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Abstract

The gut microbiota has the potential to influence the efficacy of cancer therapy. Here, we investigated the

contribution of the intestinal microbiome on treatment outcomes in a heterogeneous cohort that included

multiple cancer types to identify microbes with a global impact on immune response. Human gut metagenomic

analysis revealed that responder patients had significantly higher microbial diversity and different microbiota

compositions compared to non-responders. A machine-learning model was developed and validated in an

independent cohort to predict treatment outcomes based on gut microbiota composition and functional

repertoires of responders and non-responders. Specific species, Bacteroides ovatus and Bacteroides xylanisolvens,

were positively correlated with treatment outcomes. Oral gavage of these responder bacteria significantly increased

the efficacy of erlotinib and induced the expression of CXCL9 and IFN-γ in a murine lung cancer model. These data

suggest a predictable impact of specific constituents of the microbiota on tumor growth and cancer treatment

outcomes with implications for both prognosis and therapy.
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Background
Cancer is one of the leading causes of mortality world-

wide, with nearly one in six deaths globally attributed to

cancer [1]. Among several treatment options, chemo-

therapy and immunotherapy are applied to treat cancer

by preventing cancer cell division or boosting the

immune system to eliminate cancerous cells [2]. In spite

of recent progress, treatment outcomes are still

unsatisfactory for most cancer types. The gut microbiota

is increasingly considered an important factor associated

with both tumor development and the efficacy of anti-

cancer therapies [3]. Specific gut bacteria have been

shown to affect cancer treatments through direct drug

metabolism and modulation of the host immune re-

sponse [4]. Bacterial beta-glucuronidase can convert iri-

notecan, an anti-cancer chemotherapy drug, to a toxic

metabolite [5], and intratumor bacterial cytidine deami-

nase can degrade gemcitabine with a direct impact on

treatment outcomes [6]. The gut microbiota or defined

synthetic communities can also impact treatment out-

comes through immune modulation mechanisms such

as regulating T cell differentiation [7–9]. Indeed, the gut

microbiota can substantially impact immune checkpoint

inhibitor therapy [10–13] and antibiotic use is associ-

ated with poor treatment outcomes with checkpoint

inhibitors [14].
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Previous studies have focused on elucidating the role

of individual microbes or communities in a specific can-

cer type and therapeutic intervention. In the present

study, we investigated the role of gut microbiota in a

cancer patient cohort that included eight different can-

cer types treated with either cytotoxic or targeted

chemotherapy, immunotherapy, or a combination. Our

objective here was to demonstrate a more global finding

of a microbiota signature that is independent of cancer

type and heterogeneity. Using a combination of human

feces shotgun metagenomic sequencing, in vitro and

in vivo mouse models, we found that cancer treatment

outcomes in this diverse cohort can be substantially

modulated by the abundances of specific gut bacteria,

supporting a recent study in healthy individuals to iden-

tify general activators of the immune system [15].

Results
Limited impact of cancer therapy on individual gut

microbiota

Our cohort was comprised of 26 cancer patients of various

cancer types, treated either with cytotoxic or targeted

chemotherapy (n = 15) or a combination of cytotoxic or

targeted chemotherapy with immunotherapy (n = 11)

(Table S1). We collected 71 fecal samples from the 26 pa-

tients at four different time points (B1: baseline, B2: base-

line at least 24 h after B1, T1: end of cycle 1 of treatment

± 5 days, T2: end of cycle 2 of treatment ± 5 days). All the

samples were further combined into two groups, namely

baseline (n = 31, comprised of B1 and B2) and treatment

(n = 40, comprised of T1 and T2).

We assessed the structure of the gut microbiome in all

available samples (n = 71) via shotgun metagenomic se-

quencing, generating 6.1 Gbp of sequencing data on

average (s.d. 1.3 Gbp per sample) (Table S2). The taxo-

nomic profiling revealed that Bacteroidetes (44.51% on

average) and Firmicutes (44.04%) were the most abun-

dant phyla across all samples, followed by Proteobacteria

(4.09%) and Verrucomicrobia (3.53%). To test whether

the gut microbiota compositions of patients with differ-

ent cancer types share similar profiles, we investigated

the cancer type-specific microbiome signatures. The 26

patients were classified according to their primary site of

tumors: lung (n = 8), breast (n = 7), colon (n = 2), rectal

(n = 2), pancreatic (n = 2), ovarian (n = 2), prostate (n =

2), and blood (n = 1). The dendrogram clustering based

on taxonomic profiles showed that interpatient samples

with the same cancer type did not necessarily cluster to-

gether, while the intrapatient samples tend to cluster

closely with relatively minimal impact from the antican-

cer treatment (Fig. 1a and Fig. S1A) as previously re-

ported [16–18]. Subsequently, we further compared the

gut microbiota communities of baseline versus treatment

to investigate any global patterns of anticancer therapies

on gut microbial compositions. The alpha diversity com-

parison indicated that the baseline and treatment sam-

ples had similar levels of diversity (p = 0.265, Wilcoxon

rank-sum test) (Fig. S2). Likewise, the ordination plot

based on the beta diversity (Bray-Curtis dissimilarity) in-

dicated no difference between baseline and treatment

(p = 0.364, ANOSIM) (Fig. S1B), suggesting that antican-

cer therapy may not introduce drastic changes to the

overall structure of the gut microbial community. More-

over, no differentially abundant taxa, functional path-

ways, or modules could be identified by comparing

baseline versus treatment samples in our data set.

Given the well-reported stability and resilience of indi-

vidual signatures of human gut microbiota [17, 18], as

well as the limited and non-significant effects of cancer

types and anticancer treatments observed in our cohort,

we combined the 71 samples and, similarly to micro-

biome meta-analysis studies [15, 19], performed a com-

parison with publicly available data to evaluate whether

the cancer patients present distinct gut microbial pro-

files. We used, in the comparison, the gut microbiome

samples of 138 healthy individuals from the Human

Microbiome Project (HMP) [16], which, as our cohort,

also consists of US subjects. The beta diversity compari-

son of cancer and HMP microbiome samples revealed

that the two cohorts had significantly different species

compositions of intestinal bacteria (p = 0.0001, ANO-

SIM) (Fig. S3A), while there was no significant difference

on alpha diversity at the species level between the two

cohorts (p = 0.07373, Wilcoxon rank-sum test) (Fig.

