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Abstract

Predictable Multi-processor System on Chip Design for Multime-
dia Applications

The design of multimedia systems has become increasingly complex due to con-
sumer requirements. Consumers demand the functionalities offered by a huge
desktop computer from these systems. Many of these systems are mobile so
power consumption and size of these devices should be small. These systems are
increasingly becoming multi-processor based for the reasons of power and per-
formance. Applications execute on these systems in different combinations also
known as use-cases. Applications may have different performance requirement
in each use-case. The multi-processor based platform should have predictable
behaviour so that we can guarantee its performance. Furthermore, the platform
should be shared between different applications so that it can be used efficiently.

In this thesis, techniques have been developed to design and manage these
multi-processor based systems efficiently. One of the contributions of this thesis
is a communication assist. The communication assist presented in this thesis not
only decouples the communication from computation but also provides timing
guarantees. Based on this communication assist, an MPSoC platform genera-
tion technique is presented that can synthesize a platform capable of meeting the
throughput constraints of multiple applications within a given set of use-cases.
The tool can generate the implementations for FPGAs with the help of commer-
cially available synthesis tools.

Further in the thesis, a fast and scalable simulation methodology is introduced
that can simulate the execution of multiple applications on an MPSoC platform.
It is based on parallel execution of SDF (Synchronous Dataflow) models of ap-
plications. The simulation methodology uses Parallel Discrete Event Simulation
(PDES) primitives and it is termed as Smart Conservative PDES. Most PDES
approaches fall under one of two categories – conservative and optimistic. In
this thesis, a smart conservative approach is proposed, that is intelligent to figure
out when the sequential program execution can be set aside for improved effi-
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ciency. We have developed a mechanism which on every simulation step checks
whether continuing the simulation with incomplete information can result in a
causality error. By default, conservative PDES is used and as soon as it is found
that causality errors can be avoided with non-sequential execution, the simula-
tion proceeds and does not follow sequential execution. This mechanism is called
as smart conservative. The methodology generates a parallel simulator which is
synthesizable on FPGAs. The user can also select the scheduling policy which
is to be implemented on each processor of the platform. The generated platform
can execute the applications and their performance can be predicted. For a pre-
sented use-case consisting of two applications, the technique is 15% faster than
Conservative PDES. It is also shown that the speedup increases with increase in
number of applications.

The resources provided by the MPSoC platforms are shared between the ap-
plications. A run-time manager is needed that can distribute the resources of
the platform in such a way that all the applications get their desired resources
and no application can monopolize the resources. This thesis presents such a
run-time resource management technique that can share the MPSoC platform
between multiple applications. Two versions of distributed resource managers are
presented which are scalable with respect to the number of applications and pro-
cessors. The resource managers can be distinguished on the basis of their budget
enforcement protocols. The first type named as Credit-Based RM is useful for
applications which require very strict timing constraints. The credit-based RM is
a type of budget-based scheduler where budgets are assigned to tasks in a large
replenishment interval. Each processor executes the tasks according to assigned
budgets and these budgets are reloaded at the end of each replenishment inter-
val. The second type of RM is called Rate-based RM. In rate-based RM, the
rate of executions of tasks is kept at a predetermined value. Rate-based RM is
useful for applications which allow their performance to be more than a minimum
constraint. Streaming encoders can employ rate-based RM. These encoders can
encode at higher rates whenever there is an abundance of compute resources in
the platform.

Using the contributions mentioned in this thesis, a designer can design and im-
plement predictable multi-processor based systems capable of satisfying through-
put constraints of multiple applications in given set of use-cases, and employ
resource management strategies to deal with dynamism in the applications.
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CHAPTER 1

Trends and Challenges in Multimedia Systems

Science has invented many things. The triumphs of science are too many to
be counted. Some of the latest triumphs of science, like computers, are really
wonderful. Computers have contributed to most aspects of our society since
their emergence over half a century ago. However, the majority of computers in
our daily lives are not the general personal computers we use in our offices and
schools etc. Instead, they are found in the embedded systems constructed to do
a particular job. They are in washing machines, auto mobiles, mobile phones,
multimedia systems, and navigation systems, just to name a few. Multimedia
systems in particular are becoming increasingly more popular and satisfy the
information and entertainment needs of their users. The functionality offered by
these embedded multimedia systems increases and this makes their design a very
challenging job. These embedded multimedia systems consist of many hardware
and software components which need to be verified. Most of the design effort
is dedicated towards verification of these systems. A particular challenge with
embedded systems design is to meet the timing constraints of applications mapped
onto these platforms. In addition, the power consumption of these systems must
be low as most of these embedded systems are mobile. This thesis proposes
solutions to some of these design challenges.

The contributions of this thesis include a predictable communication assist,
a technique that generates MPSoC platforms capable of satisfying the through-
put constraints of multiple applications, a simulation framework and distributed
run-time resource managers. These contributions combine to provide a complete
design flow which consists of analysis, simulation, and synthesis for implementa-

1



2 1.1. TRENDS IN HIGH PERFORMANCE MEDIA PROCESSING

tion on FPGAs.

In the next section, we look at major trends and challenges in the application
domain of multimedia systems. Section 1.2 presents the trends in architectures of
these multimedia systems. Section 1.3 emphasizes the need of predictability in the
design of multimedia systems. Section 1.4 advocates the importance of application
models in the design process and section 1.5 introduces Synchronous Dataflow
model which is the application model used in this thesis. Section 1.6 presents the
proposed architecture template for multimedia systems. Section 1.7 states the
key contributions of the thesis and section 1.8 presents a predictable design flow
which can ease the multimedia system design process. Finally, section 1.9 gives a
brief overview of the thesis.

1.1 Trends in High Performance Media Processing

Modern multimedia systems, such as smart phones and PDAs offer an increasing
amount of functionality to their end-users by simultaneously executing a number
of real-time/non-real-time stream processing applications. Most of these appli-
cations deal with the “content” of the users. The content is a combination of
forms like text, audio, video, and pictures. This combination is termed as mul-
timedia. Figure 1.1 shows some examples of modern multimedia systems. The
number of features in a multimedia system is increasing. For example, a mobile
phone that was traditionally meant to only support voice calls now provides video
conferencing features, streaming of television programs using 3G networks, GPS,
video camera, personal agenda, wireless connectivity (WiFi) etc. The number of
applications executing on these multimedia systems doubles roughly every two
years [ITR07]. The processing power needed by these applications is huge.

The Apple iPad is an example of an embedded multimedia system supporting
a large number of applications. The Apple iPad is originally a tablet computer.
It can be used as a gaming console but it can also be used to watch movies,
listen to music, or browse the Internet. The Apple iPhone is another example
of a multimedia platform. Its touch screen can be used to watch movies, and its
built-in GPS receiver can be used for navigation. It also has an mp3 player to play
songs, a camera to take pictures, and above all it has communication circuitry to
make phone calls.

Some people refer to it as the convergence of information, communication and
entertainment [BMSM96]. Devices which were meant for only one of them now
support all three of them. Further, there is a proliferation of standards in media
processing. Take video as an example, H.264, MPEG-4, MPEG-2, H.263, VC-1,
and AVS are some of the video standards being used in the industry. Similarly
infrared, GPS, WiFi, and Bluetooth are standards for connectivity. A mobile
phone has to support multiple bands like GSM 850, GSM 900, GSM 1800 and
GSM 1900. The embedded systems have to support all these standards. Having
each standard as a separate hardware module increases the power and cost budgets
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(a) iPad

(b) iPhone

(c) Philips TV

(d) Xbox 720

Figure 1.1: Some examples of Embedded multimedia systems
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of the device.

The concurrent execution of applications onto multi-processor platforms adds
another dimension to the challenges in designing multimedia systems. Many of the
applications mapped onto multimedia systems have to execute concurrently with
other applications in different combinations. We define each such combination
of simultaneously active applications as a use-case. It is also known as mode
in literature [SKC00]. The designer has to make sure that each use-case has
satisfactory performance and the problem can be termed as Design for use-case.

There are four main complex use-case challenges that have to be overcome.
The first of these is designing for sufficient bandwidth. The system must have
enough memory, bus/network, and processing bandwidth to handle the amount
of information coming in and going out of the system without experiencing any
system hangs. The next challenge is latency. Users expect applications to open
instantly and to move between applications with no delay. Designing for the
smallest possible latency in design requires efficient hardware resource utilization
as well as highly optimized software.

The third challenge is achieving seamless transitions between applications: In
other words, having multiple applications in the same handset all sharing resources
without interfering or interrupting each other. The final challenge is designing for
all-day battery life. Designing within the confines of today’s available battery
power while providing the performance needed for today’s top applications, is a
challenge. The power budget for mobile phones is a mere 1 W [vB09]. Even
for other plugged multimedia systems, power consumption has become a global
concern with growing awareness among people to reduce the energy consumption.
To find the optimal balance between power consumption and performance, a mul-
timedia system has to be designed with a holistic power management approach,
one that looks at the entire system and not just on a component-by-component
basis.

In addition to the problems related to the ability to design current and fu-
ture systems, these systems must also be designed with low cost and low time
to market (TTM). This requirement is largely a response to an ever decreasing
product lifetime, where the consumer replaces old products much more frequently
as compared to any other discipline. Mobile phone manufacturers, for example,
release two major product lines per year as compared to one just a few years
ago [Hen03]. Furthermore, as the product lifetime decreases, the units sold must
still generate enough profit to cover the rising cost of manufacturing and design.

The requirements put forward by the multimedia applications have an influ-
ence on the architectures of these multimedia systems. In the next section, we
review the trends in the architectures of these multimedia systems.
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1.2 Trends in Processor and Platform Architectures

The immense performance requirements under strict power constraints imposed
by applications have led to new trends in computer architecture. Moore’s law [Moo98]
has been a great motivation for designers against this havoc in diversity of appli-
cations. Following subsections briefly describe this trend.

1.2.1 Globally Asynchronous Locally Synchronous

Moore’s law predicted the exponential increase in transistor density as early as
1965. The ongoing reduction in transistor size is enabling the designers to have
more functional units and storage on the chip, but increasing resistive delay is
slowing communication within the chip as shown in Figure 1.2. The figure shows
the increase in global wiring signal propagation delay with decreasing feature size.
Smaller transistor feature size also results in higher clock speed, enabling faster
functional units. Technology has also allowed other capabilities of electronics
circuit like memory capacity to improve almost at exponential rate. However, the
relative increase in wire delay means that the distance travelled by the signals
in one clock cycle has decreased, resulting in evolution of Globally Asynchronous
Locally Synchronous (GALS) circuits.

GALS circuits combine the benefits of synchronous and asynchronous systems.
The whole design is divided into blocks with each block having its own clock. Con-
nections between these synchronous blocks are asynchronous. Further research in
GALS led to multi-processor systems.

Figure 1.2: Delay for global wiring versus feature size [ITR05].
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1.2.2 The Emergence of Multi-processors

The microprocessor has evolved dramatically from the simple 2300 transistors
of the Intel 4004 to approximately billions of transistors, today. During this
period, whenever there were slight hiccups in the progress, land mark inventions
helped keep computer architecture on track. Early microprocessors processed one
instruction from fetch to retirement before starting on the next instruction. Pipe-
lining, which had been around at least since the 1940s in mainframe computers,
was an obvious solution to that performance bottleneck. The latency to get
instructions and data from off-chip memory to the on-chip processing elements
was too long. This resulted into an on-chip cache. The first commercially viable
microprocessor to exhibit an on-chip cache was the Motorola MC68020, in 1984.
The benefits of pipe-lining are lost if conditional branches produce pipe-line stalls.
Hardware branch predictors did not show up on the microprocessors until the
early 1990s. In the pursuit of more parallelism, efforts continued to keep the
functional units as busy as possible. The mechanism to get around this problem
was known as early as 1960s, out-of-order processing. However it was restricted
to high-performance scientific computation.

Figure 1.3: Growth in processor performance [HP06].

Further advances in computer architecture include clusters of functional units
(Alpha 21264 in late 1990s), multiple levels of caches (First used in Alpha 21064,
1994) and simultaneous multi-threading. While on one hand, the hardware de-
signers have been able to provide bigger and faster means of the processing, on the
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Figure 1.4: Gap in performance between memory and processors plotted over

time [HP06].

other hand, the application developers have relied on improvements in technology
(clock frequency) to meet the constraints of the applications. But this free lunch
did not last very long. This is evident from Figure 1.3. The figure shows the
performance of processors relative to VAX 11/780 as measured by the SPECint
benchmarks. The figure shows that between year 1980 and 2002, the performance
of processors increased at the rate of 52% per year due to the advances mentioned
above. However since 2002, the average increase in performance is only 20% per
year due to the triple hurdles of maximum power consumption of air-cooled chips,
little instruction level parallelism left to exploit efficiently, and memory latency.
Intel canceled its high-performance uniprocessor projects and joined IBM and
Sun in declaring that the road to higher performance would be via multiple pro-
cessors per chip rather than via faster uniprocessors. The architectures shown in
Figure 1.3 are also termed as Latency-oriented [GK10] as they employ sophisti-
cated components e.g. caches, branch prediction, out-of-order execution etc. to
reduce the overall execution time of the program. Figure 1.4 shows the perfor-
mance gap between processor and memory. The gap is due to the fact that the
memory has to be as large as possible to meet the demands of applications and
large memories cannot be faster. As explained earlier, this gap in performance
has been tried to be filled with the help of multiple levels of caches and branch
predictors. However, all these units consume lots of power at high frequencies and
Intel’s P4 processor crossed the 100 W mark. The cost of cooling the processor
increased and methods like liquid cooling are employed. The three walls against
single processor performance namely, ILP, memory, and power stopped the single
processor innovations. Chip manufacturers are therefore shifting towards design-
ing multi-processor chips operating at a lower frequency. The ITRS [ITR10] has
predicted this trend as shown in Figure 1.5. The figure shows super linear in-
crease in number of processing elements/System-on-Chip (SoC) in coming years.
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Figure 1.5: SoC consumer Portable design complexity trends [ITR10].

IBM introduced this feature in 2000, with two processors on its G4 chip. Intel
reports that under-clocking a single core by 20 percent saves half the power while
scarifying just 13 percent of the performance. This implies that if work is divided
between two processors running at 80 percent clock rate, we may get 74 percent
better performance for the same power.

In contrast to latency-oriented architectures, throughput-oriented architec-
tures achieve even higher levels of performance by using many simple, and hence
small, processing cores. The individual processing units of a throughput-oriented
chip typically execute instructions in the order they appear in the program rather
than trying to dynamically reorder instructions for out-of-order execution. They
also generally avoid speculative execution and branch prediction.

In the next section, we further see the type of programs which can benefit
from latency-oriented and throughput-oriented architectures.

1.2.3 Heterogeneous vs Homogeneous Architectures

Amdahl’s law [Amd67] is used to find maximum expected improvement to an
overall system when only a part of the system is improved. The speedup is
defined as the original execution time divided by the enhanced execution time.
According to Amdahl’s law, assume that a fraction f of a program’s execution
time is parallelizable then the fraction (1 − f) is not parallelizable and hence
sequential. The speed up is defined as

S =
1

(1 − f) + f
n

(1.1)



1. TRENDS AND CHALLENGES IN MULTIMEDIA SYSTEMS 9

Assume that a program is 50% parallelizable then the maximum achievable speedup
is a factor 2 no matter how much speedup we can achieve on the parallelizable
part. According to Amdahl’s law, the serial part of a program is always limiting
factor in the speedup equation. The software model in Amdahl’s law is simple and
assumes either completely sequential code or completely parallel code. Amdahl’s
law has been extended for multi-processors by [HM08]. The authors conclude
that heterogeneous multi-cores perform better than homogeneous multi-cores for
lower degrees of parallelism, and for higher levels of parallelism homogeneous
multi-cores are better than heterogeneous multi-cores. All the cores in a homo-
geneous multi-core are similar while in heterogeneous multi-cores, some cores use
additional chip resources so that they can achieve more performance as com-
pared to other cores on the chip. The cores utilizing more resources are good
for sequential parts of the program while the parallelizable code executes on the
smaller/slower cores. Dynamic multi-core chips [IKKM07, HWO98, SBV98] are
designed to get best of both worlds. In the sequential mode, the cores in the chip
can combine and become a bigger core so that it can achieve better performance.
Similarly in the parallel mode, the bigger core can split into smaller cores and the
multi-core can still give better performance. Note that the downside of the model
presented by [HM08] is that it does not account for cache capacity, interconnect
and synchronization overhead.

Amdahl’s law has been augmented with the notion of critical sections by [EE10].
The authors present a simple analytical (probabilistic) model that reveals that the
impact of critical sections can be split up in a completely sequential and a com-
pletely parallel part. The authors argue that the parallel performance is not only
limited by the sequential part as suggested by Amdahl’s law but it is also limited
by critical sections. The paper shows that the performance benefits of heteroge-
neous multi-core processors may not be as high as suggested by [Amd67, HM08],
and may even be worse than homogeneous multi-processors for workloads with
many and large critical sections and high contention probabilities. The paper
concludes that the execution of critical sections through a large core may yield
substantial speedups. This emphasizes the importance of critical sections and
synchronization between the cores. This also shows that using a heterogeneous
system with several large cores on a chip can offer better speedup than a homo-
geneous system.

Currently, there are a number of modern microprocessors using different means
to strive for parallelism and in-turn high performance. Some examples are pre-
sented.

1.2.4 Homogeneous Architectures

A homogeneous multi-processor consists of identical cores. This type of multi-
processor is useful for applications which consist of very similar processing ker-
nels. The MIT RAW [TKM+02] is a tile based homogeneous architecture where
processing elements are arranged in a mesh, as shown in Figure 1.6(a). These tiles
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(b) Core groups in Core Fusion.

Figure 1.6: Homogeneous multiprocessors.

contain simple RISC based processors, memory, and/or reconfigurable logic. The
reconfigurable logic can be used for special instructions. The processing elements
are connected to each other through a statically configured switched network.

Core Fusion [IKKM07] is a chip multi-processor consisting of 8 out-of-order
dual issue cores, as shown in Figure 1.6(b). Being a reconfigurable architecture,
it’s processing elements and memory can be dynamically reconfigured. The pro-
cessing cores work independently to run parallel code or up to four cores can
combine to construct a large core having 8 issues for the sequential region. The
operating system is responsible for fusing or splitting the cores. The dynamic
fusion and splitting of the cores is dependent on the program code. During the
sequential regions of the code, the cores are fused together to have one large core
which benefits from the ILP. On the other hand if the application can be divided
into threads then the cores are split and small cores run these threads to benefit
from thread level parallelism.

Platform 2012 [IC10] (P2012) is an area and power efficient many-core comput-
ing fabric. The fabric consists of a control processor (ARM Cortex-A9) connected
with multiple clusters of processing elements. The clusters are implemented with
independent clock and power domains to enable efficient management of resources.
Clusters are connected via a high performance fully asynchronous NoC, which pro-
vides scalable bandwidth and robust communication across different power and
clock domains. Each cluster features up to 16 tightly-coupled processors sharing
multi-banked level-1 instruction and data memories and a multi-channel advanced
Direct Memory Access (DMA) engine and specialized hardware for synchroniza-
tion and scheduling acceleration.

GPUs [Nvi11] are the leading exemplars of aggressively throughput-oriented
processors. These architectures are massively parallel and operate on vectors of
data. They are commonly known as Single Instruction Multiple Threads (SIMT)
as all the threads in a warp execute the same instruction (Figure 1.7). They
are built around an array of multi-processors, referred to as streaming multi-
processors (SMs). Figure 1.7 diagrams a representative Fermi-generation GPU
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like the GF100 from Nvidia. Each multi-processor supports on the order of a
thousand co-resident threads and is equipped with a large register file, giving
each thread its own dedicated set of registers. The programs which have very
high degree of parallelism benefit from execution on GPU like architectures.
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Figure 1.7: NVIDIA GPU consisting of an array of multithreaded multiprocessors.

