to 
analyze the spatial statistics of named 
storm incidence in the Atlantic basin, 
conditional on three large-scale 
climate indicators (ENSO, NAO, and 
TNA). In addition, a “t-test”3 on the 
means of named storm incidence and 
other variables is also performed.  

Data  
The data sets used, cover the 112 

years from 1886 to 1997. The data 
used can be described under three 
categories: 

Storm data: The named storm data are 
obtained from the National 
Hurricane Center. This database 
contains information on named 
storms location, wind speed, and 
pressure for every six hours of the 
storm’s existence.  It includes all 
storms from 1886 to 1997. This 
dataset was modified (Mitchell, 
personal communication) to a daily 
time scale by selecting only the 
entries with the greatest of the four 
recorded wind speeds for each day.  

Climate indicators: These consist of 
seasonal averages for winter 
(December-January-February-March: 
DJFM); spring (March-April-May: 
MAM) and summer (June-July-
August: JJA)) of the following 
indices:  

1) NIÑO3: Average, normalized 
equatorial Pacific SST anomalies 

                                                           
3 T-test is a statistical method to test the 
significance of difference in the means 
between two groups.  The test can be 
performed assuming equal or unequal 
variances between the groups. 
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in the area 5°S-5°N and 150°W-
90°W SST, obtained from the 
grid-point data of Kaplan et al. 
(1998). 

2) TNA: Tropical North Atlantic 
SST index, normalized, area 
averaged SST anomaly in the 
region of 5°N-20°N, 20°W-
40°W; 

3) NAO index as defined by the 
difference in normalized SLP 
anomalies between Ponta 
Delgada (Azores) and Reykjavik 
(Iceland) (Hurrell, 1995). 

Supplementary data:  These data sets are 
obtained from NCEP/NCAR Re-
analyses (Kalnay et al., 1996). 

1) U-Shear:  The difference in the 
U-component of the surface 
winds between 400mb and 
850mb (U400 – U850). 

2) V-steering winds: The average of 
V-component of the surface 
winds between 600mb and 
1000mb.  

Methodology 
We divide the Atlantic basin 

(20°W - 100°W; 5°N-45°N) into 5° x 
5° boxes.  The number of named 
storm days occurring in each box for 
each year is computed.  The 112 
years are divided into three categories 
based on the strength (High, Low, 
and Neutral) of a particular climate 
index in each season.  “High” and 
“Low” boundaries are set at ±0.75σ, 
where σ is the standard deviation for 
each indicator. We use a "bootstrap" 
technique (Efron, 1991) to determine 
the grid boxes with significant 
differences in the median NS days 
relative to the three indicator 
categories. In other words, we seek 
to examine, for instance - is the 
median NS days at a grid box during 
“High” winter NAO significantly 
different from the median NS days at 
the same grid box during “Low” 

winter NAO, or Neutral winter 
NAO? Similarly, for other indicators 
and other seasons as well. 
Additionally, we use the t-test for 
differences in means between the 
categories (Helsel and Hirsch, 1992) 
to compare the results from the 
“bootstrap” method. 

The bootstrap technique 
involves shuffling the data and 
randomly picking a year with 
replacement. Traditionally, the 
bootstrap has been used to estimate 
confidence limits on sample statistics 
like mean, standard deviation. Recent 
modifications to this technique have 
been applied to time series re-
sampling and scenario generation 
(Lall and Sharma, 1996; Rajagopalan 
and Lall, 1999).  

The dependence of the number 
of named storm days in each grid 
box on a climate index is assessed 
through a bootstrap procedure, 
designed to check for the significance 
of the median number of named 
storm days conditional on the “state” 
(e.g., high, neutral or low category) of 
the climate index of interest. The 
procedure used is outlined below: 

1) For each climate index category 
I, identify the corresponding 
number of years ni  

2) Generate 1000 samples, each of 
length ni by sampling with 
replacement from the original ni 
years. Compute the median 
number of named storm days per 
year for each of the 1000 samples  

3) Estimate the 5th, 50th, and 95th 
percentiles (ns0.05,i, ns0.5,i, ns0.95,i) 
of the median number of named 
storm days per year from these 
1000 estimates for the climate 
category. 