S3B). In HMP, the mean abundance of the phylum Bac-

teroidetes across all HMP stool samples was 74.96%,

followed by 22.07% of Firmicutes, indicating that the

cancer cohort had a significantly higher Firmicutes/Bac-

teroidetes (F/B) ratio (p = 2.461e−13, Wilcoxon rank-sum

test) (Fig. S3C). Compared with healthy individuals, a

higher F/B ratio has also been observed in patients with

irritable bowel syndrome (IBS), hypertension, autism,

and chronic fatigue syndrome in case control studies

[20–23]. Taken together, these comparisons above sug-

gest that cancer treatments may not significantly disrupt

the patients’ individual signatures of gut microbiota;

however, the cancer patients have distinct gut micro-

biota features compared to the healthy cohort.

Responders have higher ecological diversity than non-

responders

To evaluate the association between the microbial com-

munity and treatment outcome, we grouped the patients

based on their response to treatment (responders: R, n =

16; non-responders: NR, n = 10). The classification of pa-

tients was based on the Response Evaluation Criteria in

Solid Tumors (RECIST 1.1) [24] or immune-related re-

sponse criteria (iRECIST) [25]. The R group achieved a
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favorable response (complete or partial response or

stable disease status) as their best response, while the

NR group showed disease progression as their best re-

sponse to the administered systemic treatment. The pa-

tients in the two groups were similar in terms of stage of

cancer, sex, age, and therapy type (Table S3). A

comparison of the gut microbiome of these two groups

revealed that R had higher alpha diversity than NR (p =

0.003, Wilcoxon rank-sum test, combined samples from

baseline and treatment) (Fig. 1b). It led to the same con-

clusion when using just treatment samples (p = 0.008,

Wilcoxon rank-sum test), though only showed trends

Fig. 1 Taxonomic analysis of intestinal microbiota of cancer patients. a Sample collection scheme and dendrogram based on Bray-Curtis

dissimilarity. b Alpha diversity (Shannon index) of the gut microbiota in responders (R) and non-responders (NR). c Non-metric multidimensional

scaling (NMDS) plot of R and NR in human cancer samples based on the gut microbial compositions using Bray-Curtis dissimilarities (ANOSIM p =

0.0001). Intrapatient samples are linked to each other. d NMDS plot of R, NR, and HMP samples based on the gut microbial compositions at the

species level using Bray-Curtis dissimilarities (ANOSIM p = 0.0001). e Phylogenetic composition of cancer samples at the phylum level. f Firmicutes/

Bacteroidetes (F/B) ratio of cancer samples. g Heatmap of differentially abundant species detected in the comparison of R and NR (FDR p < 0.05,

Wilcoxon rank-sum test). R-associated and NR-associated bacteria validated in mouse model are shown in red and cyan asterisks, respectively
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when focusing on the baseline samples. Despite the dif-

ference in alpha diversity, R and NR showed similar

levels of species richness (Chao1) (p = 0.674, Wilcoxon

rank-sum test) (Fig. S4). Furthermore, the ordination

plot based on Bray-Curtis dissimilarities revealed distinct

intestinal microbial compositions at the species level be-

tween R and NR (p = 0.0001, ANOSIM) (Fig. 1c). Un-

weighted and weighted UniFrac distances were

consistent with this result (p = 0.0001 and p = 0.0006).

Interestingly, we also observed a clear gradation of NR,

R, and healthy subjects (HMP) (p = 0.0001, ANOSIM)

(Fig. 1d), with the majority of R samples overlapping

with the HMP subjects, whereas NR samples were

clearly distinct from those of the healthy subjects. This

gradation suggests that the patients in R group have

relatively more similar gut microbiota profiles to the

healthy individuals.

No significant differences of alpha diversity between

the baseline and treatment were observed either in R or

NR (p = 0.3254 and p = 0.616 for R and NR, respectively,

Wilcoxon rank-sum test) (Fig. 1b). Furthermore, the

treatment impact on the gut microbiota of the two

groups (R and NR) was also measured based on the

Bray-Curtis dissimilarities between intrapatient baseline

and treatment using the relative abundances of species

or strains. The comparison showed no difference be-

tween R and NR in terms of the therapy impact on their

gut microbial compositions at the community level (p =

0.216 and p = 0.204 for species and strains, respectively,

Wilcoxon rank-sum test) (Fig. S5).

Identification of specific taxa related to cancer treatment

response

We next searched for differentially abundant taxa in the

gut microbiome of R versus NR. The enrichment ana-

lysis revealed that, at the phylum level, Bacteroidetes was

enriched in R in the treatment samples (FDR p = 0.031,

Wilcoxon rank-sum test) but not in the baseline samples

(FDR p = 0.540, Wilcoxon rank-sum test) (Fig. 1e). Add-

itionally, comparing Firmicutes/Bacteroidetes (F/B) ra-

tios, we noticed that NR showed a significantly higher

ratio than R (p = 0.037, Wilcoxon rank-sum test) (Fig. 1f)

and healthy individuals from the HMP (138 subjects,

p = 1.617e−09, Wilcoxon rank-sum test), which is in

agreement with the findings described above regarding

the microbiome profiles of healthy individuals and

cancer patients.

In the comparison between R and NR, 31 differentially

abundant species (FDR p < 0.05, Wilcoxon rank-sum

test) were identified. As shown in Fig. 1g, 22 and 9 spe-

cies were R-enriched and NR-enriched, respectively. Bac-

teroides xylanisolvens, Bacteroides ovatus, Prevotella

copri, and seven Alistipes species, among others, were

found to be significantly enriched in R compared to NR

(FDR p < 0.05, Wilcoxon rank-sum test) (Fig. 1g). We

found that ~ 73% (16/22) of these species are classified

at the phylum level as Bacteroidetes. In contrast, all 9

NR-enriched species, including Clostridium symbiosum

and Ruminococcus gnavus, were classified as Firmicutes

at the phylum level.