Homogeneous processors are preferred for reasons like, ease of programming
and simple operating systems. Same types of processing units are repeated in
homogeneous architectures so the user has to learn single processor architecture
for programming purposes of the multi-processor. Further, same binary file can
execute on other cores resulting in lower instruction memory requirements. The
homogeneous processors generally have lower performance per area/power figures
when compared with heterogeneous multi-processors.

1.2.5 Heterogeneous Architectures
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Figure 1.8: Cell System Architecture.

The heterogeneous architectures consist of different types of computational
units. They are preferred over homogeneous multi-processors due to the fact that
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they can combine different type of computational units to meet the different types
of processing requirements in lesser area/power. Cell Broad-band Engine (Cell-
BE) architecture [GHF+06] is based on heterogeneous chip multi-processor. It
supports scalar and single-instruction, multiple data (SIMD) execution units to
provide high-performance multi-threaded execution environment for all type of
applications. Cell has one central processor, PPE (Power Processing element) to
take care of control related operations and 8 SPEs (Synergistic processing engines)
for more compute intensive operations.

OMAP5 [Ins11] is a multi-processor platform from Texas Instruments. It
includes two ARM Cortex-A15 and two ARM Cortex-M4 processors, a DSP core,
PowerVR graphics processing core and a number of audio video codecs. It also
includes a dedicated power management unit. It can support 1080p video and
can simultaneously support 4 video channels. It also has a set of development
tools and can run a range of operating systems like Symbian, Windows mobile,
Android and Linux.

We observe that these high performance platforms like CELL and GPUs use
non-pre-emptive operating systems. The reason is simple; the overhead related
with context switch in a pre-emptive system is so high that the benefit of pre-
emption is almost lost due to large number of these processing elements. So we
envision that future multi-processor platforms consisting of hundreds of process-
ing elements may have non-pre-emptive operating systems. The brief survey of
state of the art processors shows a definite trend of chip manufacturers towards
designing multi-processor system on chip (MPSoC). Following is a summary that
drives this trend.

• The power dissipation levels at high frequencies are difficult to handle. The
solution is to have large number of relatively smaller cores which operate at
a lower clock frequency to consume less power but divide the work between
them. In this way, a platform can meet the processing demands of applica-
tions at lower power budget. Tile-based platforms provide additional benefit
of defining a standard interface so that various tiles can be glued together.

• Multimedia systems have to support a large number of applications requir-
ing different kinds of processing requirements. Single processor based solu-
tions cannot handle these applications and their combinations. Heteroge-
neous architectures having different types of processing elements are ideal to
handle diverse needs of multimedia applications. The homogeneous multi-
processors have enormous benefit of being easily programmable and more
user-friendly1 (e.g. GPUs).

• The TTM of these products is decreasing very fast so tile-based architectures
provide a good solution in the form of usability. The designer can build a
platform by re-using tiles from previous designs so that the strict TTM
deadlines can be met.

1the user has to learn only one ISA
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• Non-pre-emptive multi-processors are preferred over pre-emptive multipro-
cessors for reasons of cost and efficiency (CELL, GPUs).

• Memories for these MPSoC are being organized in a hierarchy. Software
controlled local memories and FIFOs are used for faster access (e.g. CELL,
GPUs, RAW). DMA engines are being used to overlap communication with
computation (CELL, P2012).

• Throughput-oriented architectures are gaining more market share due to
reasons of high performance at low power. Many SoC chips are housing a
GPU along with general purpose processors.

In the next section, we discuss the challenges in designing an MPSoC.

1.3 Predictable MPSoC Design

As described in the earlier sections, the performance requirements of modern
applications have stimulated the transition from hardware consumer platforms
based on a single processor to platforms that feature a multitude of processors,
both homogeneous and heterogeneous. This transition however, has significantly
complicated the design process. Operating systems now have to be distributed.
Transactions on different processors now have to be synchronized in order to
respect data dependencies and prevent congestion. Furthermore, there is the ad-
ditional task of balancing the computational load over the various processors, and
matching (sub-) task characteristics with processor capabilities. Data duplication
yields the problem of keeping data consistent and coherent among memories and
caches. For consumer-oriented platforms that execute various applications (e.g.
modern televisions, set-top boxes, mobile phones) the largest impact is really on
the verification effort, now already taking about 60% of the design effort. The
main complicating factor for verification is the vast and increasing number of use-
cases: for n applications, there are up-to 2n separate use-cases. The verification
of use-cases largely regards the timing behaviour, and is performed by extensive
simulations. It is no coincidence that the largest design effort is concentrated in
the very last design step (verification): even though there seems no technical or
even moral justification, common design practice evolved to a culture where most
of the ‘misery’ is shifted to the next design step (thrown over the wall) until the
very last step (hey! We’re out of walls). We strongly argue that from a tech-
nical viewpoint, earlier design steps are much better suited for analyzing timing
behaviour, because (among other reasons) the higher abstraction level comprises
less detail, and the timing behaviour (in terms of clock cycles) does not depend
on the low-level design details typically added in later design steps.

Another result from shifting design problems to the very last is that no mea-
sures are taken in the early design steps to constrain the search space in any
sensible way. Constraining the search space (e.g. use of a computational model
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or design style) can be very helpful, since some designs allow better timing anal-
ysis than others. Obviously we are more interested in the former. Current design
practice often does not take the goal of timing analysis into account, and indeed
we observe that the resulting timing behaviour is essentially unpredictable, caus-
ing the need for extensive simulations. In this section, we will identify various
sources of unpredictability, and provide alternative solutions in an early design
phase that, integrated in a methodology comprising both hardware and design
tools, enable the analysis of the timing behaviour, thereby eliminating the need
for extensive simulations.

An MPSoC can be termed as predictable if it is possible to provide guarantees
on its timing behaviour. The application domains such as automotive, avionics,
mechatronics, and multimedia processing have strict constraints with respect to
power consumption and size. Additionally, there are high requirements in terms of
predictability. Not only are the correctness of the computations, the availability,
and safety of the whole embedded systems of major concern, but also the time-
liness of the results. Missing deadlines of events may cause a catastrophic or at
least a highly undesirable system failure. If the MPSoC system under investiga-
tion has components which have non-deterministic behaviour then it is difficult to
give guarantees on its performance. The reasons of unpredictability in an MPSoC
are:

• Processor Architecture: The components that produce unpredictability in
processors are caches, pipe-lines, out-of-order execution, branch predic-
tors, dynamic memory allocation, Memory arbitration, DMA, and multi-
tasking [HLTW03]. These components are designed to improve the average
case performance of the processor. The result of these components is varia-
tion in execution time of the tasks executing on the processor. E.g. caches
are used to bring more frequently used data/instruction in a faster memory
(cache) so that their access time can be improved. If the data/instruction
is not present in the cache then it is fetched from the main memory. The
penalty to bring data from the main memory is normally in hundreds of
cycles and hence the fact that whether the next instruction will hit or miss
the cache creates unpredictable timing behaviour.

Pipe-lining is used to fetch new instructions while the previously fetched in-
structions are being executed. Pipe-line stalls are sources of unpredictability.
Branch predictors keep a history of the previously taken branches and pro-
vide the address of the next branch target if it was previously taken. If there
is a misprediction then the pipe-line has to be flushed and the whole work
is performed again. This way unpredictability is introduced due to branch
predictors. Similarly, if the resource sharing strategy is implemented using
probabilistic techniques then it is not possible to provide guarantees on the
performance.

• Operating System/Resource Manager: Operating system/Resource Manager
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(In case of MPSoC, the operating system is distributed and it is often called
Resource Manager) is another source of unpredictability in MPSoC sys-
tems. If the resource arbitration strategy is based on probabilistic arbi-
tration methods then predictability cannot be guaranteed. Interrupts are
another source of unpredictability. From multi-tasking point of view to
implement pre-emption, interrupts are used. All of these interrupts occur
at non-deterministic times and sometimes even the number of interrupts
cannot be bounded. Pre-emption based operating systems make the pre-
dictability analysis very difficult.

• Inter-processor Communication: One major source of decreased timing pre-
dictability is the close interaction between computation and communication
in processors of MPSoC. In particular, the response time of a process now
depends on the message delay across network, that is, the time between
sending and receiving a message. This interference between different com-
municating tasks is caused by the network performance under varying traffic
conditions.

As a consequence, there are two orthogonal but related ways to improve the timing
predictability of embedded systems. First method to improve predictability is to
remove the parts of computer architecture that are sources of unpredictability.
The second method is to model these components so that the analysis can be
more accurate.

The design of a predictable system requires that the timing behaviour of the
application and its mapping to the platform can be analyzed. This can be done
by modelling the application and mapping decisions in a Model-of-Computation
(MoC) that allows timing analysis. A model of computation is used to describe
the behaviour of the application. The MoC should be able to express the par-
allelism in the application. Additionally, the MoC should be able to model the
synchronization and communication between the tasks. Furthermore, the MoC
must capture the timing behaviour of the tasks and allow analysis of the timing
behaviour of the application. This makes it possible to verify whether the timing
constraints imposed on the application are satisfied. Finally, the MoC should al-
low a natural description of the application in the model. Synchronous Dataflow
graphs [LM87] possess most of the properties mentioned above. We also use this
MoC in our thesis. For a detailed comparison among state-of-art MoCs, please
refer to [Stu07].

1.4 Importance of Application Model and Specifica-
tion

Most of multimedia systems deal with the processing of audio and video streams.
This processing is done by applications that perform functions like object recogni-
tion, object detection, image, and audio enhancement on the streams. Typically,
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these streams are compressed before they are transmitted from the place where
they are recorded (sender) to the place where they are played-back (receiver). Ap-
plications that compress and decompress audio and video streams are therefore
among the most dominant streaming multimedia applications [Wol05].

The compression of an audio or video stream is performed by an encoder.
This encoder tries to pack the relevant data in the stream into as few bits as
possible. The amount of bits that need to be transmitted per second between
the sender and receiver is called the bit-rate. To reduce the bit-rate, audio and
video encoders usually use a lossy encoding scheme. In such an encoding scheme,
the encoder removes those details from the stream that have the smallest impact
on the perceived quality of the stream by the user. For example, human eye is
insensitive to high frequencies so these frequencies can be filtered out without
much effect on the quality. Typically, encoders allow a trade-off between the
perceived quality and the bitrates of a stream. To further reduce the bitrates,
lossy encoding schemes are followed by loss less compression algorithms like Huff-
man coding [Huf52]. JPEG encoder [dK02] is used to encode still pictures. We
use JPEG encoder as a running example in this chapter to illustrate application
modeling. Figure 1.9 shows block diagram of a JPEG encoder. The first function
gets macro-blocks from the stream and performs colour conversion to extract R,
G and B components. The converted macro-blocks are sent to Discrete Cosine
Transform (DCT) block where the stream is converted into frequency domain and
high frequency components are filtered out. The stream is then fed to Variable
Length Coder block (VLC) and the resulting JPEG stream is sent to the receiver
or rendering device.

In order to ensure that this high performance can be met by the platform, the
designer has to be able to model the application requirements. In the absence
of a good model, it is very difficult to know in advance whether the application
performance can be met at all times, and extensive simulation and testing is
needed. Even now, companies report a large effort being spent on verifying the
timing requirements of the applications.

To achieve high performance, maximum achievable parallelism must be ex-
tracted from the application. Parallelism can be exploited at different levels i.e.
instruction level, data level and task level as described earlier in the chapter. For
example, super-scalar and VLIW processors exploit instruction level parallelism.
An MPSoC platform consisting of VLIW/super-scalar processors can exploit both
task level and instruction level parallelism. An application model should be such
that the maximum available parallelism is visible to the design tools. When multi-
media applications are mapped onto multi-processor platforms, all three levels of
parallelisms can be exploited. The individual processors exploit instruction level
and data level parallelism and they exhibit task level parallelism by assigning
tasks to the processors.

Parallelizing an application to make it suitable for execution on a multi-
processor platform is an active research area. Some notable works include the
SUIF [HAA+96] and OPENMP [CDK+01]. The user has to provide all kinds of
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Figure 1.9: Block Diagram of JPEG encoder

pragmas to get any performance from these tools so a lot of work needs to be
done in this area. The parallelization of applications is out of scope of this thesis
and we assume that the applications have already been divided into tasks.

When multiple applications are to be executed onto the platform, the combi-
nations of the executing applications determine their combined resource require-
ment. With multiple applications executing on multi-processors, the potential
number of use-cases increases rapidly, and so does the cost of verification. We
model a use-case by a Boolean vector, as follows:

Definition 1 (Use-case): Given a set of n applications A0, A1, . . . An−1, a
use-case U is defined as a vector of n elements (x0, x1, . . . xn−1) where xi ∈
{0, 1} ∀ i = 0, 1, . . . n− 1, such that xi = 1 implies application Ai is active.

To summarize, following are our requirements from an application model that
allows mapping and analysis on a multi-processor platform:

• Evaluate computational requirements: The computation requirements of ap-
plications are to be known precisely so that the platform can be dimensioned
appropriately. The size of compute resources affects the cost of the plat-
form. The model of application should reflect its compute requirements
accurately.

• Memory requirements: The cost of memories is still very high despite cheap
transistors available on the die. The application model should specify the
memory requirement of the applications. The throughput of streaming ap-
plications depends on the buffering between the communicating actors. The
application model should be capable to capture the buffer requirements
of the applications such that the analysis tools can provide the memory
throughput trade-off points. The designer can choose the buffering that
meets the constraints of the applications.

• Communication requirements: The dataflow model should be able to model
the communication delay between the actors mapped onto different pro-
cessing elements. Other communications components, like communication
assists, routers, and switches should also be modelled.

• Scheduling and Performance Analysis: When multiple applications share
the platform, a schedule is required that specifies the assignment, order,
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and execution of actors onto processors. The application model should be
able to model the scheduling decisions so that the analysis tools can predict
the performance of applications when mapped onto the MPSoC platform.

• Synthesize the System: Once the performance of system is considered satis-
factory, the system has to be synthesized such that the properties analyzed
are still valid.

Dataflow models of computation fit well with the above requirements. They
provide a model for describing signal processing systems where infinite streams of
data are incrementally transformed by processes executing in sequence or parallel.
The next section provides an introduction to Synchronous dataflow model.

1.5 Introduction to SDF Graphs
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Figure 1.10: Example of an SDF Graph (JPEG Encoder)

Synchronous Dataflow Graphs (SDFGs) are often used for modelling modern
DSP applications [SB00] and for designing concurrent multimedia applications
implemented on multi-processor systems-on-chip. Both pipe-lined streaming and
cyclic dependencies between tasks can be easily modelled in SDFGs. Tasks are
modelled by the vertices of an SDFG, which are called actors. The communication
between actors is represented by edges through which they are connected to other
actors. Edges represent channels for communication in a real system.

The time that the actor takes to execute on a processor is indicated by the
number inside the actor. It should be noted that the time an actor takes to
execute may vary with the processor. For sake of simplicity, we shall omit the
detail as to which processor it is mapped on and just define the time (or clock
cycles) needed on a typical RISC processor [PD80], unless otherwise mentioned.
This is also sometimes referred to as Timed SDF in literature [Stu07]. Further,
when we refer to the time needed to execute a particular actor, we refer to the
worst-case execution time (WCET). The average execution time may be lower
than the WCET.



1. TRENDS AND CHALLENGES IN MULTIMEDIA SYSTEMS 19

Figure 1.10 shows an example of an SDF graph. There are four actors in this
graph. As in a typical dataflow graph, a directed edge represents the dependency
between actors. Actors need some input data (or control information) before they
can start, and usually also produce some output data; such information is referred
to as tokens. The number of tokens produced or consumed in one execution of
an actor is called rate. In the example, GetMB has an input rate of 1 and output
rate of 768 pixels (1 macro-block). Further, its execution time is 13220 clock
cycles. Actor execution is also called firing. An actor is called ready when it
has sufficient input tokens on all its input edges and sufficient buffer space on
all its output channels; an actor can only fire when it is ready. This property
directly translates into predictable application model. When a processor starts
to execute a ready actor, it will successfully complete the execution as input data
and the space for the output data is available, so the actor will surely finish its
execution. Compare it with the case if we drop any one of the condition e.g. if
we assume that we start the execution of an actor as soon as input tokens are
available then the processor may block when it goes to store the output data as the
output buffer is not empty. This will result in processor stalling and delaying the
execution of other actors scheduled onto the same processor and hence resulting
in unpredictable application behaviour. This is also one of the reasons we choose
SDFGs as our model of computation in this thesis.

The edges may also contain initial tokens, indicated by bullets on the edges, as
seen on the edge from actor V LC to GetMB in Figure 1.10. In the above example,
only GetMB can start execution from the initial state, since the required number
of tokens is present on its only incoming edge. Once GetMB has finished execution,
it will produce 768 tokens on the edge to colour conversion CC. CC can proceed,
as it has enough tokens, and upon completion produce 64 tokens on the edge to
DCT . The actor DCT then produces 64 tokens on its edge to V LC. The actor
V LC is the last actor to be executed during an iteration of the graph.

A number of properties of an application can be analyzed from its SDF model.
We can calculate the maximum achievable performance of an application. We can
identify whether the application or a particular schedule will result in a deadlock.
We can also analyze other performance properties, e.g. latency of an application,
buffer requirements. Below we give some properties of SDF graphs that allow
modelling of hardware constraints that are relevant to this thesis.

1.5.1 Modelling Auto-concurrency

SDF models can show the achievable task level parallelism in an application.
Concurrency is a property of systems in which several computations are executing
simultaneously. The example in Figure 1.10 shows this property. According to
the model, since CC requires only 128 tokens on the edge from GetMB to fire, as
soon as GetMB has finished executing and produced 768 tokens, six executions of
CC can start simultaneously. However, this is only possible if CC is mapped and
allowed to execute on multiple processors simultaneously. In a typical system,
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CC will be mapped on a single processor. Once the processor starts executing,
it will not be available to start the second execution of CC until it has at least
finished the first execution of CC. If there are other actors mapped on it, the
second execution of CC may even be delayed further.
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Figure 1.11: SDF Graph after modeling autoconcurrency of 1 for the actor CC

Fortunately, there is a way to model this particular resource conflict in SDF.
Figure 1.11 shows the same example, now updated with the constraint that only
one execution of CC can be active at any one point in time. In this figure, a
self-edge has been added to the actor CC with one initial token. (In a self-edge,
the source and destination actor is the same.) This initial token is consumed
in the first firing of CC and produced after CC has finished the first execution.
Interestingly enough, by varying the number of initial tokens on this self-edge, we
can regulate the number of simultaneous executions of a particular actor. This
property is called auto-concurrency. In Figure 1.11, the auto-concurrency of
CC is 1.

Definition 2 (Auto-concurrency): The auto-concurrency of an actor is
defined as the maximum number of simultaneous executions of that actor.

1.5.2 Modelling Buffer Sizes

SDF graphs can model the buffer space between the actors. Buffer-sizes may be
modelled as a back-edge with initial tokens. In such cases, the number of tokens
on that edge indicates the buffer-size available. When an actor writes data on a
channel, the available size reduces; when the receiving actor consumes this data,
the available buffer increases, modelled by an increase in the number of tokens.