4) Now compare the confidence 
limits of the medians across 
categories. 

a) Record a 0, for the 
comparison of categories i 
and j, if ns0.05,j ≤ ns0.5,i ≤ 
ns0.95,j 

b) Record a 1, if ns0.95,j ≤ ns0.5,i 

c) Record a 2, if ns0.95,j ≤ ns0.05,i 
In addition to the bootstrap 

technique we calculate the difference 
and perform a t-test (Helsel and 
Hirsch, 1992) on the averages of the 
variables that are of importance to 
tropical cyclone genesis and 
maintenance (e.g., U-Shear, V-
steering winds, and SSTs) between 
the indicator categories. The t-test is 
performed at each grid box and the 
grid locations that show differences 
at 90% and 95% significance are 
colored.  This will help identify 
regions in these fields where 
significant differences are shown in 
comparison to the differences in the 
NS days as seen in the bootstrap 
results and point at physical 
mechanisms associated with the 
anomaly in NS occurrence. 
Furthermore, we performed a t-test 
on the total number of storms 
generated in the basin, storms 
reaching the East coast of US and 
Florida, and storms reaching the Gulf 
coast, relative to different phases of 
the climate indices. 

The above steps are repeated for 
all the climate indicators and for 
winter, spring and summer seasons, 
and the results are presented and 
discussed in the following sections. 

Results 
The spatial variation in the 

named storm days conditional to 
various climate indices is discussed. 
In each figure, only the significant 
boxes (with the significant criteria 
described in the previous section) are 
colored. Dark brown color indicates 
that the 95% confidence intervals of 
median number of storms during one 
phase of the climate indicator is 
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higher than the confidence limit of 
the comparing phase, dark purple 
color is used when the confidence 
interval is lower. Yellow color 
indicates that the 50th percentile of 
one phase of the climate indicator is 
greater than the 95% confidence 
intervals of the comparing phase, and 
light purple represents the opposite 
difference. The contours show the 
magnitude of difference in the mean 
NS days between the categories from 
the historical data. Because the data 
are rather noisy, we smoothed the 
difference using one pass of a two-
dimensional binomial (1-2-1) filter. 
On the t-test figures dark brown and 
orange colors are for boxes with 
significant differences in the positive 
direction at 95% and 90% confidence 
levels, respectively and blue and 
purple, vice-versa. On all the figure 
captions the phase on the left is 
compared to the phase on the right 
(e.g., High - Low on the caption 
indicates that the High phase is 
compared to Low phase). This 
convention is followed in all the 
figures.  

ENSO  

Significant difference (reduction 
in the number of storms) in the NS 
days between the high and low 
categories of NIÑO3 during summer 
(Figure 1a), can be seen in the 
western half of the tropical Atlantic 
basin, west of 50°W. Relative to low 
phase of ENSO (La Niña) the high 
phases (El Niño) exhibits a 
substantial reduction (of up to 7 
storm days per decade) in the NS 
activity. The differences are especially 
large along the coastal regions of U.S. 
This result corroborates with earlier 
findings that El Niño reduces storm 
activity in the Atlantic basin (Gray, 
1984; Bove et al., 1999). Relative to 
the neutral phase, the high phase of 
ENSO also shows a reduced NS 
activity along the Florida coast, Gulf 
of Mexico and the Carribeans (Figure 

1b). However, the significant boxes 
are much more scattered, unlike a 
coherent region in Figure 1a. The low 

phase does not show a clear and 
coherent signal relative to the neutral 
phase (Figure 1c).  

The differences in U-shear 
between the three phases of NIÑO3 
during summer also reveal a 
consistent picture (Figure 2). Relative 
to the low phase, the high phase has 
significantly larger U-shear (Figure 
2a) in the eastern tropical Pacific and 
western tropical Atlantic regions. The 
same is true relative to neutral phase 
(Figure 2b). It is known that large U-

shear values inhibit the formation of 
tropical cyclones and their 
maintenance (Gray, 1984a; 
Goldenberg and Shapiro 1996). The 
opposite shear anomalies occur 
during low phases of ENSO (Figure 
2c) but are not as spatially coherent. 
Consequently, high phase of ENSO 
corresponds to reduced NS storm 
activity and vice-versa. This can also 
be seen in the significant reduction in 
the number of storms in the entire 
basin, and in the landfall regions (see 
Tables 1 and 2). 