Next, we reconstructed the species co-abundance net-

works separately for R and NR using BAnOCC [26]. The

R network showed that B. xylanisolvens was correlated

with other Bacteroidetes species and Proteobacteria,

while this species did not show any significant associa-

tions in the NR network (Fig. 2a). On the other hand,

the NR network shows that C. symbiosum and R. gnavus

have a positive association with each other and both

have a negative association with one of the R-associated

species B. ovatus (Fig. 2b). Furthermore, in the NR net-

work, both C. symbiosum and R. gnavus retained their

positive interactions mostly within Firmicutes with only

one exception (a positive interaction between C. symbio-

sum and Klebsiella pneumoniae), whereas their interac-

tions with Bacteroidetes species were all negative.

Altogether, it is suggested that the high abundances of

C. symbiosum and R. gnavus in NR might promote the

dominance of Firmicutes and impede Bacteroidetes by

their intra-phylum positive associations along with the

negative associations with Bacteroidetes species includ-

ing B. ovatus. This observation is in line with the afore-

mentioned high Firmicutes/Bacteroidetes (F/B) ratio in

NR (Fig. 1f). Lastly, R. gnavus, as well as other Firmicutes

species, were positively correlated with the F/B ratio (r =

0.5665, p = 0.0021, Pearson correlation) (Fig. S6).

Anabolism enriched in responders’ and catabolism in non-

responders’ microbial communities

The Bray-Curtis dissimilarities based on 146 anno-

tated KEGG pathway abundances illustrate the mar-

ginally separate clusters of R and NR (p = 0.0299,

ANOSIM) (Fig. 3a). The KEGG pathway enrichment

analysis of the metagenomic data shows that the ma-

jority of 32 pathways overrepresented in NR were

catabolic pathways including ABC transporter, phos-

photransferase system (PTS), carbohydrate metabolism

pathways, and xenobiotic degradation pathways (FDR

p < 0.1, Wilcoxon rank-sum test) (Fig. 3b), whereas

anabolic pathways were in contrast overrepresented in

R. This tendency is also consistent with the recently

published study of anti-PD-1 immunotherapy in mel-

anoma patients, which also reported that NR patients’

intestinal microbial communities had more enriched

catabolic pathways compared to R [12]. Additionally,

the Carbohydrate-Active enZymes (CAZy) annotation

and the analysis of Clusters of Orthologous Groups

(COG) supported the overrepresentation of catabolic

functions in NR; three CAZy classes, “glycoside
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hydrolases,” “carbohydrate-binding modules,” and

“auxiliary activities” were overrepresented in NR

(FDR p < 0.1, Wilcoxon rank-sum test), whereas no

CAZy classes were significantly enriched in R (FDR

p > 0.1, Wilcoxon rank-sum test) (Fig. 3c); NR had

six enriched COG classes including “carbohydrate

transport and metabolism” and “amino acid transport

and metabolism” (FDR p < 0.1, Wilcoxon rank-sum

test) (Fig. S7). Although anabolic functions such as

“valine, leucine, and isoleucine biosynthesis” and

“unsaturated fatty acids biosynthesis” were excep-

tionally enriched in NR, these BCAA microbial me-

tabolites have been found to be positively associated

with cancers and related to tumor metabolic needs

[27]. Likewise, unsaturated fatty acids have been sug-

gested to be involved in the metastasis and stemness

of certain cancers [28]. Furthermore, previous case-

control gut microbiome studies reported that

enrichment of ABC transporter and PTS in microbial

communities are associated with inflammation,

which has been shown to promote tumor growth in

cancer patients [29].

In contrast, the pathway enrichment analysis re-

vealed that the most significantly enriched pathways

in R were biosynthetic pathways of metabolites in-

cluding flavonoid, zeatin, and secondary bile acids

(FDR p < 0.1, Wilcoxon rank-sum test) (Fig. 3b). The

comparison of KEGG modules revealed that in R, 20

modules including the biosynthesis of lipopolysac-

charide (LPS) were enriched (FDR p < 0.1, Wilcoxon

rank-sum test) (Fig. S8). Bacterial LPS is known to

induce the differentiation of Th17 cells [30].

Fig. 2 Bacterial species co-abundance networks. a Network in responders. b Network in non-responders. Each node represents a species and edges

correspond to significant species-species associations as inferred by BAnOCC [26]. The size of each node is proportional to the mean relative

abundance. The 95% credible interval criteria were used to assess significance, and estimated correlations were then filtered with the correlation

coefficient ≥ 0.4. The shown subnetworks were made by extracting the edges that are connected with B. ovatus, B. xylanisolvens, C. symbiosum,

and R. gnavus, which are further highlighted
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Initial microbiota composition and functionality predicts

response to treatment

After identifying differences in intestinal microbial

composition between R and NR in our cohort, we ex-

amined whether statistical modeling would enable

prediction of treatment response based on the initial

gut microbial status of the cancer patients. In

addition to the anticancer therapy response, a recent

study showed that the anti-integrin therapy response

of inflammatory bowel disease patients could be pre-

dicted using the information of initial conditions of

their preselected gut microbiota features based on a

deep neural network [31]. However, to the best of

our knowledge, there are no models used to predict

the anticancer treatment response that covers broad

types of cancer and treatments. We built a classifica-

tion model based on decision tree using the features

of baseline samples with a fivefold cross-validation.

We used the relative abundances at the baseline of 31

differentially abundant species between R and NR

(Fig. 1g) and the baseline RPKM of the differentially

abundant KEGG pathways (Fig. 3b). The model per-

formance was evaluated with an area under the curve

(AUC) of receiver operating characteristic (ROC).