Figure 1.12 shows such an example, where the buffer size of the channel from
CC to DCT is shown as 64. Before CC can be executed, it has to check if
enough buffer space is available. This is modelled by requiring tokens from the
back-edge to be consumed. Since it produces 64 tokens per firing, 64 tokens
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Figure 1.12: SDF Graph after modelling buffersize of 64 on the edge from actor

DCT to CC

from the back-edge are consumed, indicating reservation of 64 buffer space on the
output edge. On the consumption side, when DCT is executed, it frees 64 buffer
spaces, indicated by a release of 64 tokens on the back-edge. In the model, the
output buffer space is claimed at the start of execution, and the input token space
is released only at the end of firing. This ensures atomic execution of the actor.

In the next section, the hardware architectural template used in this thesis is
presented to explain how the predictability of the system has been improved.

1.6 Predictable MPSoC Template

To address the unpredictability issues in MPSoC platforms, an MPSoC template is
presented in this thesis. The multi-processor template used in this thesis is shown
in Figure 1.13. This template is based on the tile-based multi-processor platform
described in [CSG99]. It consists of multiple tiles connected with each other by an
interconnection network. Each tile consists of a processing element, local memory
and a communication assist (CA) [SSK+10]. The processing elements used in the
template are either simple RISC processors or application specific accelerators.
The processing element accesses the memory through the CA. The advantage for
using a CA is two-fold. Firstly it relieves the processor to push and pop data
from the network. Secondly it implements the SDF semantics, i.e. checking input
tokens and output space before the execution of an actor. In Chapter 2, we explain
the architecture of CA in more detail.

The inter-connect network between the tiles in the platform template should
offer unidirectional point-to-point connections between pairs of NIs. In a pre-
dictable platform, these connections must provide guaranteed bandwidth and a
tightly bounded propagation delay per connection. They must provide a guaran-
teed throughput. The connections must also preserve the ordering of the com-
municated data. A number of Network-on-Chip (NoC) architectures can provide
all these properties. The NoC consists of a set of routers which are connected to
each other in an arbitrary topology. Each tile is connected through its NI with
a router (R) in the NoC. The connections between routers and between routers
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and NIs are called links. Examples of NoCs providing the required properties are
Æthereal [RDG+04] and Nostrum [MNTJ04].

Task execution on the processors of this MPSoC template is non-pre-emptive.
We observe that for high-performance multimedia systems (like CELL process-
ing engine and graphics processors), non-pre-emptive systems are preferred over
pre-emptive ones for a number of reasons [JSM91]. Implementation of non-pre-
emptive systems does not require interrupts so it increases the predictability of the
system. In many practical systems, properties of device hardware and software
either make the pre-emption impossible or prohibitively expensive due to extra
hardware or (potential) execution time needed. Further, non-pre-emptive schedul-
ing algorithms are easier to implement than their pre-emptive counterparts and
have dramatically lower overhead at run-time [JSM91]. Further, even in multi-
processor systems with pre-emptive processors, some processors/co-processors is
usually non-pre-emptive; for such processors non-pre-emptive analysis is needed.
In this thesis, we have used non-pre-emptive scheduling algorithm for cost and
predictability reasons.

In the next section, key contributions have been presented which enhance the
predictability of the MPSoC template.

1.7 Key Contributions of the Thesis

In this section, we summarize the trends in applications and architectures pre-
sented in the previous sections and present the solutions given in this thesis. The
development of modern multimedia systems is driven by the growing demand for
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high-end value-added functionality. High-bandwidth digital communication, gam-
ing, augmented reality, high-quality image and video playback and encoding are
just a few examples of applications that are often decisive for the market success
of a silicon platform. These applications are extremely demanding from a compu-
tational viewpoint: multi-GOPS performance requirements are not uncommon.
Fortunately, they usually exhibit high levels of fine- and coarse-grain parallelism
(data- and task-level parallelism, respectively). In this context, computing en-
gines have traditionally been implemented as hard-wired functional units, but
this scenario is changing under the pressure for increased flexibility.

Today, we see a trend towards multi-processor fabrics, with a throughput-
oriented memory hierarchy featuring software-controlled local memories, FIFOs,
and specialized DMA engines. The design of these many-core fabrics is a com-
plex problem as the fabric has to meet the throughput constraints of multiple
applications. The multi-processor should have predictable behaviour so that the
applications meet their constraints in all use-cases. The system should also be
able to handle dynamic situations like admission of new applications, variation
in application constraints etc. The designer faces the challenge to design such
systems at low cost and short time. The solutions to some of these challenges are
provided in this thesis. Following is a summary of these contributions.

1.7.1 Communication Assist

The processors in an embedded system communicate with each other so that the
application can be divided in tasks and the processors can cooperate to han-
dle this large number of applications. The communication fabric should have a
predictable behaviour so that application performance can be guaranteed. Guar-
antees on the performance can be provided by decoupling communication and
computation. A number of CAs/DMAs [MBB+05, SIAM+04] have been pro-
posed in the literature but they suffer from the high memory requirement and
lack of analysis support. The CA is an advanced distributed DMA controller.
Distributed means in this context that the CAs at both ends of the connec-
tion are working together to execute a block transfer, using a communication
protocol on top of a network protocol [MBC07]. These communication assist
architectures require separate space for data to be communicated. The communi-
cation assist presented in this thesis has predictable timing behaviour and requires
less memory as compared to the communication assists mentioned in the litera-
ture [MBB+05, SIAM+04]. The communication assist uses the data memory as
communication memory such that the overall memory requirement is lower than
the reference architectures. Further, it allows out-of-order access, re-reading, and
skipping within the data/communication memory.

We present detailed architecture of the communication assist. It also performs
memory management functions so that the programmer is free from the overhead.
The communication is performed using circular buffers so that memory can be
used efficiently. We also present its model so that analysis tools can be used to
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predict the performance of the overall system. Note that the network should also
provide guarantees for the overall system to be predictable.

1.7.2 Design Algorithm

The number of possible use-cases executing on a multimedia platform is exponen-
tial in the number of applications. A design strategy should be able to generate
an MPSoC platform capable of guaranteeing the performance of applications in
all these use-cases with minimum possible hardware resources. In this thesis,
we present an MPSoC design strategy that generates MPSoC platforms capable
of guaranteeing the performance of applications in all use-cases. The process-
ing elements in our platform communicate with the help of CAs. There are a
number of platform generation strategies [SKC00, OH02, SBGC07] for multiple
applications but only [OH02] can perform optimization across use-cases. The
technique assumes that applications are modelled as acyclic task graphs. This
model-of-computation (MoC) is not very suitable for modelling streaming, pipe-
lined applications. The synchronous dataflow MoC [LM87] allows modelling of
pipe-lining. A design approach that uses this MoC can potentially save resources
as compared to a design approach based on acyclic task graphs. Our design ap-
proach uses SDFGs and can meet the throughput constraints with fewer resources.
Additionally, our design approach also tries to minimize the communication mem-
ory requirement of the design.

The main contribution of this work is the fact that we perform hardware
optimization across the use-cases. For example, a platform has to execute 3
applications named A, B and C. Assume that these applications are active in three
use-cases AB, AC and BC, and each application requires the same resources. Now,
if dedicated resources are allocated to the applications then the total resources
needed for these applications will be the sum of the resources needed by each
application, individually. In this example, the total required resources will be 3
units. On the other hand, if we know the use-cases which will be executing on
the platform then the resources can be shared across the use-cases. In this case,
the required resources will be two units only.

The platforms proposed by our algorithm are synthesized on Xilinx FPGAs
using our tool CA-MPSoC [CM09]. The tool also generates the static order sched-
ules and software needed to execute the applications onto MPSoC platform. One
of the drawbacks of our design flow is that it does not support task migration.
This means that the mapping of actors onto the processors remains the same
across all use-cases. This may result in a slightly less efficient use of resources by
our design flow but the platforms synthesized are simple and easy to program.

1.7.3 Distributed Resource Management

Resource management on MPSoCs is equivalent to operating systems in general
purpose processors. The jobs of a resource manager (RM) include receiving re-
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quests from the user for application execution, starting a new application (admis-
sion control), stopping an executing application, and changing the performance
constraints of the application according to user’s request. Resource management
for multimedia systems is different from general purpose computers as the appli-
cation domain is generally well known. So the resource management functions
can be tailored according to the requirements of the domain. For example, if the
MPSoC does not contain any caches then the cache coherency protocols are not
needed for the resource manager. Further, most decisions can be taken during
design time to make the run-time intervention cost as low as possible. This also
makes the resource manger simpler to implement.

Normally centralized resource managers [BPBL06, ABC+09, KMT+08] are
employed that monitor the performance of applications and take appropriate cor-
rective measures. These centralized resource managers are not very scalable with
increasing number of applications and processing elements. In this thesis, the
resource managers use off-line information about the applications and use it at
run-time to control the applications. The time consuming application specific
computations are done at design time for each application and independent from
other applications. The off-line computation includes partitioning of the appli-
cation into tasks, modelling them into a model of computation, determination
of worst-case execution times, determination of maximal throughput, etc. All
this analysis is time consuming and has to be carried out at design time. At
run-time this information is used to estimate the resource requirements of each
application and the resource manager decides either to accept the application or
reject it so that the user can re-try the application at a lower level of Quality-of-
Service (QoS). An admission controller is part of resource manager and provides
an interface to the applications to meet their service demands.

Along with the admission controller, the RMs presented in this thesis can be
distinguished on the basis of their budget enforcement protocols. The first type
named as Credit-Based RM is useful for applications which require very strict tim-
ing constraints. The credit-based RM is a type of budget-based scheduler where
budgets are assigned to tasks in a large replenishment interval. The tasks are
executed according to its credits and reloaded after the finishing of replenishment
interval. The second type of RM is called Rate-Based RM. The tasks in a rate-
based RM maintain a ratio which is specified by the central admission controller.
In rate-based RM, the tasks are never disabled so it is possible that they may
achieve more than desired throughput.

1.7.4 Distributed Simulation on FPGA

MPSoC platforms for real-time applications are designed for worst-case task ex-
ecution time estimates. Kumar has shown that the average-case performance
is often two fold better than worst-case estimated performance (with full vir-
tualization) [Kum09]. Therefore, knowing the average-case performance is also
important for the system designer.
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Software simulation is often employed to estimate the difference between worst-
case and average-case behaviour. Simulation of multi-processors in software be-
comes slow as the numbers of processing elements are increased. The simulation
can be accelerated with the help of hardware support. In this work, we have de-
veloped a parallel simulation framework (MAMPSIM) where we generate parallel
simulators on FPGA platforms. The user can specify the topology of the platform
and the applications which he/she wants to simulate and our strategy generates a
simulator which can be synthesized with the help of commercial FPGA synthesis
tools. After synthesis, the simulator can be executed and performance results
can be analyzed by the user so that he/she can generate the suitable MPSoC
platform. Again, the simulator can simulate multiple use-cases.

The simulation framework can simulate scheduling policies like First Come
First Serve (FCFS) and Round Robin with Skipping (RRWS) on FPGAs. These
scheduling polices are difficult to analyze so simulation is an option to observe their
behaviour. In our approach, we use Parallel Discrete Event Simulation [Fuj89]
(PDES) for simulating multiple applications – each consisting of parallel tasks
– executing on multiple processors. Most PDES approaches fall under one of
the two categories – conservative and optimistic. We propose and use a smart
conservative approach that is intelligent to figure out when the sequential pro-
gram execution can be set aside for improved efficiency. We have developed a
mechanism which on every simulation step checks whether continuing with the
simulation on incomplete information can result in a causality error. If sequential
execution is imperative then we apply conservative PDES, otherwise we turn to
smart conservative PDES. Contrary to the optimistic PDES where the simulation
is continued on incomplete information, the smart conservative verifies that the
next simulation step will not create any causality error before taking that step.

The contributions of this thesis have been put together in the form a complete
design flow. The next section provides details about the design flow.

1.8 Design Flow

Figure 1.14 shows the design flow that is presented in this thesis. Specifications
of applications are provided by the designer in the form of SDFGs. The task level
source codes of the actors and the use-case information in also provided to our
tool flow. The flow has two parts. One part generates platforms using analyzable
components and scheduling techniques. The other part of the flow is dedicated
to run-time scheduling techniques and simulation is used to find the difference
between worst-case and average-case behaviour of the synthesized platform. The
part of our design flow which deals with analyzable components, finds the minimal
platform that can meet the throughput constraints of all applications in all use-
cases. The mapping of the actors onto processor is also an output of our design
algorithm as shown in Figure 1.14. The proposed platform is then fed to our CA-
based platform generation tool which generates the platform and the executable
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Figure 1.14: Multiprocessor system design flow
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code for each processor according to the mapping of actors onto processors. The
generated platform can be synthesized using Xilinx tools and can be executed on
Xilinx development board.

The second part of our design flow simulates the execution of applications on
to the synthesized platform and provides average-case performance results. It can
also be used for scheduling algorithms which are difficult to analyze. For this part
of flow, the platform and the mapping of applications onto processors has to be
provided by the user. Our MAMPSIM tool [CM09] generates the simulation plat-
form of the design and performance results can be generated from the hardware
model executing on the Xilinx board. The user can iterate over the flow to get
the satisfactory results.

1.9 Thesis Overview

The thesis is organized as follows. Chapter 2 presents the architecture and model
of the communication assist. The communication assist provides guarantees on
the latency of transfer of data between the processors. We also present its model
so that it can be used in an SDFG to predict the performance of applications
when mapped onto our CA-based platforms. Chapter 3 presents our platform
generation methodology. The algorithm tries to generate a minimal platform
that can satisfy the performance constraints of multiple applications under the
given use-cases. Chapter 4 presents our platform synthesis tool flow. The flow
synthesizes the hardware and software of the platform. Chapter 5 presents two
distributed resource managers for MPSoC platforms. The resource managers have
been designed to address the scalability issues of budget enforcement techniques.
Chapter 6 explains the second part of our tool flow which relies on simulation
to give performance results of platforms under dynamic scheduling techniques.
Simulation also gives the average-case performance of the applications and can
also be used for Design Space Exploration purposes. Finally, Chapter 7 concludes
this thesis and presents future directions in this field.



CHAPTER 2

Communication Assist Architecture

A predictable multi-processor platform should provide a conservatively-estimated
lower bound on the minimum achievable throughput and upper bound on end-
to-end latency for each application executing on it. This requires that the com-
putation and communication between the processors is predictable. Predictable
memory access latencies are also a requirement for predictable MPSoC platforms.
If the memory is shared between the tasks, the arbiters should provide guaranteed
resource budgets so that the applications can meet their constraints. Predictabil-
ity in communication means that the communication infrastructure provides guar-
antees.

To demonstrate the lack of predictability, consider a simplified (without sup-
port for virtualization, etc.) multi-processor platform executing the program frag-
ments as depicted in Figure 2.1. Suppose we are interested in the timing behavior
of application ‘appA’ running on processor P0. Assume that ‘appA’ runs in 100
clock cycles without interruptions or processor stalls. What can happen in the
worst case, is that each time ‘appA’ performs an action on the bus (receive or
send), it is occupied by ‘appB’ running on processor P2. In the simple platform
of Figure 2.1 this would result in a processor stall (on P0) until P2 releases the
bus. Now suppose that ‘appB’ (running on P2) is moving big chunks of data tak-
ing 1000 clock cycles for each ‘send’ transaction. That means that each ‘receive’
action in ‘appA’ yields in a 1000 clock cycle stall, resulting in a worst-case exe-
cution time (for ‘appA’) of 100+3×1000=3100 clock cycles! The execution time
of ‘appA’ can therefore vary between 100 and 3100 clock cycles depending upon
the amount of traffic congestion. The variation in execution times makes it very

29
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//appA tasks
appA_task_a0()
{
...
...
receive();
...
...
send();
...
send();

}

//appB tasks
appB_task_b0()
{
...
...
send();
...
...
send();
...
send();

}

Figure 2.1: Multiprocessor platform and source code snippets for applications A

and B.

difficult to guarantee the performance.

The guarantees on the performance can be provided by decoupling computa-
tion and communication. Decoupling means that the communication of data has
no effect on computation. The processor needs to perform computation while a
specialized piece of hardware is responsible to perform the communication. As de-
scribed in Chapter 1, DMA controllers and CAs are examples of such specialized
hardware modules. There are a number of CA architectures [MBB+05, SIAM+04],
but they suffer from high memory requirements and lack of analyzability. In this
chapter, architecture of a CA is presented. It is shown that a proper programming
model combined with hardware support can guarantee performance of multiple
applications executing on an MPSoC. The CA ensures predictability by imple-
menting the semantics of SDFGs, namely checking the available output and input
buffer space before the actual firing of the actor. The CA also implements the
memory management functions for the processor. The SDF model of CA is pre-
sented so that the bounds on the performance can be calculated using the standard
SDF analysis techniques. APIs are developed so that the CA can be used easily.

This chapter is organized as follows. Section 2.1 presents existing CA archi-
tectures and their problems. Section 2.2 introduces our CA. Section 2.3 describes
architectural details while Section 2.4 presents its SDF model. Section 2.5 dis-
cusses the hardware implementation of the CA. Section 2.6 presents results of
experiments done to evaluate our CA. Section 2.7 reviews the related work for
CA architectures. Section 2.8 concludes this chapter and gives directions for fu-
ture work.

2.1 Existing CA Architectures

A predictable MPSoC platform should have a predictable temporal behaviour so
that we can reason about the performance of applications when they are mapped
onto the platform at design time. This results in requirements for the predictabil-
ity of memory access latencies. If the memory is shared between tasks, the ar-
biters should provide guaranteed resource budgets so that the applications can
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Figure 2.2: CAbased platform from [MBB+05]

meet their constraints. An instance of the CA-based platform from [MBB+05]
consisting of two tiles, is shown in Figure 2.2. Each tile consists of a processor
(P), a data memory (DM), a communication memory (CM), a CA, and a network
interface (NI). The processor P in tile T0 is executing a producer task and the
processor on tile T1 is running a consumer task. The producer task sends data to
the consumer task. There is a dedicated network connection between these tasks
starting at a FIFO in the NI of tile T0 and ending at a FIFO in the NI of tile
T1. The producing task performs the processing on the data in its data memory
(step 1 in Figure 2.2). The processor then copies this data into a logical FIFO in
its communication memory (step 2). The CA transfers this data to the NI FIFO
(step 3) and then it is transported over the dedicated point-to-point connection
to the corresponding NI FIFO at the receiving tile (step 4). As soon as the data
arrives in the NI FIFO of the tile T1, it is copied by the CA into the logical FIFO
of this tile (step 5). Processor P in tile T1 reads this data into its data memory
once it detects that the data is available (step 6). Next, it processes this data
(step 7). One apparent disadvantage of this CA is the duplication of data in the
communication and data memory. This data duplication results in a high mem-
ory requirement. Furthermore, the processors have to transfer the data between
communication memory and data memory which costs precious processor time.
This in turn results in a large latency when communicating data between tiles.
To rectify these problems we propose a novel CA. Our design uses one memory
region for both computation and communication data. This results in up-to 50%
decrease in memory requirement. The communication latency is also decreased
at the same time.
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2.2 Novel Communication Assist Architecture

Figure 2.3 shows an instance of our CA-based platform. We use the C-HEAP [NKG+02]
protocol of synchronization, as it consists of simple and easy to program primi-
tives. The producer task running on processor P in tile T0 asks the CA for write
space as shown in Figure 2.3. The CA returns the virtual address of the output
buffer in the memory. The producer task processes the data and then releases
the space indicating the CA to pump this data into the network (step 1 in Fig-
ure 2.3). The CA in tile T0 copies this data in its NI FIFO (step 2). The data
is transported through the network (step 3). The CA at the consumer receives
the data at its input buffer. Furthermore, it sends the pointer of this buffer to
the consuming task (step 4). This task processes the data and releases the space
so that the CA can use this space for future data receptions (step 5). Note that
our CA does not use a separate communication memory. Therefore, the copying
steps 2 and 6 from Figure 2.2 are not required in our CA, resulting in a lower
communication latency and memory requirement.