Table 1: Total number of storms 
Index High Neutral Low 

NAO (DJFM) 54.56 61.88 65.22 

Niño (DJF) 60.14 62.88 57.54 

Niño (JJA) 49.44 62.77 68.40 

TNA (JJA) 81.90 58.72 43.07 

TNA (MAM) 70.50 64.11 44.85 

NAO  

One of the surprising and 
interesting results of this study has 
been the significant difference in the 
storm activity associated with the 
state of NAO in the preceding 
winter. There is a general reduction 
(of up to 6 storm days per decade on 
the average) in NS activity over the 
western half of the tropical Atlantic 
basin (Figure 3a,b) following a winter 
of high NAO phase relative to low 
and neutral phases. Differences 
between low NAO phase and neutral 
are not coherent. A reduction in the 
V-steering winds in the western 
ocean region, during the summers 
following high NAO winters relative 
to low and neutral phases. The 
reduction in the V-steering is 
consistent with decreased NS activity. 
This also reflects in the reduction of 
landfall storms (Table 2) but not as 
much in the total number of storms 
generated in the entire basin (Table 
2). Thus, it appears that winters with 
high NAO phase tend to create 

Figure 1: Bootstrapped significant storm days for
NIÑO3 (JJA) (a) between High phase and Low
phase, (b) between High phase and Neutral
phase, (c) between Low phase and Neutral
phase. The contours are the difference in storm
days between the categories that are compared
per decade. (Dark brown color indicates that the
95% confidence interval of median number of
storms during one phase of the climate indicator
is higher than the confidence limit of the
comparing phase, dark purple color is used when
the confidence interval is lower. Yellow color
indicates that the 50th percentile of one phase of
the climate indicator is greater than the 95%
confidence intervals of the comparing phase, and
light purple represents the opposite difference). 
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conditions that steer storms away 
from the coast in the following 
summer. 

The NAO also leaves a 
noticeable impact on summer SSTs 
in the tropical north Atlantic basin. 
After winters of high NAO phase 
SSTs are colder than normal from 
the coast of Africa to the Carribeans. 
This too tends to affect storm 
growth (see below). Overall the 
NAO effect opens way to predicting 
landfall over the US Atlantic coast. 

TNA  

Warmer temperatures in the 
TNA region, favors convection, less 
vertical wind shear and consequently 
aids in storm activity (Shapiro and 
Goldenberg, 1998). Consequently, 
enhanced NS activity can be seen 
over almost entire Atlantic basin 
between 15°N – 40°N, during high 
phase of TNA relative to low and 
neutral phases Interestingly, it is the 
negative phase of the index that is 

associated with high spatial 
coherence. This enhancement is 
significant even when the spring 
TNA values are used, which indicates 
a potential for predictability. We 
obtain similar results for summer 
TNA as well – which suggests that 
the spring SSTs in the TNA region 
persist quite a bit into the summer. 
The enhancement of NS activity can 
also be seen in Table 2, where a 
significant increase in the number of 
storms over the entire basin is seen, 
relative to a high phase of TNA. 

Discussion 
Our results indicate that ENSO 

has an influence on the total number 
of storms generated in the basin, and 
also on the landfall storms. 
Furthermore, the high (or warm) 
phase of ENSO has a stronger 

impact than the low (or cold) phase. 
This corroborates earlier results (e.g., 
Gray, 1984a). Spring TNA also has 
an impact on the total number of 
storms and also on landfall storms. 
While, winter NAO seems to affect 
the landfall storms and not as much   
the total number of storms in the 
basin. The NAO predominantly is a 
mid-latitude phenomenon that has 
links to tropical and extra-tropical 
SSTs (Rajagopalan et al., 1998). This 
also underscores the relevance of 
mid-latitude climatic forcing to 
tropical cyclone activity (e.g., Elsner 
and Kocher, 2000). The results also 
suggest a strong potential for winter 
NAO and spring TNA in the 
probabilistic forecast of hurricanes, 
along with other predictors that have 
been identified so far. 