Using the initial relative abundance of differentially

abundant species solely, the performance was the low-

est (AUC = 0.652) (Fig. 3d). The prediction perform-

ance was significantly improved by using the RPKM

of differentially abundant KEGG pathways solely

(AUC = 0.707). However, the model incorporating data

on both species and pathways showed the best per-

formance (AUC = 0.895), indicating the power of shot-

gun metagenomics for predicting host phenotypes. To

further test the general applicability of the model, we

recruited additional cancer patients and performed

metagenomics sequencing in seven more patients

(baseline samples from R = 5, NR = 2) to serve as an

independent validation dataset. Using the initial

Fig. 3 Functional profiles of intestinal microbiota of cancer patients. a NMDS plot of cancer samples based on KEGG pathway abundances using

Bray-Curtis dissimilarities (ANOSIM p = 0.0299). b Differentially abundant KEGG pathways (FDR p < 0.1, Wilcoxon rank-sum test) detected in the

comparison of responders (R) and non-responders (NR). c CAZy class comparison between R and NR. *p < 0.1, **p < 0.05. d Performance of the C5.0

decision tree models in classifying R and NR
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relative abundance of differentially abundant species

and the RPKM of differentially abundant KEGG path-

ways, we could achieve an AUC = 0.75.

The high accuracy of our prediction models indicates

that the initial condition of the gut microbiota could be a

potential predictive tool for response to anticancer treat-

ments. Furthermore, the performance comparisons of our

models suggest that combining the features of both taxa

and functions improves the prediction accuracy.

Oral gavage of responder bacteria reduces tumor size

during erlotinib treatment in mice

To test if there is a causal effect of the R and NR

bacteria on treatment outcomes, we tested their im-

pact on tumor growth in a murine lung cancer model

[32]. As examples of the R-enriched bacteria, B. ova-

tus and B. xylanisolvens were chosen due to their

relatively high significance in the species enrichment

analysis described above (Fig. 1g). In addition, we

selected C. symbiosum and R. gnavus due to their

relatively high prevalence (63% and 67% for C. sym-

biosum and R. gnavus, respectively) in NR samples

(Fig. S9). We selected Lewis lung carcinoma cells and

erlotinib to test in the murine model, as the majority

of our patient cohort suffered from forms of lung

cancer, and erlotinib is a commonly used drug for

non-small cell lung cancers [33]. We introduced ei-

ther R (B. ovatus and B. xylanisolvens) or NR bacteria

(C. symbiosum and R. gnavus) by daily oral gavage in

antibiotic-pretreated mice (Fig. 4a and Fig. S10). One

week later, Lewis lung carcinoma cells were subcuta-

neously inoculated into these C57BL/6 N mice to in-

duce tumor formation. When the tumor size reached

approximately 250–500 mm3, erlotinib was adminis-

tered. Erlotinib significantly inhibited the tumor

growth by 56% compared to the control group (PBS +

DMSO) after 1 week (Fig. 4b and Fig. 4c). The R-

enriched species alone reduced (by 20%) the tumor

progression in mice compared to the control, but the

difference was not statistically significant (p = 0.1949,

Wilcoxon rank-sum test). However, the presence of B.

ovatus and B. xylanisolvens led to additional signifi-

cant reductions in tumor size in the erlotinib-treated

mice (Fig. 4b). On day 14, the average tumor volume

in erlotinib-treated mice colonized with the R-

enriched species (R + erlotinib) was significantly

smaller (46%) than that of the erlotinib-treated group

(PBS + erlotinib) (p = 0.032, Wilcoxon rank-sum test),

as well as that of the NR + erlotinib group (Fig. 4b

and Fig. 4c) (p = 0.032, Wilcoxon rank-sum test). This

demonstrates that simultaneous administration of B.

ovatus and B. xylanisolvens increases the efficacy of

erlotinib, suggesting that these R-enriched species

could have a positive impact on therapeutic outcome

in cancer. Interestingly, by comparing the tumor sizes

among groups on day 10, the NR + erlotinib group

had a significantly larger tumor size (87%) compared

to that of R + erlotinib (p = 0.0317, Wilcoxon rank-

sum test), which was commensurate with the control

group without erlotinib (PBS + DMSO and R + DMSO)

(Fig. 4c). This suggests the potential contribution of

C. symbiosum and R. gnavus on treatment resistance.

To assess if there was a direct impact of the R bacteria

on drug efficacy, we grew the R and NR bacteria in

GAM media containing erlotinib. Subsequent addition

of this spent media to the bronchoalveolar carcinoma

cell line NCI-H1650 did not result in significant changes

in the IC50 of erlotinib suggesting a limited direct im-

pact of the R bacteria on erlotinib (Fig. 4d). To further

investigate if metabolites produced by R and NR bacteria

could directly affect the growth of cancer cells, we tested

different dilutions of spent media from the R and NR

bacteria on NCI-H1650 cell line viability. We observed

that increasing amounts of spent media affected cancer

cell line viability. The viability effects were species-specific

and varied within the R and NR groups (Fig. 4e). These

in vitro data suggest that bacterial effects on treatment

outcome might be caused by multiple rather than single

species acting in a consortium or that the beneficial effects

depend on the host response to the specific bacteria.

To explore the mechanisms of how R-enriched bacteria

increase the efficacy of chemotherapy, we examined the

tumor expression of different chemokines involved in

tumor progression using real-time PCR. Chemokines

serve as attractant cytokines for different immune cells to

modulate tumor growth through immunoediting. We

found a significant increase in the expression of the che-

mokine (C-X-C motif) ligand 9 (CXCL9) and interferon

gamma (IFN-γ) in the tumors of erlotinib-treated mice

colonized with R-enriched species (R + erlotinib) com-

pared to that of the control group (PBS +DMSO).

CXCL10 expression in tumors also exhibited an increased

trend in erlotinib-treated mice colonized with R-enriched

species (R + erlotinib) (Fig. 4f). These molecules, which are

involved in the recruitment of T cells, are negatively

associated with tumor progression [34, 35] (Fig. S11).