Our communication assist sits between processor and its data memory. The
data memory is virtually divided into two parts. One part is used as data mem-
ories and the other part is used to implement the circular buffers. These circular
buffers are used to store the data that is to be sent/received to the neighbour-
ing tiles. Figure 2.3 shows the global view of our CA and following are its basic
functions:

1. It accepts data transfer requests from the attached processor and splits them
into local and remote memory requests.

2. Local memory requests are simply bypassed to the data memory.

3. Remote memory requests are handled through a round robin arbiter. Every
two cycles, a 32-bit word is transferred from the buffer in the memory to a
NI FIFO channel or vice versa.



2. COMMUNICATION ASSIST ARCHITECTURE 33

4. The communication buffers are implemented in the memory as circular
buffers. The number of NI FIFO channels can be greater than or equal
to the number of buffers in the data memory. Our CA is programmable, so
the same buffer in the memory can be used as input and output depending
on the NI FIFO to which it is connected.

Our CA acts as an interface that provides a link between the NoC and the sub
systems (processor and memory). It also acts as a memory management unit that
helps the processor keep track of its data. As a result, it decouples communication
from computation and relieves the processor from data transfer functions.

Data input Data output
portsports

CA
NI FIFO

AT

P

PSU
MA

DM

Figure 2.4: CA architecture.
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2.3 CA Architecture

Figure 2.4 shows the block diagram of our CA. The CA lies in between the proces-
sor and a dual port data memory (DM). One port of the data memory is directly
connected to the CA whereas the other port is connected to the data bus of the
processor through an Address Translation Unit “AT” inside the CA. The CA is
connected to the network through input/output ports. Each data port has a FIFO
buffer (NI FIFO) that connects the Memory Arbiter (MA) to the network. The
NI FIFOs can be driven by two clocks: 1) the network clock and 2) subsystem
clock. Separate clock domains allow the integration of subsystems with different
clock frequencies. Following are the main components of our CA.

The Address Translation Unit (AT) is connected to the processor of a
subsystem. The AT monitors the address bus of the processor and distinguishes
between the local memory accesses and buffer memory accesses. It passes the
local memory accesses to the DM and translates the virtual address of a buffer
into physical memory address. The detail about virtual memory addressing is
presented in the next subsection.
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The Pointer Store Unit (PSU) contains a set of registers (called buffer con-
text) describing the status of each buffer. A buffer context consists of 7 registers
as shown in Figure 2.5. The PSU selects one of the buffer contexts as indicated
by the MA, sends the selected context to the MA and updates the registers for
management of the circular buffers. Possible configurations of the PSU include
the size of the buffer, the base address of the buffer in physical memory, and the id
of the connected NI FIFO. The direction of the buffer specifies whether the buffer
is an input, output, or an internal buffer. An input buffer receives data from a
CA in the neighbouring tile while data from an output buffer is transferred to a
CA in neighbouring tile. If the source and destination actors are in the same tile
then an internal buffer is used.

The Memory Arbiter (MA) receives an active context from the PSU and
executes it. The MA executes the data transfer by generating a memory address,
memory control signal and NI FIFO control signals according to the received
context. The MA switches context every two clock cycles and checks the next
buffers’ context.

Every context belongs to a buffer such that the MA transfers one word between
the NI FIFO and the buffer and then moves on to the next buffer. The transfers
are performed in the same number of clock cycles every time so that the CA has
a predictable timing behaviour.

The buffers, which are managed by the CA, have been implemented as circular
buffers. Circular buffers present contiguous address space to its user so that the
programmer does not need to perform complex pointer operations while sending
or retrieving data from these buffers. The CA performs these operations on the
pointers and they are stored in the “PSU” module. The next subsection describes
circular buffer management.

2.3.1 Circular Buffer Management

Our circular buffers are different from normal circular buffers in the sense that
normal circular buffers have access restrictions like single assignment, in-order
reading/writing etc. Our CA does not impose such restrictions. This is also the
main reason why we need less memory than other CAs. To realize this, we use two
sets of read and write pointers for each buffer. These 16-bit pointers are (Read
Start (RS), Read End (RE), Write Start (WS), and Write End (WE)). We dis-
tinguish two pointer update schemes. The first scheme is employed when a buffer
is configured as an output buffer. The write pointers (WS , WE) are updated in
response to processor command claimwritespace and the CA increments the read
pointers (RS , RE) on every transfer from the buffer to an NI FIFO. The second
scheme is used when a buffer is configured as an input buffer. The read pointers
are updated by the processor command claimreadspace and the CA increments
its write pointers on each transfer from an NI FIFO to the buffer.

The buffer space claimed is only released with explicit release commands (dis-
cussed in the next subsection) whereas normal circular buffers do not have explicit
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Figure 2.6: Address translation

commands for releasing the claimed space. Normal circular buffers use read and
write signals to keep track of the accesses to the buffer. This results in restrictions
on the access patterns inside the buffers (e.g. If a location is read then it cannot
be read again). The use of explicit release commands allows our CA to support
random access inside the claimed space. This also enables the use of the same
memory region as computation and communication memory.

Figure 2.6 shows the address translation mechanism. During configuration of
the buffers, the processor assigns each buffer an id and a physical address inside
the memory. The CA appends the buffer id with its WS/RS pointer, depending
on direction of the buffer, e.g. output/input, and sends it to the processor as a
virtual address. The virtual addressing is employed because we want the same
memory space to be used as data and communication memory. During the address
translation process, the CA checks the buffer id of the address. A buffer id value
of zero means normal data memory access and does not require any address trans-
lation. A non-zero buffer id means that the access is for the buffer memory and
the CA sends the corresponding physical address to the memory. Note that the
virtual buffer is assumed to be twice as big as the physical buffer. Consequently
the translation from virtual to physical address requires only an “and” operation
with an inverse of the buffer size. However, this simple translation restricts the
size of the buffer to be a power of 2.

2.3.2 Programmability and Operation of CA

Buffer_ID command Address bits

0 4 5 6 8 31

configuration bit

Figure 2.7: Address decoding for configuration, commands and accesses
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In modern multi-processor systems such as multimedia platforms, applications
may be started and stopped at run time. Consequently, the communication in-
frastructure should support reconfiguration during run time. The processor issues
commands to the CA so that it can configure a buffer. These commands are de-
coded by command bits (6-8) and the configuration bit inside the CA, as shown
in Figure 2.7.

A 3 clock cycle command init(id, base, size, dir, ni fifo id) sets the size (size),
direction (dir;input/output) and the base address of the buffer in the physi-
cal memory (base). The user also specifies the NI FIFO identification number
(ni fifo id), with which the buffer will be connected. The buffer is selected by its
identification number (id).
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Figure 2.8: Pointer updates with commands. (a) Claim write space command moves

the Write end pointer to its new location. Release write space moves the Write start

pointer to Write end pointer. The space between write and read pointers is available

for further claim commands. (b) shows similar operations for input buffer

The command claimwritespace(id, nbytes) reserves (nbytes) number of bytes in
the configured buffer to store data to be sent to the buffer in the receiving tile. The
CA checks whether the required amount of space is available using Equation 2.1
and sends the pointer to the processor (and updates WEnew

← WE + nbytes).
If the processor wants to claim additional write space it can do so and the CA
updates the write pointers and sends the new pointer to the processor as shown in
Figure 2.8(a). The processor can then use the space as normal data memory. Once
finished with the processing of data, the processor releases the space. During the
release operation the value of WE is copied in WS . The CA starts to transfer the
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data from the buffer into NI FIFO and the RS , RE pointers move towards pointers
WS and WE . The command claimwritespace(id,nbytes) has been implemented to
take two cycles as the pointer arithmetic (Equation 2.1) elongates the critical
path.

S − (WE −RS) ≥ nbytes (2.1)

Similarly the command claimreadspace(id,nbytes) is used to read data from the
selected input buffer. The command is blocking and verifies that nbytes are avail-
able before returning the pointer to the start of this buffer. Once the processor
has read these bytes, it releases the read space. The release operation also copies
the RE into RS pointer as shown in Figure 2.8(b).

(WS −RE) ≥ nbytes (2.2)

Our CA restricts the addresses for the buffers to be word aligned only. If the
address would not be word aligned then two cycles are required to transfer the
complete word from a word wide memory. This not only slows down the transfer
but also complicates byte alignment logic which would consume precious hardware
area. Therefore we restrict the base address of our buffers to be word aligned. It
also makes it possible to provide tight guarantees on the timing behaviour of our
CA.

2.4 Conservative SDF model of CA

CA

11

1

ca
t 1

11

1

B
b

Bc

Figure 2.9: SDF model of CA [SSK+10].

The application SDF model can be refined to include the mapping decisions,
buffer sizes and the timing impact of architectural components. This results
into an SDF graph of the application and the architecture with a predictable
behaviour. Our CA can be modeled as an actor with a self edge (see Figure 2.9).
The self edge is given one initial token to model the behaviour that the next
execution of the actor cannot start before the previous execution has finished.
The dotted edges in Figure 2.9 model the buffer size of the CA. The CA polls
the NI FIFO channels in round robin fashion. Every channel requires two cycles.
During the first cycle the CA checks whether there is a word to be transferred
from output buffer to the channel or from channel to the input buffer. The second
cycle is required for the transfer. As the number of channels/CA increases, the
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Table 2.1: FPGA Resources for a four channel CA.

Proposed design used resources

of xc2vp30

No. of Slices 824 5%

No. of Slice flip flops 452 1%

No. of 4 input LUTs 1648 6%

response time of the CA gets larger. The CA takes tca number of clock cycles to
transfer one word (Equation 2.3):

tca = 2×No of Channels (2.3)

where No of Channels is the number of NI FIFO channels which the CA has to
manage.

In the combined model of the application and architecture, the model of CA
is attached with the actor from one side whereas the other side is connected with
the NI FIFOs. The depth of NI FIFOs is Bc words as shown in Figure 2.9. The
rate at this edge is one as after each execution; the CA transfers one word from
buffer to the NI FIFO or vice versa. Note that the direction of this edge will be
reversed in case of an input buffer. Similarly Bb models the buffer space claimed
by the processor for reading or writing. The rate at this edge is also one as one
word space is released with each execution of CA. In the next section, we present
SDF models of JPEG and Sobel along with our CA to illustrate the use of our
predictable CA model.

2.5 Hardware Implementation

We implemented our CA on an XUP Virtex II Pro Development Board with
an xc2vp30 FPGA. Xilinx EDK 8.2i and ISE 8.2i were used for synthesis and
implementation. All tools run on a dual core 2.0 GHz with 1GB of RAM. Table 2.1
shows the resources claimed by CA. The CA takes only 5% of the resources of this
medium sized FPGA. The maximum frequency of operation of CA is 108 MHz.

Implementation in Silicon

The MSAP presented in [SIAM+04] is very similar to our CA. It uses a control
network for the hand-shake between the processors, before the actual data trans-
fer. Our CA does not require a control network as it uses “back-pressure” as
a flow control mechanism. This makes our CA more area efficient when com-
pared to [SIAM+04]. Our CA compares favorably to classical DMA controllers.
Table 2.2 shows the gate count (NAND2 equivalent) comparison of our CA with
other architectures. The CA is synthesized for a clock frequency of 200 MHz. The
design is implemented using Synopsis Design Compiler and 0.18µm Standard Cell
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library (Standard Chartered). The results show that our CA is 44% smaller than
a commercial DMA [ARM]. The hardware results for the CA by [MBB+05] are
not available in the literature. Note that our CA does not require complex func-
tionality like “scatter and gather”; this makes our CA light weight when compared
with the architectures shown in Table 2.2. All of the designs have 8 channels.

Table 2.2: Gate count comparison with other DMAs.

Property our CA MSAP [SIAM+04] PrimeCell [ARM]

queue config. 32bit*8 32bit*8 32bit*4
(word)

gate count 36.3k 68k 82k

2.6 Experiments and Case Study

The SDF model of the CA needs validation before it can be used. A number
of experiments are performed to validate the presented model. This section is
further divided into four subsections. Subsection 2.6.1 presents SDF models for
two multimedia applications mapped onto CA and non-CA based platforms, and
compares the application period computed through analytical models with the
measured period achieved from their FPGA implementations. An analytical tool
SDF3 [SGB06a] is used to find the period of these applications. The subsec-
tion 2.6.2 shows the memory savings of the CA-based platform as compared to
a non-CA based platform. Run time configuration of the CA is discussed in
subsection 2.6.3. The final subsection 2.6.4 describes the effect of the CA on
communication latency.

2.6.1 Analytical Models of Applications and Architecture

We implemented two real life applications (JPEG encoder and Sobel) to evaluate
our CA. A CA-based platform, consisting of 4 Microblaze processors and 4 CAs,
is compared with a non-CA based platform having 4 Microblaze processors only.
FSL buses are used for interconnection in both platforms. The JPEG Encoder
application is split into four actors as shown in top part of Figure 2.10. Each
actor is mapped on one processor of the platform. The four actors are Macro-
block Sampling (getMB), Colour Conversion (CC), Discrete Cosine Transform
(DCT ), and Variable Length Coding (V LC). The first actor getMB parses the
input BMP file (RGB format) and sends macro-blocks to the CC actor. Each
macro-block is 16×16 pixels big and 3 such macro-blocks are sent to the CC (one
each for R, G and B pixels). The CC actor converts these macro-blocks into
4 luminance Y, and two Cr, Cb chrominance 8×8 smaller macro-blocks. These
macro-blocks are fed to the DCT actor which is most compute intensive. The
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Figure 2.10: SDF graphs for CA and nonCA based platforms for JPEG.

DCT actor sends these 6 macro-blocks one by one to the V LC actor, where each
of these macro-blocks is variable length encoded.

Sobel filter is extensively used in image processing, particularly within edge
detection algorithms. Technically it is a discrete differentiation operator and
computes the approximation of the gradient of the image. The reference imple-
mentation of Sobel is mapped on a 4-Microblaze platform. Figure 2.11 shows the
SDF model of Sobel. The first actor (get pixels) opens the input file stored in
the CF card and loads it into the data memory. It then forwards 6 pixels each to
the connected actors. These actors (GX ,GY ) find the gradient of the image in x
and y direction. Finally the fourth actor (ABS) finds the absolute value of the
gradients computed by the preceding actors.

The application graphs along with mapping decisions, buffer sizes and com-
munication actors for JPEG encoder and Sobel are shown in Figure 2.10 and
Figure 2.11 respectively. Worst case task execution times (WCET in clock cycles)
of the actors are specified inside the circles in the graphs. Both platforms are
optimized for period, which means that the period achieved by the platforms is
the minimum given the resources consumed. The graphs on the side are for non-
CA based platforms whereas the graphs on the left are of CA-based platforms.
Self-edges are removed for more visibility in the Figures. The response time of
each CA is calculated using Equation 2.3 whereas for a non-CA based platform
it is measured through profiling.

The rates at the edges of graphs are specified in words. For example, 3 macro-
blocks each of 16×16 pixels are transferred as 192 words from first actor getMB to
the communication actor com1 as shown in Figure 2.10. The communication actor
requires 8466 cycles to transfer these macroblocks to the receiving actor com2 in
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Figure 2.11: SDF graphs for CA and nonCA based platforms for Sobel

second processor. The channel buffer between the two actors is 256 words deep.
Once the communication actor com1 transfers the data it sends empty tokens to
the getMB actor so that it can start its next execution.

Similarly for CA-based platform, a CA has been attached with each actor
to take care of all the communication1. The CA transfers one word on each of
its execution. The actor CC has a two channel CA attached to it. One is for
receiving the data and the other one is for sending it to the next actor. Due
to these two channels, the transfer time for each word is 4 cycles as shown in
Figure 2.10. The getMB actor claims 192 words from a buffer of size 256 words.
The CA frees one word space after each execution and the actor getMB waits
until a buffer space of 192 words is available to send the next set of macro-blocks.
In CA-based platform, command (claimreadspace or claimwritespace) overhead
of 36 clock cycles/channel has been added to the execution time of actors. This
is a fixed overhead and it reflects the number of cycles needed by the processor
to get the pointer to the buffer from the CA.

The period/iteration (in clock cycles) of these applications is calculated us-
ing SDF3 [SGB06a]. In one iteration, the JPEG encoder encodes 3 macro-blocks
(R,G,B) and Sobel filters one pixel. The measured period from FPGA implemen-
tation is shown in Table 2.3. Our predicted worst-case period is very close to
the measured one whereas non-CA based platform shows large deviation between
worst-case and the measured (average case).

It is worth observing from the graph that the JPEG application has a very low
communication to computation ratio. This means that the actor execution times
are substantially larger as compared to the execution times of the communication
actors. As the CA only accelerates the communication part so application speedup
achieved in this case is not very high (only 8% as shown in Table 2.3). On the

1In the next chapter, we present a design flow which automatically adds the CA actors to
anlyze the performance of CA-based platforms.
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Table 2.3: Period for applications.

Appl. CA-based (cycles) non-CA based (cycles) Gain

SDF3 FPGA SDF3 FPGA

JPEG 126,168 122,543 140,292 132,921 8%

Encoder

Sobel 359 355 668 640 45%

Table 2.4: Area overhead for both applications for Xilinx xc2vp30

Architecture Slices Bram LUT Used FPGA

resources

CA-based 6,779 56 11,212 49%

non-CA based 4,075 60 6,587 29%

other hand for Sobel, the communication to computation ratio is relatively high
so the speed up achieved in this application is as high as 45%. Further, the
introduction of CA introduces predictability in the platform which is as important
as communication speedup. The communication and computation are decoupled,
and the processor is not stalled due to data transfer. Note that the CA is only
effective if the communication network provides guarantees on the transfer. Many
NoCs [RDG+04, MNTJ04] provide these guarantees and our CA can be used with
them to generate NoC-based predictable MPSoC platforms.

2.6.2 Improvement in Memory Usage

Our CA-based platform uses half of the amount of memory when compared with
that of [MBB+05]. This advantage comes from the fact that the CA of [MBB+05]
first stores the data in communication memory and then shifts it to the data
memory of processor whereas our CA-based platform uses the same memory for
communication and data. Our CA also uses less amount of memory when com-
pared with a non-CA based platform. Figures 2.10 and 2.11 show the SDF graphs
for CA-based and non-CA based platforms. Here the communication memory is
implemented as FIFO buffers between the communication actors e.g. there is a
256-word FIFO memory between actors com1 and com2 in Figure 2.10 whereas
for CA-based platform this memory is only 1 word as shown in Figure 2.10. The
FIFO memory is implemented as BRAMs so the non-CA based platform needs
4 additional BRAMs as shown in Table 2.4. The minimum application period
available from non-CA based platform is achieved at the cost of this additional
memory. Note that the number of BRAMs shown in the table also includes the
ones needed to hold the code.
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2.6.3 Run-time Configuration of CA

In modern multimedia platforms, applications can be switched on and off by the
user. A multi-processor platform should be able to re-configure so that other
applications can also execute. In our experiment, both Sobel and JPEG encoder
share the same platform. Once JPEG has finished its execution, Sobel is started.
The solid lines in Figure 2.12 show the unidirectional FSL channels for JPEG en-
coder application and dashed lines show the additional channels for Sobel except
the channel from CA4 to CA3 which is not needed in case of Sobel. It is evident
from the figure that CA1, CA3 and CA4 reconfigure once the JPEG has finished.
Our configurable CA requires 2 contexts only at CA3 and CA4 to run both ap-
plications one after the other. If a non-configurable CA were used it would need
3 sets of contexts for three channels of CA3 and CA4.