We have demonstrated the utility 
of the bootstrap technique in visually 
identifying regions in the Atlantic 
basin that exhibit significant 
differences in NS activity and other 
variables that influence cyclone 
activity, relative to different phases of 

Index High - 
Low 

High -
Neutral 

Low - 
Neutral 

T-Test Total Number of Storms 
NAO (DJFM) 12.8271 18.1664 69.3991 

Niño (DJF) 61.3415 35.1560 23.0325 

Niño (JJA) 1.0008 1.9510 78.7696 

TNA (JJA) 99.9999 99.9605 0.2337 

TNA (MAM) 99.9650 83.9695 0.1411 

T-Test East Coast/Florida Landfall 
NAO (DJFM) 0.0841 0.5524 82.6282 

Niño (DJF) 54.8535 40.6770 38.1861 

Niño (JJA) 0.2906 0.3365 88.4558 

TNA (JJA) 99.9045 99.1045 8.1474 

TNA (MAM) 99.7894 94.7472 2.0640 

T-Test Gulf Landfall 
NAO (DJFM) 1.6926 3.3525 75.6923 

Niño (DJF) 48.4713 40.5604 43.3707 

Niño (JJA) 1.5641 4.3859 84.3904 

TNA (JJA) 99.9860 98.9792 0.9587 

TNA (MAM) 99.7751 74.5128 0.3901 

Table 2: T-test results for total number of
storms and landfalls  

Figure 2: T-test based significant differences
in the mean of U-shear for NIÑO3 (JJA) (a)
between High phase and Low phase, (b)
between High phase and Neutral phase, (c)
between Low phase and Neutral phase.  (Dark
brown and orange colors are for boxes with
significant differences in the positive direction
at 95% and 90% confidence levels, respectively
and blue and purple, vice-versa). 

Figure 3: Same as in Figure 1, but for NAO
(DJFM).  The colored regions have the same
significance as in Figure 1. 
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large-scale climate indicators. The 
method is easy to implement and 
handles non-Gaussian and non-linear 
structures in a natural way. 
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By Daoyi Gong 

Introduction 
Many surface climate anomalies 

are directly brought on by 
fluctuations in the atmospheric 
circulation. Variability in temperature 
and precipitation on the local and 
regional scales are closely related to 
the atmospheric condition in the 
region of the target area as well as the 
global scale atmospheric variations. A 
number of studies have shown that 
the Arctic Oscillation (AO) is 
strongly coupled to surface air 
temperature fluctuations over the 
Eurasian continent.1 AO’s influence 
on the global and regional climate 
changes is currently the subject of 
much interest (Thompson and 
Wallace, 2001; Kerr 1999).  The 
focus of this study is to investigate 
the AO’s influence on variations of 
the climate over the eastern Asian 
region. 

AO and the surface climate 
changes on the inter-annual 
time scale 

The correlation coefficients 
between  the AO index and 
temperatures over China are 
computated for wintertime (January-
February-March: JFM) for 1958/59 
and 1998/99. These results indicate 
                                                           
1 Thompson and Wallace (1998) pointed out 
that the leading empirical orthogonal function 
of the wintertime northern hemisphere 
pressure field resembles the North Atlantic 
Oscillation but with more zonally symmetric 
appearance. This annular-like mode in the 
northern extratropical circulation is called 
Arctic Oscillation (AO).  The AO has an 
equivalent barotropic structure from the 
surface to the lower stratosphere. 
Fluctuations in the AO create a seesaw 
pattern in which atmospheric pressure at the 
northern polar and middle latitudes alternates 
between positive and negative phase. 

that a positive relationship exists 
everywhere in China, except in the 
small regions over the southwestern 
Tibetan Plateau where the correlation 
coefficients vary from 0 to -0.2. The 
most significant areas cover the 
northern territory of China, north of 
30°N-40°N, namely the northwes-
tern, the northeastern, and the coastal 
regions (Figure 1).  In these regions 
the correlation coefficients are above 
0.3. This means that 16%~36% of 
the variance is associated with the 
AO. Thompson and Wallace (1998, 
2000) have regressed northern 
hemispheric surface air temperature 
anomalies onto the standardized AO 
for JFM. They found that the 
positive phase of the winter AO is 
associated with positive surface air 
temperature anomalies throughout 
high latitudes of Eurasia. Regression 
coefficients vary from about 0.25 to 
0.5 per standard deviation of the AO 
index over northern China. The 
results presented here are generally 
consistent with the previous findings 
but reveal more regional details.  