Importantly, such alterations were observed in neither the

R-enriched-treated group (R +DMSO) nor the erlotinib-

treated group (PBS + erlotinib), suggesting that the pres-

ence of R-enriched bacteria and erlotinib has a synergistic

effect in modulating the immune responses of T cells in

tumors. We did not observe such a synergistic effect in

the expression of granzyme B, which is a serine protease

in the granules of cytotoxic T cells (Fig. 4g). Furthermore,

the levels of two chemokines, monocyte chemoattractant

protein-1 (MCP-1) and stromal derived factor-1 (SDF-1),

which are involved in the recruitment of myeloid cells,

were comparable among these different groups (Fig. 4g).
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Fig. 4 Increased anti-tumor efficacy of chemotherapy in the presence of B. ovatus and B. xylanisolvens. a Experimental design: male 6-week

C57BL6/N mice (n = 5–8) were treated with antibiotic cocktail in drinking water for 1 week before bacterial oral gavage. Control PBS, B. ovatus and

B. xylanisolvens, and C. symbiosum and R. gnavus were orally gavaged into mice 1 week prior to tumor cell inoculation. A total of 107 Lewis lung

cancer cells in 200 μl PBS were subcutaneously injected into the mice to induce tumor formation. Mice were treated with erlotinib (60 mg/kg

body weight) once the tumor size reached approximately 250–500mm3. Time in days is relative to tumor cells injection. b Tumor size

measurement at day 14. c Tumor growth curve after Lewis lung carcinoma cell inoculation. Dark dots indicate the application of erlotinib. d, e

CRL5883 bronchoalveolar carcinoma cell line was cultured for 72 h in the presence of erlotinib (d) or drug-free (e) supernatants from R (B.

xylanisolvens and B. ovatus) or NR (R. gnavus and C. symbiosum) bacteria species. d Non-linear regression curves showing cell viability as

percentage of cell control viability. Bacterial supernatants had n = 4, GAM control had n = 2, and cell control had n = 10. e Cell viability is

presented as percentage of cell control viability. Colored circles show individual data points. Outliers were identified and removed by the ROUT

method (Q = 0.1%). Supernatants had n = 3–4 and cell control had n = 16. All data are mean ± SEM. Significant differences were identified via

unpaired t test (*p < 0.05, **p < 0.005). f, g Tumor expressions of chemokines involved in the recruitment of T cells (f), myeloid cells, and cytotoxic

T cells (g) by real-time PCR (normalized against GAPDH). Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001
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These findings suggest that the enhancement of chemo-

therapy efficacy by R-enriched bacteria may be achieved

by synergistically upregulating the expression of chemo-

kines involved in the recruitment of T cells.

Discussion
We evaluated here for the first time the role of the gut

microbiota in a heterogeneous patient cohort with vari-

ous types of cancer and anticancer treatments to identify

microbes with an impact on immune response. We iden-

tified significant differences in the gut microbiota com-

position and functional repertoire between R and NR,

which were highly associated with treatment efficacy.

Based on shotgun metagenomic data, we constructed

and validated a statistical model that could predict can-

cer treatment outcomes with high accuracy in an inde-

pendent validation cohort.

Despite the successful validation of the role of R-

enriched bacteria in an animal model, our study comes

also with limitations. First, while the response criteria

were uniformly applied across treatment and cancer type

as is typically performed in clinical trials, the likelihood

of responsiveness may vary by line of therapy and clin-

ical context. We focused on the microbiota signature

that differentiated based on clinical outcome, not the

cancer type or therapy. Second, due to a relatively small

number of patients, we have also included a relatively

small independent clinical cohort of patients for valid-

ation of the microbiota signature. A larger cohort will

definitely provide the chance to overcome the issues

with potential confounding factors and facilitate the de-

tailed investigations into the effects of cancer types and

treatments on gut microbiota. However, even with a

small cohort, a solid conclusion and/or a highly accurate

predictive model could be made from the comparison

between groups in recent gut microbiome studies [36–

38]. We also believe that mechanistic and biologic

support for our findings from the clinical cohort was val-

idated in the preclinical studies. Furthermore, future

studies may investigate whether the NR-associated spe-

cies can promote tumor growth and cancer progression

in the absence of drug treatment, given the larger tumor

size of NR + erlotinib group than the PBS + erlotinib

group observed at day 10 (Fig. 4c). In addition, even

though the functional analyses based solely on metage-

nomic data have shed lights on the potential mecha-

nisms of gut microbiota affecting treatment outcomes,

the use of metatranscriptomics and metabolomics to

measure the actively expressed gut microbial functions

and functional end-products, respectively, can lead to

more robust and solid findings. Lastly, the murine ex-

periment used erlotinib, an EGFR tyrosine kinase inhibi-

tor, and not a cytotoxic chemotherapy. Typically, in

current clinical practice, erlotinib is prescribed to

advanced non-small cell lung cancer patients with tu-

mors harboring an EGFR sensitizing mutation, due to its

higher likelihood of response rate and lower overall tox-

icity rate relative to cytotoxic chemotherapy. However,

the original U.S. Food and Drug Administration ap-

proval was based on response rate and non-small cell

lung cancer, regardless of EGFR mutation status. Erloti-

nib was one of the treatments from the patient cohort.

The use of single agent erlotinib in the murine experi-

ment obviated the need to use potentially more

confounding regimens to demonstrate the role of the

microbiota such as doublet platinum-based chemother-

apy or use of a single agent cytotoxic chemotherapy ap-

proved in NSCLC (docetaxel) that was not explored in

the patient cohort and may have required additional op-

timal dose finding for these chemotherapeutics.

A recent study identified a consortium of 11 com-

mensal bacterial species that were able to induce intes-

tinal IFN-γ-producing CD8 T cells [15]. The

investigators demonstrated that this bacterial consor-

tium significantly enhanced efficacy of a checkpoint in-

hibitor treatment in a syngeneic mouse tumor model.