2.6.4 Reduction in Communication Latency

We present an experiment to evaluate the speed improvement in data transfer for
CA-based platforms. We implement two 2-processor platforms. The first one uses
two CAs to communicate with each other whereas the second platform uses direct
Microblaze-to-Microblaze FSL links. One processor produces the data whereas
the second one receives it. We increase the number of words and measure the
number of clock cycles required to transfer these words.

Figure 2.13 shows that for up to 4 words, the non-CA based platform takes
fewer clock cycles as compared to the platform with CA. The CA-based platform
should consume 8 clock cycles to send 4 words however, it takes 36 clock cycles.
As stated earlier, the claim space commands take 36 cycles so the communication
latency of 8 cycles is dominated by the command latency. As the transfer size
increases beyond 5 words the CA outperforms the non-CA based platform as
shown in Figure 2.13. For a transfer of 512 words, CA-based communication is 4
times faster than non-CA based communication (1024 clock cycles vs 4098 clock
cycles). Therefore we conclude that our CA is faster for transfers of more than 5
words as compared to non-CA based platforms.
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2.7 Related Work

The communication controller presented in [NSD06] implements FIFO based com-
munication between tasks. Writes to the FIFOs are always local to a processor
whereas reads are always remote (from the FIFO memory of a producer). The
programming model is based on Kahn Process Network (KPN) [Kah74]. Due to
FIFO based communication, out-of-order, access, re-reading, and skipping is only
possible after storing the data locally in the consuming task. In our CA-based
platform, all the reads/writes to the memory are local to the producer/consumer.
This results in saving of memory space as compared to the approach of [NSD06].
In [MBvdBvM07], the authors have presented a SystemC model of a CA. How-
ever, there are some key differences with our CA. They have used a single port
data memory which is shared between the processor and the communication con-
troller. We use dual-port data memory so that the processor does not stall when
the CA is using the memory. Although our dual port memory may seem costly
than their single port memory, they require an arbiter to share the port of the
memory between processor and the CA. As they do not have a hardware imple-
mentation, we cannot compare the area overhead of their arbiter with our dual
port memory.

In [GNL01] authors have presented a synchronization scheme for embedded
shared memory systems. They propose channel controllers for synchronization
of data between tasks. Out-of-order access inside the buffer is not possible as
the buffer memory is implemented as FIFOs. They also have channel controllers
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per channel while our implementation has one controller for all the channels.
Authors in [BBjS08] describe communication between Nested Loop Programs
(NLP) in multi-processor systems. The algorithm is implemented in software and
can handle out-of-order access to the buffer. Both producer and consumer have
their respective write and read windows for mutually exclusive access. Like our
implementation, the authors have also used the C-Heap protocol. However, the
algorithm is limited to single assignment codes; this means that a location in an
array is assigned a value at most once per execution of the task. On the other
hand, in our implementation the producer/consumer can write/read the same
memory location as many times (multiplicity) as required before releasing the
write/read space. We also support skipping, out-of-order, and multiplicity access
patterns within the buffer. As a matter of fact our implementation is free from all
these restrictions and the communication memory can be used as data memory.

With the method presented in [TKD04] a KPN is derived from NLP. In KPN
communication between the tasks is arranged via FIFO buffers. When the con-
suming task has to read a location multiple times, the consumer stores the array
in an additional buffer. Instead of FIFO buffers, we use circular buffers and also
there is no need to copy values in an additional buffer. The work by [HDT07] is
quite similar to [TKD04] and uses a read and write window. A window supports
reading locations multiple times, reading and writing the locations out-of-order,
or skipping the locations. However this work is also limited to single assignment
code.

Cell BBE [Gsw06] implements communication between processing elements
(SPEs) and the memory through DMA controllers called Memory Flow controller
(MFC). The key difference between MFC and our CA is the fact that in MFC
the synchronization between the memories has to be performed explicitly by the
SPEs while in case of CA the synchronization is taken care of by the CA itself and
processor is free from synchronization overhead. Table 2.5 gives a brief overview
of the related work. For the same producer/consumer example, our CA imple-
mentation requires less memory as compared to message passing platform and
still we can have pipe-lined task execution. The shared memory system on the
other hand requires double buffering and mutual exclusion mechanism to have
pipe-lined execution.

In [SIAM+04], authors have presented a distributed memory server to transfer
data between tiles in an MP-SoC. The MSAP used in their server consists of a
control and data network. The control network is used for end-to-end flow control
while the data is transferred through the data network. We, on the other hand,
use “back-pressure” as flow control mechanism and hence our implementation is
very lightweight when compared to theirs.



46 2.8. CONCLUSIONS

Table 2.5: Comparison of memory usage in existing architectures.

Architecture Data Task out-of- code

replication Execution order assign.

Shared No alternate yes multiple

Memory

Message yes alternate no single

Passing

CA yes pipe-lined yes multiple

ESPAM [NSD06] yes alternate no single

NLP[BBjS08] no alternate yes single

2.8 Conclusions

This chapter introduces a programmable CA which uses a shared data and buffer
memory. This leads to lower memory requirement for the overall system and a
lower communication latency. The CA has a predictable timing behaviour. This
makes it possible to predict the performance of an application when mapped to
a platform which uses our CA. These predictions can be used to provide timing
guarantees on the application. It is observed that for applications with lower
communication to computation ratio, the performance speed-up is not very sig-
nificant as compared to the area overhead. On the other hand, for applications
with high communication to computation ratio, the speed-up can be as high as
45%. In the future, a DSE methodology can be developed which can estimate the
communication to computation ratio at each node and decide upon the placement
of a CA at a particular node.

In the next chapter, we present an MPSoC design strategy that can generate
MPSoC platforms capable of satisfying the throughput constraints of multiple
applications in all use-cases. The platforms designed by this strategy use CAs
as predictable communication components. The SDF model of our CA is used
to predict the performance of applications when mapped onto the designed plat-
forms.



CHAPTER 3

Predictable Multi-processor Design Approach

Modern multimedia systems support a large number of applications. Most of these
applications execute concurrently and often require guarantees on their through-
put. The multi-processor platform should satisfy the throughput constraints of
these applications with minimum possible resources. The design of MPSoC plat-
forms involves determining the minimum amount of required resources and their
efficient utilization.

In the previous chapter, we have seen how to design and synthesize a pre-
dictable communication assist and model it in an SDFG. In this chapter, a multi-
processor design strategy is introduced that can generate predictable platforms
capable of satisfying the throughput constraints of multiple applications. The
strategy incorporates the communication assist as a predictable component. As
has been motivated in the earlier chapters, in embedded systems not all applica-
tions are active at the same time. For example, a mobile phone in one instant
may be used to talk on the phone while surfing the web and downloading some
Java application in the background, and in another instant be used to listen to
MP3 music while browsing JPEG pictures stored in the phone, and at the same
time allow a remote device to access the files in the phone over a Bluetooth con-
nection. A strategy which does not optimize across the use-cases will dimension
the platform with the assumption that all applications (Bluetooth, MP3 player,
etc.) are active all the time. The sharing of resources with an eye on use-case
information allows a smaller platform to meet the performance constraints of mul-
tiple applications. These resources include processors, an interconnect network
and memories. The design strategy should share these resources efficiently, so

47
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the first problem is to find the minimum number of processors as generally their
impact on hardware area is the largest. Secondly, the communication network
should be designed in such a way that it requires minimum silicon area. Thirdly,
the size of the memories attached to the processors should be minimized.

The problem of mapping actors onto processors is NP-complete and the prob-
lem becomes NP-hard if the required number of processors is also unknown [GJ79].
We deal with the latter case.

There are a number of heuristic and genetic algorithm based solutions [KFH+08,
CFR99, EEP03, HGR05, HM03, CCK+08, HCY+07, HG11, SBGC07, MMBM05,
HW96, DJ97, SKC00, OH02, HFK+07] in the literature. Some of these approaches
like Daedalus framework [EEP03] and [CCK+08, HCY+07] do not support plat-
form generation for multiple applications. Others [HGR05, HM03, HG11] opti-
mize only the communication flows on a given platform and [CFR99, SBGC07,
MMBM05] solve the problem of mapping tasks on a given platform.

Although there has been some research on co-synthesis of multi-application
systems [KFH+08, HW96, DJ97, HFK+07], only a few research results exist for
multiple use-cases of multiple applications [SKC00, OH02, KFH+08]. The work
by [KFH+08] assumes that the mapping of actors onto processors is provided.
The approach proposed in [SKC00] does not optimize across the use-cases. The
work in [OH02] does consider use-case optimizations between applications, but the
used heuristic aims at reducing the computation requirements and does not con-
sider sharing of communication resources; this does not always give the minimum
platform. We, on the other hand, also look at the communication and mem-
ory requirements in our approach. This leads to potentially smaller platforms as
compared to [OH02, SKC00].

The chapter is organized as follows. In Section 3.1, we highlight the problem
of MPSoC design. Section 3.2 describes the architecture model. Our proposed
heuristic algorithm is presented in Section 3.3. Section 3.4 explains task schedul-
ing for application throughput measurement. In Section 3.5, the experiments to
evaluate our algorithm are presented. Section 3.6 gives an overview of the work
related to our method; finally, Section 3.7 concludes the chapter and discusses
directions for the future work.

3.1 Motivating Example

In this section, we consider an MPEG4-decoder (simple profile) as a motivating
example. This decoder supports video streams consisting of I and P frames. These
frames consist of a number of macro-blocks, each requiring processing. Figure 3.1
shows the application graph of an MPEG4 decoder. The application consists
of four actors namely Variable Length Decoding (VLD), Inverse Discrete Cosine
Transform (IDCT), Motion Compensation (MC) and Reconstruction (RC). Task
VLD processes one macro-block at a time and sends it to the IDCT and MC
actors. The actor IDCT performs the inverse discrete transform of the whole
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Figure 3.1: Application graph of MPEG4 decoder simple profile [TGB+06b]

macro-block and sends it to the actor RC. The actor RC works on a frame basis.
A QCIF frame consists of 99 macro-blocks so the actor RC only executes when it
has received a whole frame. Similarly, the actor MC executes once it has received
one complete frame. The transfer granularity between MC and RC is one frame.

The figure also shows the execution times in kilo clock cycles measured on a
ARM7TDMI processor. The actors RC and MC are the most computationally in-
tensive actors among the four actors. Any technique based on load balancing will
place them on different processors. Similarly, the technique described in [SKC00]
considers the cost of computation elements and does not include the cost of mem-
ory or interconnect. Their approach would also place these two actors on different
processors. Putting these two actors on different processors has an adverse effect
on the memory requirement of the overall system. The reason for this high mem-
ory requirement is the fact that the actors MC and RC transfer complete frames
between them. If these actors are placed onto different processors, they require at
least one frame buffer at each processor. Additionally, at least one frame buffer
equivalent of buffer space is also required between the processors (SDF model).

The techniques which map the actors onto processors purely on the basis
of the computation cannot yield a minimal platform as they do not consider
the memory requirements. In this work, it is argued that load balancing does
not guarantee minimal platform for multi-application platforms when mapping
multiple applications. Similarly, techniques which try to reduce the cost of the
overall platform without taking into account the costs of memory and buffer
requirement cannot yield a minimal platform either. In our algorithm, as a good
starting point, an initial mapping is generated on the basis of load balancing the
computation. The next steps in the algorithm try to move the actors onto the
same processors so that the overall memory requirement of the platform is reduced
(Note that we assume that the data memory is local to the processors). In this
way, the generated platform may not have a perfectly balanced computation load
but it will meet the throughput constraints of the given applications with fewer
resources.
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3.2 Problem Statement and Model Definition

The design of MPSoC platform for media applications requires that the applica-
tions are represented in some Model of computation. SDFGs are used as MoC in
this thesis. Further, the architecture models are described. The assumptions and
restrictions in this work are listed below:

• SDF graphs of the applications are available.

• The worst-case execution time (in clock cycles) of the actors on the proces-
sors is known. This can be achieved through static analysis [GSBC05].

• The platform consists of homogeneous processors connected through com-
munication assists. The CAs are connected through point-to-point intercon-
nect. Note that our method can be extended to heterogeneous platforms by
adding a processing element selection step.

• The point-to-point interconnects are built from unidirectional FIFOs. Our
work can also be extended to NoC based platforms as long as the NoC
provides guarantees on the data transfer.

• Task execution is non-pre-emptive. In many practical systems, properties of
the device hardware and software either make the use of pre-emption impos-
sible or prohibitively expensive. For embedded systems in particular, non-
pre-emptive scheduling algorithms are easier to implement than pre-emptive
algorithms and have dramatically lower overhead at run-time [Bar06]. The
down side of non-pre-emptive systems is their large response times as com-
pared to pre-emptive systems. This means that the timing bounds of non-
pre-emptive systems are often worse than pre-emptive systems.

• Each processor has its own instruction and data memory. Further in this
work, we assume that the instruction memory is sufficiently large to store
the code of the actors.

• We do not support task migration. Hence, the application mapping does not
change across the use-cases. Task migration is used very rarely in embedded
systems.

The representation of MPSoC architecture in the form of a model allows the
designer to tweak the parameters and gets its performance estimates before actual
implementation. The architecture model is represented by a graph (P, C) where
the sets P and C denote the processors and their interconnections respectively.
Note that our technique builds the architecture graph while most other techniques
map an application graph onto a given architecture graph. The interconnections
between the processors are based on point-to-point FIFOs. Interconnection ckij ∈
C represents the kth interconnection from processor pi to processor pj and has a
storage capacity of Cpkij .
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Design Problem

A solution to the MPSoC design problem consists of a platform and mapping of
the actors of all applications ∈ G onto this platform such that the throughput
constraints of all applications are met. In doing so, the solution technique should
try to minimize the hardware area. Minimizing the hardware area in general also
results in lower energy consumption. The following constraints are to be satisfied:

• Each SDF actor has to be mapped onto a single processor. The processors
are homogeneous so the actor can be mapped onto any one of the available
processors.

• Each edge in the application model has to be mapped onto an internal mem-
ory of a processor or a FIFO in the interconnection between two processors.
If two actors are mapped onto the same processor, then the communication
edge(s) between these actors have to be mapped onto the same processor.
If two actors are mapped onto different processors, then the communication
edge(s) between these nodes have to be mapped onto an interconnection,
containing a FIFO.

• The buffer capacity of an interconnection is the maximum of all the edges
mapped to it. The interconnection network is shared between applications
and it is possible that the same interconnection can be used by different
applications in different use-cases. In this case, the buffer capacity of the
interconnection should be the maximum of all the application edges mapped
onto this FIFO.

• The throughput constraint of each application in each use-case should be
satisfied.

The minimization objectives include the number of processors, number of com-
munication links, buffer sizes of the FIFOs inside the communication links, and
buffer sizes of the edges implemented in the data memories of the processors. The
problem is addressed by taking one objective at a time, starting with the num-
ber of processors and then moving on to number of communication links and the
buffer sizes inside the communication links.

3.3 Design Algorithm

To solve the MPSoC design problem, a heuristics-based algorithm is developed.
The reason we choose a heuristic-based solution is the fact that heuristics can be
tailored according to the problem and can provide good solutions in a reasonable
amount of time. As an alternative, we could use a genetic algorithm or an Integer
Linear Programming (ILP) based approach but in our problem the number of use-
cases is exponentially related to the number of applications and these methods
do not scale well with the problem size.
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Algorithm 1 Determine Lower Bound on the number of processors
Procedure: lower bound proc(Applications)

Input: Applications Ai ∈ G, actor execution times α, and repetition vectors γ

Output: Lower bound on number of processors
1: for all applications Ai ∈ G do

2: total load=0; req proc=0
3: for all actors aj ∈ Ai do

4: total load+= γ(aj) × α(aj) // Processor load of each actor is calculated
5: end for

6: req proc+=total load × T(Ai) // T(Ai) is throughput constraint of application Ai

7: end for

8: ⌈req proc⌉ is a lower bound on number of processors

Our algorithm starts with an initial mapping which is based on computation
load balancing. From this initial mapping, we check the processors, memory and
buffer requirements of the mapping and try to reduce these quantities by moving
actors between the processors. After each actor movement, the schedulability of
the system is checked to see whether all application constraints are met. The
algorithm is repeated until a mapping is found that satisfies the throughput con-
straints while trying to use minimum resources.

The algorithm starts by finding the lower bound on the number of processors
as shown in Algorithm 1. The repetition vector entry of each actor γ(aj) is
multiplied with its execution time α(aj) and this is added for all actors. This gives
the total number of clock cycles needed to complete iteration of the application
graph. The throughput constraint T(A) of an application A is the inverse of the
average number of clock cycles in which the application must complete iteration.
By multiplying these two quantities we get the minimum number of processors
required to meet the throughput constraint of an application.

For example, if the total load of an application is 2 million clock cycles and
the throughput constraint is such that iteration should be completed in 1 million
cycles, we need at least two processors to meet this throughput constraint. This
is the lower bound on the number of processors for one application. We perform
this step for all the applications mapped onto the platform. When multiple appli-
cations are executing concurrently, then the required number of processors may
be more than this lower bound due to interference between the applications.

The upper bound on the number of processors is set to the total number of
actors of all applications e.g. each actor can have its own processor which is the
maximum possible task level parallelism in all applications. Our design algorithm
finds the number of processors between these bounds. We choose the number of
processors as our first optimization objective since in most platforms the size of
the processor is the most cost intensive in terms of area. We start from the lower
bound as it is observed that for most designs, the optimal number of processors
is near the lower bound. The actors are then sorted in decreasing order of their
processing requirement as shown in line 3 of Algorithm 2. Sorting the actors
in decreasing order of their processing requirement allows us to map the actors
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with large processing requirement in the early stage. Generally, actors with large
processing requirement influence the throughput more as compared to the actors
with lower processing requirement. We pick an actor from the sorted list and map
it to the processor having minimum load. This means that the actors are mapped
evenly with respect to processing load, as we keep on picking them through the
sorted list. This way, the initial mapping is generated using the load balancing
technique (line 4 Algorithm 2).

Algorithm 2 Find the hardware needed to satisfy throughput constraints of
multiple applications
Procedure: Find MPSoC platform(Applications, Constraints)

Input: Applications Ai ∈ G and Throughput constraints TAi

Output: All applications satisfy their throughput constraints with the generated hardware
platform

1: upper bound=
∑

ij aij// Total number of actors in applications

2: Nproc = lower bound proc(G)// lower bound on processors as obtained from Algorithm 1
3: sort actors decrease(actors, execution time)// Sort actors in decreasing order of their pro-

cessing load
4: mapping=(actors, Nproc)
5: platform found=false
6: while (platform found=false) ∧ (Nproc ≤ upper bound) do

7: for all Applications Ai ∈ G do

8: for all Actors aj ∈ Ai do

9: TAi
=Evaluate mapping sdf3(Ai) in all use-cases

10: if (Thr(Ai) ≤ TAi
) then

11: if REMAP(aj ∈ Ai) == SUCCESS then

12: platform found = true
13: end if

14: end if

15: end for

16: end for

17: Nproc + +
18: end while

19: if (platform found = true) then

20: Minimize-Connections()
21: Edge-interconnect/data memory Optimizations
22: else

23: Change actor granularity
24: end if

When all the actors from the list are mapped, this mapping is checked and
the use-cases and applications which cannot satisfy their throughput constraints
are listed (Throughput measurement is discussed in the next section). We remap
the actors of the applications failing their constraints to the processor with the
lowest processing load (line 11, Algorithm 2). Note that the throughput of an
application is measured in all use-cases in which it is active. So the resources
allocated for this application are free to be used by other applications in the use-
cases where this particular application is not active. The super-set hardware is
generated from this individual use-case resource usage information.
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Algorithm 3 REMAP ACTOR FUNCTION
Procedure: REMAP(actor)

Input: actor a ∈ Ai

Output: Generate new mapping
1: p=processor lowest load(P)// Find processor with lowest processing load
2: Remap a to p
3: for all Applications Ai ∈ G do

4: for all Actors aj ∈ Ai do

5: Evaluate-mapping(Ai) in all use-cases
6: if (Thr(Ai) ≤ TAi

) then

7: return (FAILURE)
8: end if

9: end for

10: end for

11: return (SUCCESS)

The ”REMAP ACTOR” routine is shown in Algorithm 3. First, processor
with lowest load is found and then the actor is mapped to this processor. The
new mapping is evaluated again and this step is repeated until all actors of the
applications failing throughput constraints are moved to processors having lower
processing load. If a mapping that satisfies the throughput constraints is not
found then the number of processors is increased (line 17 algorithm 2) and the
algorithm continues until the mapping satisfies the constraints is found or until
the upper bound on the number of processors is reached. In the latter case, no
feasible platform and mapping is found.