The correlation coefficients 
between the AO index and 
precipitation are also calculated for 
the same period. It is interesting to 
note that the positive phase of the 
AO is generally associated with the 
positive precipitation anomalies, 
except for the small region in the 
northwest. The most significant 
relationship arises from two regions 
with values varying between 0.3 and 
0.4. The larger area covers the central 
region of China between 30° to 40°N 
(east of 100°E) and a small area in 
the southern region of China close to 
the South China Sea. This means that 
about 10%-15% of the winter 
precipitation variance can be 
explained by the AO. The averaged 
precipitation over the entire inland 

Arctic Oscillation and the East Asian Climate 
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China also correlates with the AO at 
0.47, this value is above the 95% 
confidence level. 

Long-term climate variations 
In this section the long-term 

variations of the AO and its 
connections to climate in China are 
analyzed by employing low-pass 
filtering techniques. Figure 2 shows 
the long-term time series of winter 
precipitation and temperature in 
China. Precipitation is computed 
from the mean of 33 stations over 
eastern China. All stations are located 
east of 100°E (Wang et al., 2000). 
This 33-station-mean series correlates 
to the 160-station-mean at 0.99 for 
the period 1951-1999. Temperature is 
the mean of Shanghai and Beijing. 
There is good spatial consistency in 
the temperature changes over China 
in winter as revealed by the empirical 
orthogonal function analysis (Wang 
et al., 1999), thus several typical 
stations may be enough for analysis. 
Here we chose only Beijing and 
Shanghai, this 2-station-mean series 
correlates to the 160-station-mean at 
0.92 for the period 1951-1998. 

 A number of studies have 
demonstrated that there are 
interdecadal climatic variations in 
China. In order to compare the 
correlation between the climate and 
atmospheric indices on the 
interdecadal scale, a 10-40yr band-
pass filter is applied to these long-

term time series. The filtered low 
frequency components for these 
series are shown in Figure 2. To 
facilitate comparison, all series are 
normalized before filtering. Only the 
period from 1899 to1994 is shown 
here, due to the limit of data 
availability. In the above analysis it is 
found that there are good 
relationships between the AO, 
precipitation and temperature. As 
shown in Figure 2, these 
relationships are still evident, the 
correlation coefficients suggest that 
the AO plays a more significant role 
in both temperature and precipitation 
on the interdecadal time scale than 
on interannual time scale. The 
correlation between the AO and 
temperature is 0.68, for precipitation 
the correlation is even higher with a 
value of 0.72.  

AO and the East Asian 
monsoon 

Plenty of scientific evidence has 
indicated that the most important 

regional factor affecting winter 
climate in China is the Siberian High. 
An intensified Siberian High leads to 
a strong East Asian winter monsoon, 
which would give rise to a dramatic 
temperature changes over eastern 
Asia. Gong et al. (2001) reported that 
there is a significant out-of-phase 
relationship between the AO and 
Siberian High intensity. The Siberian 
High intensity is measured as the 
mean sea level pressure over the 
central region of the anticyclone. The 
correlation coefficient between these 
two indices is –0.48 for December-
January-February (DJF) for the 
period 1958-98. It was found that the 
negative phase of the AO is 
concurrent with a stronger East 
Asian Trough and an anomalous 
anticyclonic flow over the Urals at 
the middle troposphere (500hPa). 
This anomalous circulation pattern 
could bring stronger northwesterlies 
and may enhance the upper-level 
airflow convergence in the rear of the 
trough. That means a weaker AO can 
be helpful to dynamically strengthen 
the Siberian High and winter 
monsoon, and vice versa. 

The AO’s influence on the East 
Asian winter monsoon and surface 
climate is evident over most of the 
continental Asia. Mean temperature 
averaged over middle to high latitude 
Asia (30°E-140°E, 30°N-70°N) is 
correlated to the Siberian High 
central intensity with correlation 
coefficient of -0.58 (1922-1999), and 
for precipitation, the correlation 