We hypothesized that our identified R consortium could

similarly activate cells of the immune system, which, in

turn, would enhance the susceptibility of cancer cells to

treatment outcome. Consequently, we found that the

two species enriched in the R group, B. xylanisolvens

and B. ovatus, in combination showed a synergistic effect

with erlotinib. This effect on tumor progression could

be partially mediated by activating the intratumoral

mRNA expression of chemokines, which recruits den-

dritic cells and T cells. This observation is consistent

with previous reports that indicate the infiltration of

beneficial T cells into the intratumoral microenviron-

ment mediated by specific gut bacteria, resulting in

tumor size reduction. We previously revealed that a

novel probiotics mixture can suppress hepatocellular

carcinoma growth in mice by reducing the frequency of

Th17 cells, the main producers of the IL-17 cytokine, in

the intestine and their subsequent recruitment to the

tumor bed [9], whereas Akkermansia muciniphila was

recently identified as being associated with increased

intratumoral immune infiltrates into the tumor bed in

response to PD-1 blockade therapy [13]. Taken together,

we believe that the administration of specific probiotic

bacteria could be a potential supplemental treatment in

combination with anticancer therapies for a better treat-

ment outcome.

Conclusions
The global cancer burden has risen dramatically making

it an urgent need to develop novel therapies and predict

which treatment will offer the most benefit to a cancer

patient. Here, we analyzed the gut microbiota in a
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cohort that included eight different cancer types using

metagenomic sequencing and found out that gut micro-

biome signatures at baseline accurately predict cancer

treatment outcome. Furthermore, by evaluating the role

of the gut microbiota for the first time in a heteroge-

neous patient cohort with various types of cancer and

anticancer treatments, we have demonstrated a more

global finding of a microbiota signature that is independ-

ent of cancer type and heterogeneity. Moreover, oral

gavage of specific gut microbes significantly increased

the effect of chemotherapy in mice, reducing the tumor

volume by 46% compared to the control.

Materials and methods
Cancer cohort and treatment outcomes

The 26 cancer patients signed informed consent forms

and were enrolled at the Western Regional Medical Cen-

ter, Goodyear, AZ, after Western Institutional Review

Board approval (WIRB #20140271). The patients were

diagnosed with eight types of cancers and received either

chemotherapy or a combination of chemo- and im-

munotherapy (Table S1). The 26 patients were classified

into responders (n = 16) and non-responders (n = 10)

based on their responses to anticancer treatment as de-

fined by RECIST 1.1 [24] and irRECIST [25]. Further-

more, seven more additional cancer patients were

recruited and metagenomics sequencing were performed

to serve as an independent validation dataset (baseline

samples from R = 5, NR = 2) to test the general applic-

ability of the prediction model. The taxonomic profiles

for a total of 138 stool samples from the Human Micro-

biome Project (HMP), as provided by MetaPhlAn2 [39]

(http://segatalab.cibio.unitn.it/tools/metaphlan2/), were

used as a healthy control in the taxa comparison.

Metagenomic library construction and sequencing

To examine the gut microbiome of our cancer cohort,

71 fecal samples were collected longitudinally from 26

patients before and after treatments. Bacterial DNA was

isolated from the fecal samples for shotgun metage-

nomic sequencing. Library preparation (using KAPA

Hyper Prep Kit KR0961-V1.14) and Illumina sequencing

were done at the University of Hong Kong, Centre for

Genomic Sciences (HKU, CGS), using Illumina HiSeq

1500 with PE100 at an average depth of 6.1 Gbp (s.d.

1.3 Gbp per sample) (deposited in the European Nucleo-

tide Archive with accession number PRJNA494824).

Quality control and taxonomic profiling

The sequenced reads were processed with quality con-

trol to remove the adapter regions, low quality reads/

bases using fqc.pl with default settings (https://github.

com/TingtZHENG/VirMiner/tree/master/scripts/Pipeli-

neForQC) [40], and human DNA contaminations (bwa

(version 0.7.4-r385) mem against human reference gen-

ome ucsc.hg19), following the previously described steps

[9, 41]. Approximately 85% of the reads on average

remained after the quality control and were used in

downstream analyses. The high-quality reads were taxo-

nomically profiled at different taxonomic levels using

MetaPhlAn2 [39] with default settings, generating

taxonomic relative abundances (total sum scaling

normalization). The differentially abundant taxa were

identified by the Wilcoxon rank-sum test, and the statis-

tical significance was adjusted for multiple testing using

FDR correction with the cutoff adjusted p value < 0.05,

unless otherwise stated. ConStrains was utilized for

strain level analysis with default settings [42].

Microbial community diversity analysis

The alpha diversity (Shannon index) of each sample was

calculated with R package VEGAN [43] (v2.5.3) on the

relative abundance of species. Species richness for all

samples were estimated based on rarefied data. Beta di-

versities (Bray-Curtis dissimilarities) among samples

were calculated with VEGAN based on the relative

abundance of species. To test the difference in the mi-

crobial composition between two or more groups, ANO-

SIM (analysis of similarities) was employed based on the

Bray-Curtis dissimilarity.

Species co-abundance network inference

For species co-abundance network reconstruction, the

OTU relative abundance table was split into responder

and non-responder samples, and they were processed in-

dependently with BAnOCC [26] for co-abundance net-

work inference with 5000 iterations. A correlation

estimate is considered significant if the corresponding

95% credible interval excludes zero. The estimated cor-

relations were then filtered with the absolute values of

correlation coefficients ≥ 0.4. The co-abundance network

was visualized by Cytoscape 3.6.1. For visualizing Fig. 2,

the subsets of networks were taken by extracting the

edges that are connected with B. ovatus, B. xylanisolvens,

C. symbiosum, and R. gnavus.

De novo assembly and functional annotation

The high-quality reads after quality control were assem-

bled using IDBA-UD [44] with k-mer size ranging from

20 to 100 bp. The coding DNA sequence (CDS) regions

were predicted using MetaGeneMark [45] with the de-

fault parameters. The predicted peptide sequences were

mapped to the KOBAS database [46] and dbCAN data-

base [47] using DIAMOND [48] with the default param-

eters for KEGG (through KOBAS 2.0 annotate program)

and CAZy annotation, respectively. The protein se-

quences were also assigned to the functional category of

COG [49] using NCBI RPS-BLAST with default
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parameters. The abundance of genes was quantified in

an RPKM (Reads Per Kilobase of transcript per Million

mapped reads)-like manner using custom Perl scripts.