Once a mapping that satisfies the throughput constraints of all applications is
found, we turn to our second objective i.e. minimizing the number of interconnects
(line 20 of Algorithm 2). The minimization of communication interconnect is
performed by iterating over all applications and checking each edge. If source and
destination actors of an edge are mapped onto the same processor then we move
to the next edge otherwise we shift the destination actor to the same processor
as that of the source actor. The new mapping is checked and if it satisfies the
application constraints, then one interconnect is reduced. This process is repeated
for the next edge. If an application fails its constraints then the previous mapping
is kept and we move to the next edge. During the shifting of destination actors to
the processor having the source actor, the number of processors may also decrease
if the destination actor is the only actor on that processor. A similar heuristic
to reduce the number of communication links has also been proposed by [IB10]
quite recently.

The final step of our algorithm tries to reduce the sizes of the FIFO buffers
in the point-to-point interconnect and the sizes of data memories of processors.
The buffer sizes assigned to the edges of the application graphs are calculated by
the technique described in [SGB06b]. The technique gives all the trade-off points
between throughput of an application and the buffer sizes of the edges between its
actors. We choose the buffer sizes which are just enough to meet the throughput
constraints of the applications (Note that it is possible that the buffer sizes are
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not sufficient as the mapping is not modelled in the SDF graphs yet; so multiple
iterations may be needed to select the correct buffer sizes).

The reduction in sizes of FIFO buffers is possible when there are at least
two interconnects between two processors. This simple step assigns edges having
similar buffer requirement to the same interconnect. Figure 3.2 shows one example
of edge to buffer assignment. Two use-cases are visible showing two channels each
with their buffer requirements. The bottom part of the figure shows two options
for implementation of the super set platform and shows that by choosing option
1, a reduction of 3 units in buffer size can be achieved.

As described earlier, when the source and destination actors of an edge from
the application graph, are mapped to the same processor the edge is also mapped
to the same processor. The mutual exclusion of applications allows us to di-
mension these buffers in the data memories of the processors in such a way that
this memory can be used by different applications in different use-cases. This is
achieved for every processor and for each use-case in the super set architecture;
the data memory for these edges is configured to be the maximum of all the edge
assignments in the use-cases.

PP P

ch0,10

ch1,5

use−case#1

ch4,8

ch3,2

P P P P0 1 0 1

0 1 10P

(ch0,ch4) = 10 (ch0,ch3) = 10

(ch1,ch3) = 5 (ch1,ch4) = 8

buffer size = 18buffer size = 15

use−case#2

(Option 1) (Option 2)

Figure 3.2: Edgeinterconnect assignment

3.4 Task Scheduling and Throughput Measurement

In a system with predictable timing behaviour, a scheduling mechanism must or-
der the execution of actors such that it is possible to provide guarantees on the
maximum amount of time between the moment that an actor is ready to fire and
the completion of the firing (its response time). We employ a round robin sched-
uler between the actors from different applications. The actors from the same
application are scheduled using a static order scheduling. Static order scheduling
is used as it provides tight timing guarantees on application throughput [SB00].

To measure the throughput of applications from their mappings onto proces-
sors, the SDFGs are updated with buffer sizes and communication latency. The
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communication latency is modelled by adding actors in the application graphs
between the actors mapped onto different processors.

To find the static order schedules, the application SDFGs are converted into
Homogeneous Synchronous Dataflow Graphs [SB00] (HSDFGs). The HSDFGs are
then converted into Acyclic Precedence Graphs [SB00] (APGs). The conversion
removes all the edges containing initial tokens. Choosing APGs gives us a single
iteration schedule which requires small memory space for its storage. The weights
of the nodes of APGs are equal to the execution times of corresponding actors
in the HSDFGs. To extract the schedule from the application APGs, weights are
assigned to its edges. The weights are assigned starting from the bottom node of
the graph and going to the top node using Breadth First Search (BFS). At each
node, the weight of incoming edges is calculated by adding the weight of the node
with the maximum weight of all the outgoing edges from the node.

Once the edges have their weights, the APG is traversed from the top node to
the bottom node in BFS; again the nodes having large edge weights are visited
first. In this way, the actors having large execution times are scheduled first as
the objective is to minimize the period of the graph (make span). Once schedules
for each application are obtained, they are enforced in the application graphs by
adding edges [SB00]. The process of enforcing the schedules is performed on a
per-processor basis e.g. the actors from the same application mapped onto the
same processor. These edges depict the order in which the actors on the same
processor have to fire. Assume that the actors a1a2a3...an are scheduled in this
order in a static order schedule. To enforce this schedule, the method adds a cycle
with edges ((a1, a2), (a2, a3), ..., (an−1, an), (an, a1)) with one initial token on edge
(an, a1) to the HSDFG.

Figure 3.3 shows an example of SDFGs of two applications. Assume the actors
in these graphs have execution time of 10 clock cycles each. The applications are to
be mapped onto a two-processor platform. The mapping is shown with the help
of shading in Figure 3.3. The graphs are converted into communication aware
SDFGs by adding actors which model communication delay. The SDF model of
our communication assist (as described in chapter 2) is added between the actors
mapped onto different processors. For example, actors b1 and b2 are mapped onto
different processors so communication actors representing “send” and “receive”
functions are added between these two actors. The resulting graphs are then
transformed into HSDFGs as shown in Figure 3.3c. The HSDFGs are converted
into APGS as shown in Figure 3.4. Edge weights are assigned to APGs as shown
in Figure 3.4. To extract schedules from these APGs, we traverse in BFS from
source node in APG to the sink node and going through the nodes which have
large execution times. Figure 3.4 shows the extracted schedules for processors P0

and P1 from the APGs. The processor level schedules are extracted from these
application level schedules.

Next, the actor response times are calculated according to the context-switch
between the applications. A context-switch is allowed to occur after the complete
execution of an actor. This means that the waiting time has to be added in
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the execution time of each actor. Algorithm 4 shows the pseudo code of our
waiting time calculation technique. These waiting times are calculated per use-
case and per-processor basis. The actors from an application may have to share
the processor with actors from the other applications. Each time an actor is ready
for execution, in the worst-case it has to wait for the actor having maximum
execution time from other applications as shown in line 5 of algorithm 4. These
waiting times are added to the execution times of the actors to model the sharing
of the resources. The updated HSDFGs are used to find the throughput using

Algorithm 4 Find the waiting times of the actors due to processor sharing.
Input: Calculate the waiting times of the actors aij from application i in case of a shared

resource
Output: Waiting times of the actors calculated
1: for all processors pm ∈ P do

2: for all Applications Ai ∈ G do

3: for all Actors aj ∈ Ai do

4: if Application Ai is active in the use-case then

5: twait(aij) =
∑N

k=1,k 6=i max αki ∀ j : aki is mapped on processor pm // αki is

//the execution time of kth actor from active application Ai in the use-case
6: end if

7: end for

8: end for

9: end for

SDF3. The context-switch in non-pre-emptive systems occurs after the completion
of execution of an actor.

3.5 Experiments and comparison with other tech-
niques

In this section, we compare our technique with similar works [SBGC07, SKC00,
OH02]. The work by [SKC00, OH02] treat the problem as hardware/software
co-synthesis while [SBGC07] maps applications onto a given platform.

Comparison with a mapping technique

Table 3.1: Usecases for 3 application case study

use-case H.263 decoder H.263 encoder mp3 decoder

0 - - 1

1 - 1 -

2 1 - -

3 1 1 -

constraints 10 frames/sec 10 frames/sec 38.46 samples/sec
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There are three important differences between our technique and the technique
presented in [SBGC07].

1. The technique from [SBGC07] maps the applications onto a given MPSoC
while our approach generates an MPSoC.

2. We exploit the use-cases to save resources. The technique from [SBGC07]
assigns separate resources to each application. Hence, it assumes that in
the worst-case, all applications are active simultaneously.

3. The technique from [SBGC07] assumes a platform with pre-emptive schedul-
ing whereas we target a platform that uses non-pre-emptive scheduling.

We use three applications, a H.263 decoder, a H.263 encoder, and an MP3 de-
coder, to make this comparison. Using these three applications, we created four
different use-cases as shown in Table 3.1. Each active application in a use-case
is represented with a “1” at its position. The throughput constraints for each
application are also shown in the table and they are the same in all use-cases.
These constraints can be converted into iteration/cycle format, which are used by
our algorithm. For example, if the processors have a clock frequency of 200 MHz
and H.263 decoder has to decode 10 frames/sec then the throughput constraint
for the graph is 5.0× 10−8 iterations/cycle.

Table 3.2 shows the resources consumed by the two techniques. Columns (2-4)
show the number of actors of each application mapped onto the various processors
(pi). The table also shows the number of connections through the interconnect
(#FIFOs) and the total buffer size used by each application (memory). The
results show that our approach, when considering use-cases, requires 33% fewer
processors, 93% fewer interconnect FIFOs and 1% less memory as compared to
the technique from [SBGC07]. These resource savings come from the fact that
we exploit the property that not all applications are active simultaneously. The
last columns (labeled ‘Ours (with all applications)’) shows the resource usages of
our strategy when we would not consider use-cases (i.e. we would assume that all
applications are active simultaneously). The results show that in this situation we
use more processors as compared to the technique from [SBGC07]. The reason for
this high resource usage is the fact that we use non-pre-emptive scheduling which
has larger response times as compared to pre-emptive scheduling techniques.

From the results it can be observed that the processor load of the platform
generated (‘with use-cases’) by our technique is not balanced. Only one actor has
been mapped onto processor P1 while all others have been mapped onto processor
P0. The load on processor P1 is 18% of the load on processor P0. Our algorithm
tries to keep the communicating actors on the same processing element so that
the communication memory and buffer memory can be reduced along with the
processing elements. The case-study shows that optimization of resources across
different use-cases results in smaller platforms.
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Table 3.2: Resource used by [SBGC07] and our algorithm.
Algorithm [SBGC07] Ours (with use-cases) Ours (with all applications)

actors edges actors edges actors edges
Applications p0 p1 p2 #FIFOs memory p0 p1 #FIFOs memory p0 p1 p2 p3 #FIFOs memory

H.263 decoder 1 2 1 3 1194 4 0 0 1196 0 0 0 4 0 1196
H.263 encoder 3 1 1 4 304 5 0 0 304 5 0 0 0 0 304
mp3 decoder 5 3 6 7 19 13 1 1 18 0 1 13 0 1 18
Total 3 proc 14

FIFOs
1518
bytes

2 proc 1 FIFO 1500
bytes

4 proc 1 FIFOs 1518
bytes
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Comparison with a co-synthesis technique

The co-synthesis strategy presented by [SKC00] synthesizes heterogeneous plat-
forms for multi-application systems. Their approach does not optimize across
the use-cases and generates individual embedded system platforms for each use-
case. The example presented in their paper consists of three types of processing
elements and four applications consisting of 10 actors each. The execution time
of each actor while executing on a given processing element type is shown in Ta-
ble 3.3. They tested three use-cases as shown in Table 3.4. The cost for individual
platforms is shown in Table 3.4. The cost of each communication link is $20, as
given in [SKC00].

Table 3.3: Cost and computation time of each actor on each PE as given in the

example from [SKC00].

PE cost Computation time of actors on different processors

($) a b c d e f g h i j

X 100 5 10 5 35 15 30 15 15 7 10

Y 50 12 18 12 85 22 75 25 35 10 28

Z 20 18 40 18 195 80 180 85 47 30 35

Table 3.4: Comparison with [SKC00].

[SKC00] Ours, X-processors Ours, Y-processors Ours, Z-processors

use-case #pe #link cost #pe #link cost #pe #link cost #pe #link cost

task1,task2 2 1 $170 1 0 $100 2 0 $100 4 4 $160

task1,task3 3 2 $240 2 2 $240 4 2 $240 8 5 $260

task3,task4 4 1 $210 2 1 $220 3 2 $190 7 4 $220

The strategy presented by [SKC00] selects the processing elements such that
the cost of the platform is minimized and the throughput constraints of the ap-
plications are satisfied. We performed experiments considering only X, Y and Z
type of processors. Table 3.4 shows that out of three platforms generated by our
strategy, two are cheaper as compared to the platforms generated by [SKC00] and
one has the same cost. The co-synthesis strategy [SKC00] starts by selecting the
cheapest processing elements, and if the application constraints are not satisfied
then it replaces the processing elements with costlier processing elements. Their
strategy does not thoroughly search the homogeneous platforms and that is why
our strategy can generate low cost homogeneous platforms as compared to the
platforms generated by [SKC00]. Additionally they do not perform optimizations
for communication channels while our strategy does.
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Table 3.5: An example multiple usecase embedded system.

Use-cases
∏

1

∏
2

∏
3

Applications τ1 τ2 τ4 τ5 τ2 τ3 τ3

Period 100 100 25 25 50 40 40

Deadline 100 100 25 25 50 40 40

Table 3.6: Execution time of actors when mapped onto processor ARMP1 and

ARMP2.

HW ARMP1(100) ARMP2(900)

me 17 518 259

diff 5.2 2.6

dct 17 8.5

q 11.4 5.7

vlc 16 8

deq 4 12

idct 18 9

mc 7.2 3.6

pd1 4.4 2.2

pd2 0.7 0.4

hd 3 1.5

demq 1.2 0.6

imdct 5.7 2.9

fb 10.2 5.1

τ4 1.6 0.8

τ5 1.8 0.9

Comparison with [OH02]

The co-synthesis strategy presented by Hyunok et al. [OH02] is based on three
steps. It selects appropriate processing elements, maps and schedules the actors
to the selected processing elements and performs schedulability analysis. Their
objective is to reduce the overall cost of the system while meeting the throughput
constraints of multiple applications. Like our technique, they also look at mutual
exclusion conditions of applications and claim to provide smaller platforms as
compared to techniques which do not consider use-cases. However, there are some
differences in the assumptions of application models and generated platforms.
They assume that applications are modelled as acyclic graphs whereas we assume
that the applications are modelled as SDFGs. Moreover, the platforms synthesized
by their approach require pre-emption while the platforms synthesized by our
technique are non-pre-emptive.

The example given in the paper by Hyunok et al. consists of three use-cases
and five applications. The system supports three different use-cases: video phone
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(
∏

1), video player (
∏

2), and MP3 player (
∏

3), consisting of five different applica-
tions: H.263 encoder (τ1), H.263 decoder (τ2), MP3 decoder (τ3), G.723 encoder
(τ4), and G.723 decoder (τ5). Table 3.5 shows which applications compose which
use-case of operation. For instance, the video phone mode runs 4 applications
τ1, τ2, τ4, τ5.

me diff dct q vlc

mc

pd1 deq idct mc


hdpd2 fbdeq idct

deq idct

τ1

τ2

τ3

Figure 3.5: Applications specified as acyclic graphs

Each application is specified by an acyclic graph as shown in Figure 3.5. Ap-
plications τ4 and τ5 consist of only one actor so the graphs are not shown here.
Table 3.6 shows the execution times of actors when mapped on processors of type
ARMP1 and ARMP2. The timing information for these actors has been ob-
tained by running them on 500MHz ARM processor (ARMP1), while processor
(ARMP2) is twice as fast. The cost of ARMP1 is 100 while ARMP2 is 9 times
costlier than ARMP1 as shown in Table 3.6. Note that the execution time for ac-
tor me is very large and we assume that for both techniques its hardware module
is used. We perform two experiments. In the first experiment, we assume that we
can only use ARM processors of type ARMP1 for generating MPSoC platforms
and for the second experiment we assume that only the ARM processors of type
ARMP2 can be used.

The platforms generated by both techniques are shown in Figure 3.6. The
figure does not show the hardware module motion estimation me as it has to be
connected with all platforms and we have omitted the module for better read-
ability. The use-case

∏
1 is most compute intensive and determines the maximum

resource requirement of the complete platform. The technique by [OH02] defines
slack as the difference between the utilization constraint and current utilization
and moves the actors to the new processors so that the slack is reduced. Initially,
all actors are mapped to processor P0 and a schedulability test is performed. The
applications do not meet their constraints so a new processor P1 is added. Appli-
cation τ1 is most compute intensive so some of its actors are moved to the newly
added processor. The utilization of processor P0 by application τ4 is very small
so it stays on processor P0 and shares the processor with the remaining actors of
application τ1.

The optimal resource requirement (rate-monotonic scheduling) for this exam-
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ple is a 2-processor platform. One processor is solely required for application
τ1 and the rest of the applications are mapped onto the second processor. The
technique by [OH02] cannot find this mapping as it moves the actors on the basis
of their individual actor utilization and does not look at the total computation
requirement of an application. The technique by [OH02] requires a 3-processor
platform while our strategy requires a 2-processor platform for these applications.
The cost of the platforms (excluding the cost of hardware module me for all
platforms) is shown in Figure 3.6. Our strategy finds a cheaper solution. We
assign the processors to individual applications by moving the actors of an appli-
cation which are initially mapped to other processors, to the same processor. In
this way, not only the communication infrastructure requirement is reduced, the
overall execution time of the application is also reduced.

In the second experiment, we assume that only ARM processors of type
ARMP2 are available to generate the MPSoC platform. Both methods require
only 2-processor platforms of type ARMP2 for the given constraints. The exe-
cution times of the actor while running on ARM processor of type ARMP2 are
lower as compared to the case when they are executed on ARM processors of type
ARMP1 so only a 2-processor platform is sufficient. Note that our strategy also
requires a 2-processor platform for this experiment. In these experiments, our
strategy was able to find the cheapest possible platform.

P

(deq,idct)
(diff,dct)
(q, vlc) (mc)

0 1

0

PP

PP 1

Ours Hyunok et al.

P0 P1 P2

1P
0

cost=1800

cost=300cost=200

cost=1800

Processor Type ARMP1
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τ1

τ1
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Figure 3.6: Comparison of the generated platforms, our technique vs [OH02]

3.6 Related Work

In recent years, a number of authors have considered the problem of mapping
task graphs to an architecture graph. Hu et al. [HM03] use a branch and bound
algorithm to traverse the task graph to architecture graph mapping search space.
The authors in [SBGC07] and [MMBM05] also solve the mapping problem. Stuijk
et al [SBGC07] employ a design time heuristic to assign and schedule a task graph
onto a given architecture graph. The mapping of tasks to the tiles is determined
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by a cost function. They assume that the MPSoC platform is provided by the
user. We on the other hand generate the MPSoC platform.