Figure 1. Time series of AO and the mean surface air temperature of 160-station in China
during wintertime. To facilitate comparison all series are standardized regarding to 1961-90.
The two curves correlate at 0.49, significant at 95% confidence level. 
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Figure 2. Low frequent variations of AO (in black), temperature (in red) and precipitation (in
blue).  Shown as the results from a 10-40yr band-pass filter.  
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coefficient is -0.44 (1922-1998). Of 
course, some other circulation 
systems such as Southern Oscillation 
Index (SOI) and Eurasian 
teleconnection pattern (EU) are also 
found to be responsible for the 
climatic changes over mid to high 
latitudes to some extent (Hurrell, 
1996, Zhu et al, 1997). Co-variability 
values among some components are 
listed in Table 1. To check the 
contribution by these elements, a 
multiple regression analysis is applied 
to these indices. For the sake of 
establishing equal record length 
among the indices, all data are 
adjusted to the period from 1949 to 
1997. The Siberian High, AO, EU 
and SO all together can explain 72 
percent of the variance in 
temperature. The isolated variance 
reveals that the AO-related change is 
the most important, with a 
contribution of 30%. The Siberian 
High explains 24% of the variance in 
temperature. The fractions related to 
EU and SO are 11% and 7%, 
respectively. The precipitation 
variance explained by the AO and 
Siberian High is relatively low, both 
less than 10%. 

Given the evidence of strong 
influence of winter-half-year AO on 
the surface conditions (snow, 
temperature, sea-ice, sea surface 
temperature, etc.), one can propose 
that the AO may not impact only the 
wintertime climate, but also the 
summer condition. A recent study 
shows that the AO also exerts 
significant influences on year-to-year 

variations in the East Asian summer 
monsoon rainfall (Gong and Ho, 
2002). The correlation between late 
spring AO and precipitation shows 
well-defined features over East Asia 
(Figure 3). Mean summer precipi-
tation averaged over ten stations 
located at southern Japan and middle 
China (along the famous Meiyu-Baiu 
rainfall belt) is used to measure the 
summer monsoon rainfall. When the 
AO leads by one month, the 
correlation between the May-July AO 
and summer monsoon rainfall is -
0.44. When AO leads by two months, 
the correlation becomes -0.32. The 
May AO index shows the strongest 
connection to the summer monsoon 
rainfall, with correlation coefficient 
of -0.45. Large-scale atmospheric 
circulation patterns in East Asia in 
association with the AO are also 
evident. A positive phase of the AO 

in late spring is found to lead to a 
northward shift in the summertime 
upper tropospheric jet stream over 
East Asia. This northward shift of 
the jet stream is closely related to an 
anomalous sinking motion in 20º-
40ºN and a rising motion in 
surrounding regions. These changes 
give rise to drier conditions over the 
region extending from the Yangtze 
River valley to southern Japan and 
wetter conditions in southern China. 
Possible mechanisms connecting the 
late spring AO and summer 
monsoon rainfall remain to be 
addressed. 

Conclusion 
AO has a strong influence on the 

climate in East Asia. During the 
high-AO years, warmer than normal 
temperature and precipitation are 
observed over most of China in 
winter. On the interdecadal time 
scale, the AO also shows significant 
influences on both temperature and 
precipitation.  

It is also revealed that the AO 
significantly impacts the East Asian 
winter monsoon through the Siberian 
High. A weak AO gives rise to the 
strong Siberian High and winter 
monsoon. Evidence also shows that 
there are significant connections 
between the late spring AO and East 
Asian summer monsoon and 
monsoon rainfall; a positive-strong-
AO usually leads to less summer 
monsoon rainfall along the Yangtze 
River and southern Japan.  

Suggested references and web 
sites 
• For more information on AO and 

its definition see: 
Thompson, D. W. J., and J. M. 

Wallace, 1998: The Arctic Oscillation 
signature in the wintertime 
geopotential height and temperature 
fields, Geophysical Research Letters, 25, 
1297-1300. 

 AO EU SO Precipitation Temperature 
Siberian High  -0.52*(76) 0.30*(52) 0.14(79) -0.44*(77) -0.58*(78) 

AO 1 -0.37*(49) 0.12(76) 0.14(76) 0.53*(76) 

EU  1 -0.07(52) -0.28*(50) 0.21(51) 

SO   1 -0.38*(77) -0.28*(78) 

Table 1. Summary of correlation statistics for winter (JFM). * Significant at 95% confidence
level. Shown in parentheses are sample numbers used to compute the correlation. The sample
numbers are variable due to the data availability. Precipitation and temperature are means for
continental Asia averaged over middle to high latitude Asia (30°°°°E-140°°°°E, 30°°°°N-70°°°°N).

Figure 3. Changes in summer precipitation
(mm) corresponding to a one standard
deviation of the May AO index for the
period 1900-1998. Regions above 95%
confidence level are shaded. The contour
interval is 10 mm. Zero contours are
omitted. Filled circles are ten stations with
data available for the entire period of 1899-
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