Bray-Curtis dissimilarity calculated with VEGAN (v2.5.3)

based on KEGG Orthologs was used to evaluate func-

tional diversity between samples. KEGG pathway and

module abundances were estimated by summing up the

abundances of all genes present in the corresponding

pathway or module (KEGG database accessed in Decem-

ber 2017).

Classifier model

Fivefold cross-validation was performed on a C5.0 deci-

sion tree model (R 3.3.0, C50 0.1.1 package), using as

predictors the differentially abundant species (FDR p <

0.05) and pathways (FDR p < 0.05) that were identified

by comparing responders and non-responders. As a refer-

ence, we cited a study that used preselected features to

build a classification model to predict the therapy re-

sponse of inflammatory bowel disease [31].

Bacterial strains and culture conditions

Bacteroides ovatus (ATCC 8483), Bacteroides xylanisol-

vens (DSM-18836), Ruminococcus gnavus (ATCC

29149), and Clostridium symbiosum (ATCC 14940) were

grown at 37 °C under anaerobic conditions (Anaerobic

gas mixture, 95% N2 and 5% H2) in pre-reduced GAM

(Gifu anaerobic media; Nissui Pharmaceutical Co. Ltd.)

broth for liquid culture or broth supplemented with agar

(Gifu anaerobic media agar; Nissui Pharmaceutical Co.

Ltd.) for growth on plates.

Cell lines and culture conditions

The bronchoalveolar carcinoma cell line NCI-H1650

(ATCC CRL-5883) was cultured at 37 °C under 5% CO2

in Roswell Park Memorial Institute (RPMI) 1640

medium (ATCC modification; Thermo Fisher Scientific)

supplemented with 10% Fetal Bovine Serum (FBS; Hime-

dialabs) and antibiotics (~ 5000 units penicillin, 5 mg

streptomycin, and 10mg neomycin/mL). The cell line

was maintained from frozen stock and allowed to grow

for a minimum of 3 days before being used in the super-

natant assays. Passage number was kept below 10. Lewis

lung cancer cells (LLC) were cultured at 37 °C under 5%

CO2 in Dulbecco’s modified Eagle medium (DMEM; Life

technologies) supplemented with 10% FBS and antibi-

otics (100 U penicillin, 0.1 mg streptomycin, and 0.25 μg/

ml amphotericin B).

Supernatant exposure assay

Bacterial strains growing overnight in GAM broth were

sub-cultured 1:50 in fresh GAM broth and grown for 24

h. Bacterial cultures were spun down at 11,000×g for 2

min and the supernatant carefully removed without

disturbing the pellet. The supernatants were filtered

through a 0.2-μM syringe filter to remove any remaining

bacteria in suspension. For the erlotinib supernatant

assay, 15 ml conical Greiner tubes (Sigma-Aldrich) were

filled with GAM broth supplemented with an erlotinib

(erlotinib hydrochloride dissolved in DMSO; Sigma-

Aldrich) gradient ranging from 0 to 100 μM. The tubes

were inoculated 1:50 with sub-cultured bacteria growing

for 24 h. The bacterial culture was exposed to erlotinib

for 24 h, before following the same procedure for super-

natant preparation as described above. Supernatants

were stored at − 20 °C until being un-thawed and ho-

mogenized by vortexing for the subsequent assays. Wells

of a black, clear bottom 96-well plate were seeded with

NCI-H1650 cells at a density of 5 × 103 in either 90 μl or

50 μl of complete growth medium with antibiotics for

the erlotinib or drug-free supernatant assays, respect-

ively. Cells were allowed to attach for 1 day.

The following day, respective bacterial supernatants

were added to the attached cells at a ratio of 1:10 or 1:1

for the erlotinib or drug-free supernatant assays, respect-

ively. Dilution of supernatants resulted in final erlotinib

concentrations of 0–10 μM and final supernatant dilu-

tions of 0–40% in the respective wells. Cell control wells

received either DMSO or PBS for the erlotinib or super-

natant assay, respectively. GAM control wells were bac-

teria free and otherwise handled the same as bacterial

supernatants. In both assays, plates were incubated for

72 h at 37 °C under 5% CO2. Viability was assessed by

addition of 5% of a resazurin-based cell viability reagent

(alamarBlue; Thermo Fisher Scientific) and further incu-

bation for approximately 18 h. The reducing capability

of viable cells was assessed by measuring fluorescence at

530EX nm/590EM nm in a Synergy H1 microplate

reader (BioTek). Higher fluorescence signal indicated

higher cell viability.

Animal studies

Six-week old C57BL6/N mice were fed on a normal

chow diet ad libitum. Mice were treated with a cocktail

of antibiotics (ampicillin 0.3 g/L, neomycin 0.3 g/L,

metronidazole 0.3 g/L, and vancomycin 0.15 g/L) in

drinking water for 1 week before oral gavage of bacterial

species. Control PBS, responder-enriched species (B. ova-

tus and B. xylanisolvens) and non-responder-enriched

species (C. symbiosum and R. gnavus) were orally

gavaged into mice respectively 1 week prior to the inocu-

lation of the tumor cell line and daily throughout the en-

tire experiments. To induce tumor formation, 107 Lewis

lung cancer cells in 200 μl PBS were subcutaneously

injected into the mice. Mice were treated with or with-

out erlotinib (60 mg/kg body weight) once the tumor

size reached approximately 250–500 mm3. Tumor

growth was assessed using a caliper, and tumor size was
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estimated by using the following formula: tumor size =

length × width × width/2. All animal experiments were ap-

proved by the Committee on the Use of Live Animals for

Teaching and Research of the University of Hong Kong.