Yang et al. [YWM+01, YC03] use a genetic algorithm for design time detection
of the most promising task graph to architecture graph assignment and scheduling
option. At run-time they use a greedy heuristic to select the right option for all
active task graphs. Ma et al. [MSC07] extend this approach by introducing a run-
time local search heuristic to further optimize the scheduling (not assignment)
produced by the greedy heuristic. Our approach does not require any run time
selection.

Works in [LK03, WAHE03, EEP03] use genetic mapping algorithms and try to
optimize application execution time and energy consumption respectively. They
assume that the number of processors is already given and they basically optimize
for energy by changing task to processor mappings. Additionally the methods
in [EEP03, WAHE03] are for single application only and do not provide guaran-
tees on the performance. A Taboo search algorithm is adopted in [HG11, MEP07]
to explore large search space for finding the placement of tasks. However the
approach is communication centric and is directed towards optimizing the com-
munication bandwidth and latency.

Chou et al. [CM08] propose a run-time mapping strategy that incorporates
user behaviour information in the resource allocation process. Nollet et al. [NAE+08]
describe a run-time task assignment heuristic for mapping the tasks on an MPSoC
containing FPGA fabric tiles. Smit et al. [SHS05] present a mapping algorithm to
map an application task graph on an MPSoC at run-time. The algorithm places
each task near its communicating entity in order to save the energy consumption.

The work by Hung et al. [HCY+07] generates a NoC-based multi-processor
platform and uses branch and bound algorithm to select the required number of
processors from a library of processors. However, their work does not support
multiple applications. SystemCoDesigner [HFK+07] present a simulation based
design space exploration and system synthesis methodology. The user can select
the model of computation from a range of options. The methodology cannot
optimize across multiple use-cases.

Hansson et al. [HGR05] use a greedy design time heuristic to map an appli-
cation graph of IP blocks onto an empty interconnection network. Further, their
processors are not shared by applications. On the other hand, our technique de-
termines the required platform resources at design time. MAMPS [KFH+08] is a
design flow that can synthesize platforms for multiple applications. The mapping
step in MAMPS is manual and the user provides the actor-to-processor mappings.
Authors in [SCT09] optimize the multi-processor platform for power and energy.
Like our work, they also assume to know a priori the mutual exclusion conditions
for executing applications, but that information is presented as probabilities.

The work by [IB10] presents 3 heuristics to synthesize MPSoC platforms for ap-
plications modelled as acyclic graphs. They employ all three heuristics and choose
the best result. Their “edge elimination” heuristic is similar to the “minimize com-
munication links” step in our algorithm. Their work is for acyclic graphs while
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we model applications as cyclic dataflow graphs. Further, they cannot synthesize
MPSoC platforms for concurrently executing multiple applications. In [LSG+09]
the authors present a synthesis technique to generate MPSoC platforms. They
use multi objective optimization to dimension computation and communication
resources of an MPSoC. Their work is limited to single applications and hence
they cannot handle use-cases.

There has been some research on co-synthesis of multi-application systems [HW96,
DJ97] however, only a few research results exist for multiple use-cases of multiple
applications [SKC00, OH02]. The approach proposed in [SKC00] tries to map
all applications onto processors and checks if all applications in all use-cases are
schedulable. If a schedulability constraint is violated, they single out the best
application (having highest throughput) and implement some of the tasks from
this application onto hardware. This way the execution time of the application is
reduced. However, this method does not consider resource sharing between appli-
cations. The work by [OH02] does consider resource sharing between applications
but it considers the computation requirement for their heuristic which does not
always give the minimum platform as shown in Section 3.1. We on the other
hand, also look at the communication and memory requirement in our approach.
Additionally, their technique assumes pre-emptive task scheduling while we use
non-pre-emptive task scheduling.

3.7 Conclusions

In this chapter, a novel algorithm to generate MPSoC platforms that can meet the
throughput constraints of multiple applications in all use-cases is presented. Ex-
perimental results show that the algorithm can guarantee throughput of multiple
applications with fewer resources than existing state-of-the-art techniques [SBGC07,
OH02, SKC00]. The algorithm presented here takes into account computation,
communication and memory requirements in order to generate a minimal MP-
SoC platform for multiple use-cases. It also guarantees that the applications
meet their constraints in all use-cases. We also observe that computation load
balancing based techniques are not adequate for embedded system design. One
of the limitations of our work is that presently it only generates platforms with
point-to-point networks. In the future, it will be extended to NoC-based plat-
forms. As mentioned, it can be easily extended to heterogeneous platforms also
by introducing processing element selection step.

After describing the platform generation strategy in this chapter, the next
chapter is dedicated to synthesis of the generated CA-based platforms onto FP-
GAs. The technique can synthesize the platform with the help of commercial
FPGA synthesis tools.



CHAPTER 4

Multi-processor Platform Synthesis

Modern multimedia embedded systems have to support a large number of inde-
pendent applications. In the area of portable consumer systems, such as mobile
phones, the introduction of new technology solutions is increasingly driven by
applications [ITR07]. Tile-based multi-processor platforms [TKM+02, KRH+03,
KTN+00, FSV99, SVM01] are increasingly being used in modern embedded sys-
tems to meet tight timing and high performance requirements of these large num-
ber of applications and their use-cases.

In Chapter 2, a multi-processor platform has been introduced that decouples
the computation and communication of applications through a hardware commu-
nication assist (CA). This decoupling off-loads the communication load from the
processor, thereby improving the performance significantly. Further, this makes it
easier to provide tight timing guarantees on the computation and communication
tasks that are performed by the applications running on the platform. Chapter 3
presented a strategy to design CA-based MPSoC platforms which can satisfy the
throughput constraints of multiple applications. The next step is to synthesize
these platforms onto hardware. FPGAs are platforms of choice over ASICs (for
low product volumes) due to low non-recurring engineering costs. Even for de-
signs with large volumes, FPGAs are used for prototyping before implementing
the functionality onto ASICs. However, it is very time consuming to map appli-
cations on these platforms due to the unavailability of platform generation tools.
Furthermore, it is very difficult to program them as the user has to configure the
communication infrastructure in addition to the application functionality.

Manual design efforts are error prone and consume a lot of time. FPGA ven-
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dors have provided some intermediate languages which transform high level plat-
form descriptions into Hardware Descriptive Languages (HDLs) [Xil11b]. How-
ever, the user has to add each component manually which slows the design process.
Additionally the software for each processing element has to be written manually
which makes the whole process very cumbersome. To worsen matters, most of
these devices have a very short product life-cycle; shorter time-to-market for these
systems poses a challenge for the designers. The designers have to verify each
use-case. For example, Bluetooth 2.5 has to meet its specification during each
combination of applications. It should perform while receiving a call or sending
text messages or even taking a picture. So there is a need for automated tools
which can reduce the design generation and prototyping time.

There are some multi-processor design tools like Compaan [SZT+04] and [JSKR05,
LYBJ01, NSD06], but most of them lack support even for multiple applications
let alone multiple use-cases, and require manual steps. There is a tool described
in [KFH+08] that supports platform generation for multiple applications and their
use-cases but it does not support CA-based platforms. Automated platform gen-
eration reduces errors in the design and thus saves time for design iterations.

In this chapter, we present a design flow (CA-MPSoC) that takes models of
multiple applications synthesize CA-based multi-processor platform. The map-
ping of actors onto processors is determined with the help of our heuristic-based
algorithm described in the previous chapter. As far as we know, this is the first
design flow which can generate a CA-based platform. Following are the key con-
tributions of this chapter.

An automated design flow that generates multi-processor systems, directly
from the architecture aware application graphs. The flow also generates the com-
munication infrastructure so that the designer does not have to worry about it.
It generates a super-set hardware which can be used for all the use-cases. The
software for each use-case is generated individually. This reduces the verification
time of all use-cases of the applications.

Another contribution of this work is a definition of an interface for the tasks
such that the semantics of SDF behaviour are maintained during execution. So
when an application specification includes high-level language code corresponding
to tasks in the application, the source code is automatically added to the desired
processor.

The software for all the processors is automatically generated in the flow.
Further, the required communication APIs is also generated. This includes con-
figuration of communication channels, setting up connections, and management of
memory used for communication. The programmer does not bother about these
configurations and can concentrate on the functionality of the applications. A
similar interface for non-CA based platforms has been presented in [Kum09]. We
have extended this interface to incorporate CA and enable automatic CA-based
platform generation.

The above contributions are essential to further research in design automation
community since the embedded devices are increasingly becoming multi-featured.
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Figure 4.1: Proposed CAbased platform.

Our flow allows designers to synthesize an MPSoC platform that can satisfy the
throughput constraints of multiple applications in given use-cases. In this chapter,
platform generation for multiple uses-cases is evaluated with a mobile phone case
study consisting of 6 applications. The merging of use-cases gives a platform
which supports all the use-cases. The tool is made available on-line [CM09] for
the benefit of the research community.

This chapter is organized as follows. Section 4.1 revisits the architecture tem-
plate used in this thesis. Section 4.2 gives details of the steps performed in our
design flow to generate the platform. Section 4.3 details the tool implementation.
Section 4.4 presents results of the experiments performed to evaluate our design
flow. Section 4.5 reviews the related work for automatic platform generation tool
flows. Finally, Section 4.6 concludes the chapter and gives directions for the future
work.

4.1 Architecture Template

The architecture template used in our platform is depicted in Figure 4.1. It
consists of a processing element (PE), a communication assist (CA), Data memory
(DM) and Network interface FIFOs (NI FIFO). The CA transfers data between
the DM and the NI FIFO. The NI FIFOs are connected through a partial point-
to-point network. The structure of the network is out of the scope of this chapter.

Scalability of partial point-to-point networks has been an issue as they require
storage to deal with bursts. FSL bus from Xilinx is one example. However, the
point-to-point networks used in our template do not require storage. This means
that cost of a connection is not very high. The CAs can transfer the data directly
from the data memory of the sending tile to the data memory of the receiving
tile, i.e. they do not require storage in the point-to-point network itself.
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4.1.1 Processing Element

The processing elements used in our template are simple RISC based proces-
sors. RISC processors are the processing element of choice for tile-based plat-
forms [TKM+02]. No caches are attached to the processor to have predictable
execution traces. The PE has local instruction and data memories. The instruc-
tion memory is connected to the PE through a bus whereas the access to the data
memory is through the communication assist. Note that we chose Microblaze
processors from Xilinx. Our synthesis flow is not restricted to any one processor
type so choice of processor is not important.

The PE is non-pre-emptive and can execute only single thread. This simplifies
the architecture of the PE. Preemption requires extra hardware and is costly in
terms of area. Furthermore, non-pre-emptive scheduling algorithms are easier to
implement as compared to their pre-emptive counter parts and have dramatically
lower overhead at run-time [JSM91]. In high performance embedded processors
(like SPEs in Cell Broad Band Engine and graphics processors), non-pre-emptive
systems are preferred over pre-emptive systems.

4.1.2 Memories

We use a single-ported instruction memory, which is directly connected to the PE.
The data memory (DM) used in our template is a dual-port memory as depicted in
Figure 4.1. The CA has exclusive access to one port of this memory. The second
port is connected to the PE through the CA. The choice of dual-port memory
may seem expensive, however we use it to make the access of the memory to
CA and PE as fast as possible. Single ported memory can introduce stall cycles
for the processor which in-turn makes the execution time of the task executing
on the processor unpredictable. Furthermore, many FPGAs contain dual-ported
memory blocks.

4.1.3 Communication Assist

Our communication assist acts as an interface that provides a link between the
NoC and the sub systems (PE and memory). It also acts as memory manage-
ment unit that helps a processor keep track of its data structures. As a result,
it decouples communication from computation and relieves the processor from
data transfer functions. Our programmable CA uses a shared data and buffer
memory. This leads to lower memory requirement for the overall system and to
lower communication latency.

4.2 Design Flow

The previous chapter was devoted to our heuristic algorithm that generates the
mappings of actors from multiple applications to meet the throughput constraints.
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<sdf name="jpeg" type="G">
<actor name="CC" type="A0">

<port name="in0" type="in" rate="128" datatype="char"/>
<port name="out0" type="out" rate="64" datatype="char"/>
<executionTime time="4446"/>
<processor type="proc_0" default="true">
<functionName funcname="CC"/>

</actor>
<actor name="DCT" type="A1">
<port name="in0" type="in" rate="64" datatype="char"/>
<port name="out0" type="out" rate="64"datatype="short"/>
<executionTime time="20950"/>
<processor type="proc_1" default="true">
<functionName funcname="DCT"/>

</actor>
...

<channel name="ch0" srcActor="CC" srcPort="out0"
dstActor="DCT" dstPort="in0"/>

...

Figure 4.3: Snippet of JPEG application specification.

Once the user is satisfied with the performance analysis results, he/she can gen-
erate the complete CA-based platform using our design flow. We present CA-
MPSoC, a design flow that takes in application(s) specifications and generates
the entire CA-based MPSoC, specific to the input application(s) together with
corresponding software projects for automated synthesis. This allows the design
to be directly implemented on the target architecture. Figure 4.2 depicts our sys-
tem design methodology. The application-descriptions are specified in the form of
SDFGs, which are used to generate the hardware topology. Figure 4.3 shows an
example application description. It forms an important part of the flow. While
the specification shown in Figure 4.3 is obtained through application profiling,
it is also possible to use tools to obtain the SDF description for an application
from its code directly. Compaan [SZT+04] is one such example that converts a
sequential description of an application into concurrent tasks. These can be then
converted into SDFGs easily.

The application-descriptions, mapping information (actor-to-processor), and
source code of each application are input to our tool. The source code is already
partitioned, and each actor is in the form of a function call with arguments being
the input and output to the actor.

4.2.1 H/W Generation

During hardware generation, the IP cores of the processor, CA, and memories are
connected according to the mapping information. A CA is connected with each
processor to take care of the communication between the processors. The number
of NI FIFO channels and the number of buffers (the CA has to manage) are also
generated according to edges in the architecture aware SDF graphs.

As the generated hardware supports multiple use-cases, so we employ the use-
case merging technique [KFH+08] and modify certain parts to incorporate CA
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Figure 4.4: An example showing how the combined hardware for different usecases

is generated. The corresponding communication matrix and number of buffers are

also shown for each hardware design.

buffers. Each use-case requires a certain hardware topology to be generated. In
addition to that, software is generated for each processor. Figure 4.4 shows an
example of two use-cases that are merged. The figure shows two use-cases A and
B, with different hardware requirements that are merged to generate the design
with minimal hardware requirements to support both. The combined hardware
design is a super-set of all the required resources such that all the use-cases can be
supported. The reason to use a super-set hardware is the fact that while multiple
applications are active concurrently in a given use-case, different use-cases are
active exclusively.

The algorithm to obtain the minimal hardware to support all use-cases is
described in Algorithm 5. The algorithm iterates over all use-cases to compute
their individual resource requirements. This is, in turn, computed by using the
estimates from the application requirements. While the number of processors
and CA buffers needed are updated with a max operation (line 10 and line 11 in
Algorithm 5), the number of CA channels is added for each application (indicated
by line 13 in Algorithm 5). The total CA channel requirement of each application
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is computed by iterating over all the buffers and adding a unique edge in the
communication matrix for them. The communication matrix for the respective
use-cases is also shown in Figure 4.4.

While there are in total three CA channels between CA0 and CA1, only two
are used (at most) at the same time. Therefore, in the final design only two CA
channels are between them. The number of CA buffers required is the maximum
needed for all the use-cases. For example, CA2 requires 2 buffers for use-case A
and one in use-case B however, in the super-set hardware two buffers are reserved
for CA2. Note that the CA can use the same buffer as input or output. The
configuration of CA binds a buffer in the memory with a NI FIFO channel. There
are limits to the number of use-cases that can be mapped to hardware and to
obey these limits certain heuristics have been proposed in [KFH+08].

Algorithm 5 Generate communication matrix for CA channels and number of
CA buffers.
Input: Applications Ai ∈ G and Uk use-case information i.e. active applications in a use-case
Output: Nproc Total number of processors needed
Output: Xij the total number of CA channels needed
1: // Let Xij denote the number of CA channels needed for processor Pi to Pj overall // SDF

model of application Ai.
2: Xij = 0 // Initialize the communication matrix to 0
3: Nproc = 0 // Initialize number of processors 0
4: Nca−buffers = 0 // Initialize number of CA buffers 0
5: for all Use-cases Uk do

6: Yij // Yij stores the number of CA channels needed for Uk

7: Nproc,UseCase = 0 // Initialize processor count for use-case to 0
8: Nca−buffers,UseCase = 0 // /Initialize CA buffers for use-case to 0
9: for all Applications Al do

10: Nproc,UseCase = max(Nproc,UseCase,Nproc,Al
) // Update processor count for Uk

11: Nca−buffers,UseCase = max(Nca−buffers,UseCase,Nca−buffers,Al
)// Update CA

buffers count for Uk

12: for all Channels c in Al do

13: Ycsrccdst
= Ycsrccdst

+ 1 // increment CA channel count
14: end for

15: end for

16: Nproc = max(Nproc,Nproc,UseCase) // Update overall processor count
17: Nca−buffers = max(Nca−buffers,Nca−buffers,UseCase) // Update overall CA buffer

count
18: for all i and j do

19: Xij = max(Xij ,Yij)
20: end for

21: end for// Nca−buffers is now the total number of CA buffers needed

4.2.2 S/W Generation

Software generation includes configuration of buffers between the actors, data type
declarations of the ports of the actors and code needed for SDF actor execution.
The software project for each core is produced and the task files are copied into
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// Functional definition of an SDF-actor
void <functionName>(datatype *in0, datatype *in1,

....., datatype *inN,datatype *out0,
datatype *out1,....., datatype *outM){

...

...
}

Figure 4.5: The interface for specifying functional description of SDFactors.

-------------------------------------------------------
//Code generated for Color conversion task
-------------------------------------------------------
char* in0;int size_out=rate_out*sizeof(char);
char* out0;int size_in=rate_in*sizeof(char);

Config(buffer_id0,base_addr_out,size_out,out,ni_fifo_id_out);
Config(buffer_id1,base_addr_in,size_in,in,ni_fifo_id_in);

out0=claimwritespace(buffer_id_0,size_out);
in0=claimreadspace(buffer_id_1,size_in);
CC(in0,out0);
releasewritespace(buffer_id0);
releasereadspace(buffer_id1);

-----------------------------------------------------------
//Code generated for DCT task
-----------------------------------------------------------
char* out0;int size_out=rate_out*sizeof(short);
char* in0;int size_in=rate_in*sizeof(char);

Config(buffer_id0,base_addr_out,size_out,out,ni_fifo_id_out);
Config(buffer_id1,base_addr_in,size_in,in,ni_fifo_id_in);

out0=claimwritespace(buffer_id0,size_out);
in0=claimreadspace(buffer_id1,size_in);
DCT(in0,out0);
releasewritespace(buffer_id0);
releasereadspace(buffer_id1);

Figure 4.6: Snippet of ccode generated from the architecture aware SDFG of the

JPEG encoder.

the project folder. The xml file also specifies the processor on which the actor has
been mapped. If an application specification also includes high-level language code
corresponding to actors in the application, this source code can be automatically
added to the desired processor. To realize this, we have defined an interface such
that the SDF behaviour is maintained during execution. The number of input
parameters of an actor function is equal to the number of incoming edges and
the number of output parameters is equal to the number of output edges. The
interface is shown in Figure 4.5. The array ∗ini is for input tokens consumed from
i-th incoming edge. The array size is equal to the size of buffer associated with
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the edge. Similarly, ∗outi is an array of output tokens that are written during
one execution of the actor. The application xml file indicates the function name
that corresponds to the application actor.

Figure 4.3 shows an example for the DCT actor of JPEG encoder application.
The function has an input channel from the CC module and the data produced
during execution is written to the output channel to VLC module. Therefore the
function definition of this actor only has one input and one output parameter as
shown in Figure 4.6.