Gut colonization with responder-enriched species and

non-responder-enriched species

B. ovatus, B. xylanisolvens, C. symbiosum, and R. gnavus

were cultured anaerobically in GAM (Gifu anaerobic

medium) broth. Colonization of antibiotic-pretreated

C57BL/6 N mice was performed by oral gavage with

200 μl of suspension containing 5 × 109 bacteria. The ef-

ficacy of colonization was confirmed by detecting the

fecal content of bacterial species on day 14 (at the end

of the experimental stage), based on pre-built standard

curves and normalization by the gram of feces. Fecal

DNA was extracted with the QIAamp DNA stool mini

kit (Qiagen) and subjected to PCR amplification target-

ing different bacterial species. Primers for B. ovatus and

B. xylanisolvens were as follows: forward: GGTGTC

GGCTTAAGTGCCAT; reverse: CGGACGTAAGGGCC

GTGC. Primers for C. symbiosum and R. gnavus were as

follows: forward: CGGTACCTGACTAAGAAGC; re-

verse: AGTTTCATTCTTGCGAACG.

Quantitative real-time PCR

Tumors were frozen in liquid nitrogen immediately after

harvest, and total RNA was extracted with RNAiso Plus

(Takara) and reverse transcribed into complementary DNA

with a primeScript RT reagent kit (Takara). Quantitative

real-time PCR was performed by using SYBR Premix Ex

Taq (Takara) with specific primers on a StepOnePlus Real-

time PCR system (Applied Biosystems). Primers for CXCL9

were as follows: forward: GGAGTTCGAGGAAC

CCTAGTG; reverse: GGGATTTGTAGTGGATCGTGC.

Primers for CXCL10 were as follows: forward: CCAAGT

GCTGCCGTCATTTTC; reverse: TCCCTATGGCCCTC

ATTCTCA. Primers for IFN-γ were as follows: forward:

ATGAACGCTACACACTGCATC; reverse: CCATCC

TTTTGCCAGTTCCTC. Primers for CCL20 were as

follows: forward: ACTGTTGCCTCTCGTACATACA; re-

verse: GAGGAGGTTCACAGCCCTTTT. Primers for gran-

zyme B were as follows: forward: TCTCGACCCTACAT

GGCCTTA; reverse: TCCTGTTCTTTGATGTTGTGGG.

Primers for MCP-1 were as follows: forward: CCACTC

ACCTGCTGCTACTCA; reverse: TGGTGATCCTCTTG

TAGCTCTCC. Primers for SDF-1 were as follows: forward:

TGCATCAGTGACGGTAAACCA; reverse: CACAGT

TTGGAGTGTTGAGGAT.

Statistical analysis

'The significance of the differences between groups

was analyzed using the Wilcoxon rank-sum test and

ANOSIM with R. A p value < 0.05 (5% level of

probability) was considered to be significant and de-

noted as follows: *p < 0.05, **p < 0.01, ***p < 0.001, and

****p < 0.0001. In in vitro assays, cell viability percent-

age was calculated as percentage of average viability

from cell control wells. Outliers were identified with

the ROUT method using a strict threshold of Q =

0.1%. Identified outliers were removed for subsequent

statistical analysis. For non-linear regression curves, differ-

ences in IC50 values were determined with the extra sum-

of-squares F-test. Significant differences between bacterial

and GAM control wells were determined via an unpaired

t test and a false discovery rate approach using the two-

stage linear step-up procedure of Benjamini, Krieger, and

Yekutieli, with a false discovery rate (Q) of 1%. Testing

conditions were analyzed individually, without assuming a

consistent SD. Statistical analysis in vitro was performed

with GraphPad Prism (version 8.0.0 for Mac, GraphPad

Software, San Diego, CA, USA, www.graphpad.com).
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1186/s40168-020-00811-2.

Additional file 1: Fig. S1. NMDS plot based on the gut microbial

compositions at species level of cancer patients. (A) Intra-patient samples

clustered together. (B) Baseline samples and Treatment samples (p =

0.364, ANOSIM). Fig. S2. Alpha-diversity comparison between Baseline

(red) and Treatment (blue). Fig. S3. Comparison between cancer patient

samples and Human Microbiome Project (HMP). (A) NMDS plot of cancer

patient samples and HMP samples based on the gut microbial composi-

tions at species level (p = 0.0001, ANOSIM). (B) Alpha-diversity comparison

(p = 0.07373, Wilcoxon rank sum test). (C) Comparison between Firmi-

cutes/Bacteroidetes ratio (p = 2.461e-13, Wilcoxon rank sum test). Fig. S4.

Comparison of Species richness between R and NR samples. (A) Rarefac-

tion curves of R and NR samples. (B) Comparison of Chao1 index be-

tween R and NR (p = 0.674, Wilcoxon rank sum test). Fig. S5. Treatment

impacts measured based on the Bray-Curtis distance between baseline

and treatment at (A) species level (p = 0.216, Wilcoxon rank sum test) and

at (B) strain level (p = 0.204, Wilcoxon rank sum test). Fig. S6. Heatmap

with Pearson correlation result between species relative abundances and

Firmicutes/Bacteroidetes ratio in NR group. *p < 0.05. Fig. S7. Comparison

of COG families between R and NR. *p < 0.1, **p < 0.05. Fig. S8. R-

enriched KEGG modules (FDR p < 0.1) detected in the comparison of R

and NR. Fig. S9. Comparison of relative abundance (%) of Clostridium

Symbiosum and Ruminococcus gnavus in R (blue) and NR (pink). Fig. S10.

Colonization of (A) R-enriched and (B) NR-enriched species in mice. B.

ovatus and B. xylanisolvens belong to Bacteroides group, and C. symbiosum

and R. gnavus belongs to C. coccoides-E. rectale group. T-test: *p < 0.05,

**p < 0.01, ***p < 0.001. Fig. S11. Scatter plots of Spearman’s rank correl-

ation analysis results between the mRNA expression of chemokine and

tumor size. Table S1. Patient information. Table S2. Summary of meta-

genomic sequencing data. Table S3. Baseline characteristics of cancer pa-

tients in this study cohort.
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