Figure 4.6 shows the automatically generated c-code from our tool. Both
actors are executing on different processors. The data types specified in the xml
file are used to determine the buffer space needed for the particular buffer. Buffers
are configured for each channel. The size for each buffer inside the data memory
is determined by multiplying the data type and rate associated with the port.
For example, the size of output buffer in CC task is 64 bytes (64× 1(tokensize)).
Configuration of buffer also includes the direction of the buffer, the NI FIFO ID
number, and the physical address of the buffer inside the memory.

The claimwritespace command looks for available space in the output buffer.
Similarly the claimreadspace checks whether the required number of tokens are
available for processing. The buffers are identified by their ids. The reason to
check the availability of output space before the input space is because our SDF
model of execution is conservative. Both commands are non-blocking. So an
actor might not be able to execute if any of its incoming buffers does not have
sufficient tokens. The same holds when the output buffers of an actor are full.
While this does not cause any problem when only one actor is mapped on the
processor, in the case of multiple actors, the other possibly ready actors might
not be able to execute while processor sits idle. To avoid this, claimreadspace
and claimwritespace commands have been implemented as non-blocking so that
if any of claimspace commands is unsuccessful, the processor is not blocked. This
is also consistent with our MPSoC design algorithm (described in the previous
chapter). The actors belonging to the same application are executed in static
order. If an actor from one application is not ready to execute then an actor from
another application is scheduled for execution and after finishing this execution,
the processor again checks the same actor which was not executed previously.
Note that the command overhead is fixed and is added to the execution time
of the actors. It is implementation dependent and we explain more about it in
Section 4.4.

After the function processing, the releasewritespace command indicates the
CA to transfer the data to the receiving actor. The release commands update the
read/write buffers so that they can be used for further receive/send operations.
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4.3 Tool Implementation

Our tool flow targets Xilinx FPGA architecture. It can be easily modified to
support other FPGA vendors. The processors in the CA-MPSoC are mapped
to Microblaze processors [Xil11b]. The communication links are mapped onto
fast simplex links (FSL). These are unidirectional point-to-point communication
channels used to perform fast communication. The FSL depth is set to one
as this is the minimum depth available for these buses. As explained earlier,
we do not require any storage in the point-to-point networks in our proposed
design. However, it is not possible to have FSL links with zero storage so it is an
implementation dependent restriction.

DCT VLCCCget_MB

DDR

RAM
SysACE

CF Card

UART Timer

OPB

MB0 MB1 MB2 MB3

CA0 CA1 CA2 CA3

Figure 4.7: Generated hardware from the example xml file.

The generated architecture for the JPEG application is shown in Figure 4.7
according to the specification in Figure 4.3. It consists of several Microblaze
processors with each actor mapped to a unique processor, with additional pe-
ripherals such as Timer, UART, SysACE, and DDR RAM. While the UART is
useful for debugging the system, the SysACE compact flash card allows for con-
venient performance evaluation for multiple use-cases by running continuously
without external user interaction. The timer module and DDR RAM are used for
profiling the application and for external memory access, respectively.

In our tool, in addition to the hardware topology, the corresponding software
for each processing core is also generated automatically. Routines for measuring
performance, as well as sending results to the serial port and CF card on-board
are also generated for MB0.

Our software generation ensures that the tokens are read from (and written
to) the appropriate FSL link in order to maintain progress and to ensure correct
functionality. Writing data to the wrong link can easily throw the system in dead-
lock. XPS project files are also automatically generated to provide the necessary
interface between hardware and software components.
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Table 4.1: Realistic usecases for mobile phone case study.

usecase H263 H263 JPEG modem Phone mp3

number decoder encoder decoder call decoder

1 1 - - - - -

2 - 1 - - - -

3 1 1 - - - -

4 - - 1 - - -

5 - - - 1 - -

6 1 - - 1 - -

7 - 1 - 1 - -

8 1 1 - 1 - -

9 - - 1 1 - -

10 - - - - 1 -

11 1 - - - 1 -

12 - 1 - - 1 -

13 1 1 - - 1 -

14 - - 1 - 1 -

15 - - - 1 1 -

16 1 - - 1 1 -

17 - 1 - 1 1 -

18 1 1 - 1 1 -

19 - - 1 1 1 -

20 - - - - - 1

21 - - 1 - - 1

22 - - - 1 - 1

23 - - 1 1 - 1

4.4 Experiments and Results

Our tool is evaluated with a mobile phone case study consisting of 6 applications.
In each use-case we enable a subset of these applications. We also show how our
tool generates a super-set hardware that supports a large number of use-cases.
The software for each use-case is generated at run-time, and enables us to verify
these use-cases in a very short time.

Support for Multiple Use-cases & use-case merging

In this case study [Kum09], we consider 6 applications - video encoding (H.263) [Hoe05],
video decoding [SGB06b], JPEG decoding [dK02], mp3 decoding [SGB06b], mo-
dem [BML99] and regular call. We first construct all possible use-cases giving
63 use-cases in total. However, some of these use-cases are not realistic. For ex-
ample, JPEG decoding is unlikely to run simultaneously with video encoding or
decoding, because when a user is recording or viewing video, it is not possible to
browse through pictures. Similarly it is also not possible to listen to mp3 songs
while talking to some body on phone. This gives us 23 realistic use-cases as shown
in Table 4.1. Each active application in a use-case is represented with a “1” at
its position.
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In this experiment, our tool generates a platform that can support all of these
23 realistic use-cases. The platform consists of 5 Microblaze processors and 5
communication assists. The platform occupies 97% of the available FPGA re-
sources.

Our approach is very fast and is further optimized by modifying only the
relevant software and keeping the same hardware design for different use-cases.
The software synthesis includes configuration of all CA channels, buffer sizes, and
incorporation of appropriate task calls. Since software synthesis step takes only
about 25 sec in our experiment, the entire experiment for 23 design points takes
only about 9 minutes.

Manual design effort will involve separate hardware generation and software
configuration for each use-case. In contrast, our tool takes a mere 100 ms to
generate the complete hardware design. The Xilinx tool takes about 36 minute to
generate the bit file together with the appropriate instruction and data memories
for each core in the design. The time spent on the exploration is an important
aspect when estimating the performance of big designs. The 6 application system
is also designed by hand to estimate the time gained by using our tool. The hard-
ware and software development took about 4 days in total to obtain an operational
system.

Table 4.2: Time taken for platform generation in the experiment with ten applica

tions.

Manual Design Generating Complete

Single Design Experiment

hr:m:sec hr:m:sec

Hardware Generation 2 days 40ms 40ms

Software Generation 2 days 60ms 60ms

Hardware Synthesis 0:36:00 0:36:00 0:36:00

Software Synthesis 0:0:25 0:0:25 0:09:34

Total Time 4 days 0:36:25 0:45:34

Iterations 1 1 23

Average Time 4 days 0:36:25 0:1:59

Speedup - 1 18.36

This hardware/software co-design approach results in a speed-up of about 18
when compared to generating a new hardware for each iteration. As the number of
design points are increased, the cost of generating the hardware becomes negligible
and each iteration takes only about 25 seconds. This study shows the usefulness of
our use-case merging approach for problems like DSE for multi-processor systems.
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4.5 Related Work

The problem of mapping an application to architecture has been widely stud-
ied in literature. One of the recent works most related to our research is ES-
PAM [NSD06]. This uses Kahn process networks (KPNs) [Kah74] for application
specification. In our approach, we use SDFGs for application specification in-
stead. Further, our approach supports mapping of multiple applications, while
ESPAM is limited to a single application. This difference is imperative for devel-
oping modern embedded systems which support more than tens of applications
on a single MPSoC. The same difference can be seen between our approach and
the one proposed in [JSKR05], where an exploration framework to build efficient
FPGA multi-processors is proposed.

The Compaan/Laura design flow presented in [SZT+04] also uses KPN spec-
ification for mapping applications to FPGAs. However, their approach is limited
to a processor and coprocessor. Our approach aims at synthesizing complete
MPSoC designs supporting multiple processors. Another approach for generat-
ing application-specific MPSoC architectures is presented in [LYBJ01]. However,
most of the steps in their approach are done manually. Exploring multiple design
iterations is therefore not feasible. In our flow, the entire flow is automated, in-
cluding the generation of the final bit-file that runs on the FPGA. Yet another flow
for generating MPSoCs for FPGAs has been presented in [KHHC07]. However,
that flow focuses on generic MPSoCs and not on application-specific architectures.
There is also a tool described in [KFH+08] that supports platform generation for
multiple use-cases but it does not support CA-based platforms.

Xilinx provides a tool-chain as well to generate designs with multiple proces-
sors and peripherals [Xil11b]. However, most of the features are limited to designs
with a bus-based processor-coprocessor pair with shared memory. It is very time
consuming and error prone to generate MPSoC architecture and the correspond-
ing software projects to run on the system. In our flow, MPSoC architecture is
automatically generated together with the respective software projects for each
core.

In [CCK+08], the authors present a design flow that generates a multi-core
system for multimedia applications. Their work is quite similar to ours. However,
there are some key differences. Firstly they use a mesh network for interconnection
whereas we use point-to-point networks. Secondly, they use profiling to dimension
their system. We on the other hand use static analysis techniques. Profiling based
techniques are significantly slower than analysis based techniques. Also their
synthesis flow generates platforms for average case performance whereas our flow
can generate platforms for both worst case and average case performance. Lastly,
our flow supports multiple applications concurrently executing on the platform
while [CCK+08] is for single application only.

Finally, none of the above flows support a CA-based platform. In fact our
flow is the first to generate CA-based multi-processor platforms. Communication
plays an important role in the parallelization of applications. The communication
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to computation ratio determines the justification of splitting task between the
processors. Our CA in turn exposes more parallelism in the applications. We have
seen that if large volumes of data needs to be transferred between communicating
actors, our CA can speedup the transfer resulting in overall application speedup.

4.6 Conclusions

In this chapter, we presented a design flow to generate multi-processor platforms
for multiple applications. We also provided analysis techniques to predict the
performance of the applications before the generation of the platform. The de-
sign flow can cater for hard real-time applications. It is largely automated and
requires minimal manual effort. It also generates the configuration software for
the communication infrastructure and processing elements.

The design flow is evaluated with 6 applications from a mobile phone case
study. The automated platform generation takes milliseconds in contrast to days
needed for manual platform generation. The use-case merging evaluates all the
23 realistic use-cases of the case-study by using a single hardware platform. This
results in a speed up of 18 when compared to the case where hardware for each
use-case is generated individually and then evaluated. The tool is made available
on line [CM09] for use by the research community.

Once the MPSoC platform has been synthesized into an FPGA, a run-time
resource manager is required to deal with the dynamic situations. In the next
chapter, we present run-time resource manager which can be used to handle dy-
namism in the applications mapped onto the MPSoC platform. The main focus
is on scalability of this resource manager with increasing number of applications
and processing elements.
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CHAPTER 5

Distributed Resource Management

Modern multimedia systems for the consumer market are increasingly based on
multi-processors due to stringent performance, power and cost constraints. These
MPSoCs typically use (massive scale) instruction-, data- and task-level parallelism
to compensate for a lower clock frequency in order to consume less energy while
satisfying high compute requirements. These MPSoCs execute multiple applica-
tions concurrently that may exhibit dynamic behaviour. For example, MPSoC
platforms are synthesized assuming worst-case task execution times. In reality,
the execution times of the tasks may be less than their worst-case estimates. The
designer cannot anticipate this variation in execution time at design time and
run-time mechanisms are needed. Additionally, applications can be started or
stopped by the user at run-time. Note that if the newly added application was
not analyzed at design time then it is a new use-case and the resource managers
discussed in this thesis cannot guarantee the performance of applications in such
use-cases.

A Resource Manager (RM) is used to manage the resources of an MPSoC
platform. The resource manager is needed to make trade-offs between the quality
levels and compute requirements of the various applications, yielding even more
dynamic application behaviour. It is also possible that the user wants to start
an application at a certain quality level and the platform does not have sufficient
resources to run the application at that quality-of-service (QoS) then the resource
manager should be able to run the application at a lower QoS level provided the
user agrees with it. The basic requirement to the RM is that all admitted concur-
rently executing applications must attain their specified performance constraints.
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Figure 5.1: Management and communication bottleneck for centralized RM

The RM should also be able to handle dynamic conditions like admission of a new
application, change in application performance constraints, etc.

Theoretically, compile-time analysis of all possible use-cases can provide per-
formance guarantees, but the potentially large number of use-cases in a real system
makes such a static analysis impractical [KMT+08], while not dealing with other
types of dynamic behaviour, like data-dependent execution times (e.g. object-
based vision processing). We therefore need to shift the burden from compile
time analysis to run-time monitoring and intervention when necessary. This makes
run-time resource management an essential part of MPSoCs.

A major requirement for run-time management approaches for these MPSoCs
is that they no longer can assume pre-emption of the hardware platform; the
(massively) parallel processing of multi-media data yields such a large amount of
state in the processors, that it is no longer cost-effective to implement a context
switch. Even if a context switch would be implemented, the time required to
perform the context switch cannot be ignored, which excludes commonly used
real-time scheduling approaches like Rate-Monotonic Scheduling, and other fixed-
priority schedulers. The latest high-performance media MPSoCs for the consumer
market, like the Cell BBE [CHKW08] and graphics processors, do not support
pre-emption, thereby acknowledging the necessity of non-pre-emptive systems.

A resource manager has been presented in the literature [KMT+08] that per-
forms management in a central way. It monitors the progress of applications,
and enables and disables the applications at the smallest possible grain, i.e. in-
dividual actors (explained in more detail in Section 5.1). In this way, the central
resource manager helps applications satisfy their throughput constraints. How-
ever, a central RM is not scalable with the number of applications and processors.

A centralized RM may create a hot spot in terms of management as shown in
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Figure 5.1. All the information regarding application progress and QoS is fed to
the centralized manager. The centralized manager has to process the information
in a short time and take corrective measures. The compute requirement from the
applications overwhelms the centralized manager.

In this chapter, we propose two versions of resource managers which are scal-
able with the number of applications and processors. Our resource managers
ensure that an application is only allowed to start if the platform can allocate
the resources demanded by the application. Our distributed RMs are based on
budget-based schedulers and differ in their budget enforcement protocols. The
first type of RM– Credit-based can be used for applications which have strict con-
straints on their performance, i.e. their performance cannot be more than a fixed
level even if resources are available to have better performance. Our second type
of RM– Rate-based is suitable for applications which may run at higher perfor-
mance than a minimum level if the compute resources are available. For example,
streaming encoders are a good target for these type of RMs so that if there are
resources available in the MPSoC platform, they can encode at a higher rate and
finish the job quickly.

In this chapter, the distributed resource managers have been evaluated on the
basis of their ability to satisfy the throughput constraints of multiple applica-
tions. We have also performed experiments by adding applications at run-time
and studying their behaviour. The evaluation metrics used in this work include
deadline misses, buffer requirement, and maximum jitter. A deadline miss occurs
when an application fails to meet its deadline. The difference in successive finish
times of application iteration should be fixed. Due to interference with other ap-
plications, the difference may not be constant. This variation in successive finish
times is defined as the jitter. Other aspects like processor utilization and run-
time variation in application throughput constraint have also been studied in this
chapter.

The chapter is organized into the following sections. Section 5.1 describes
our architecture model. Section 5.2 presents an example showing the scalability
issues with centralized RM. In Section 5.3, we present our credit-based RM and
rate-based RM. The evaluation and comparison of these RMs is presented in Sec-
tion 5.4. Section 5.5 presents related work in this field and Section 5.6 concludes
this chapter.

5.1 Application and Architecture Modelling

The resource managers presented in this chapter assume that the applications are
represented as SDFGs. The architecture model consists of processors connected
with each other through point-to-point/NoC interconnects. Our resource man-
agers include an admission controller. The role of the admission controller is to
evaluate the timing constraints of the new applications against available resources.
If the available resources of the platform are less than the timing requirement of
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Figure 5.2: Resource Management on MPSoC: Centralized vs Distributed

the new application, the admission controller rejects the request and the applica-
tion can request service at a lower quality level. A similar admission controller
has been presented in [KMT+08]. To find the budgets, following information is
required by the admission controller.

• SDF model of each application.

• Worst-case execution time estimates for each actor (in clock cycles).

• Desired performance of each application, e.g. frames/sec.

• Mapping of actors onto the platform is provided. Task migration is not
supported, so the mapping remains fixed across all use-cases.

• Buffer sizes needed for edges in the graphs.

• Performance prediction of each application in isolation with the given map-
ping. This can be achieved using SDF 3 [SGB06a].

Figure 5.2 shows the functional diagram of the centralized resource manager pre-
sented by [KMT+08] and our distributed RM. The RM presented by [KMT+08]
monitors the throughput of each application and compares it with its desired
throughput. The centralized RM enables an application performing less than
its desired throughput. Similarly the application having more than its desired
throughput is suspended. The monitoring and control overhead limits the scal-
ability of the centralized RM as it has to monitor and control all applications
and perform QoS negotiations as well. To solve this problem, we present two
versions of distributed RMs. These RMs seek to minimize the involvement of
the central manager in the process and invest more intelligence in the local pro-
cessor arbiters as shown in Figure 5.2(b). The budgets for each application are
calculated centrally but they are enforced on all the processors locally. The RM
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Figure 5.3: Increase in deadline misses with increase in number of applications

does not monitor each application so the scalability problem of [KMT+08] due to
monitoring period is eliminated. In the next section, we present an example to
further elaborate this problem.

5.2 Motivating Example

The central resource manager monitors the performance of each application. The
monitoring period of central RM should be less than or equal to smallest period
amongst all applications being monitored otherwise it will not be able to monitor
the variations in that application. To study the scalability of central RM with
increase in number of applications we use the model of central resource manager
as described in [KMT+08]. The computation platform has 10 processors. The
central resource manager performs the following operations for monitoring the
performance of the applications:

• Receive the iteration completion message from each application.

• Increment the total execution count of the application.

• Find the current period of the application.

• Compare the current period with the desired period.

• Send enable/suspend signal to the application according to the result of the
comparison.
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We implemented the above functionality on a Microblaze processor [Xil11a] and
measured the clock cycles required for one application. It took 240 clock cy-
cles per application to perform above mentioned functions. We modelled our
RMs with timing information. The length of a monitoring period determines the
number of applications which can be controlled by the resource manager as the
central processor must complete the above mentioned functionality within the
monitoring period. Assume we have a monitoring period of 7,000 clock cycles
then we can monitor 7000/240 = 29 applications only. If we increase the number
of applications to 30, the applications cannot meet their constraints as shown in
Figure 5.3. In this experiment, we increased the number of applications and kept
the monitoring period fixed at 7,000 clock cycles. The total number of deadline
misses of these applications remains relatively low until 25 applications. For 30
applications, the total number of deadline misses increase tremendously as shown
in Figure 5.3. The reason for this increase is the fact that we cannot monitor all
30 applications in the period of 7,000 cycles. During every monitoring cycle, some
applications are not monitored thus resulting in deadline misses.

The other problem with centralized RM is jitter in application execution. If
the monitoring period is large then an application will remain enabled/disabled
during the whole monitoring period resulting in periods where the performance of
application is more than desired performance and periods where it is less than the
desired performance. To handle this jittery behaviour, large buffers are required to
store the outputs of the applications so that the average behaviour is acceptable.
These large buffers increase the cost of the system and are highly undesirable.
We have illustrated this effect in Section 5.4.5.

Note that the scalability problem is made even worse when Quality-of-Service
(QoS) negotiations are performed in order to deal with scarcity of computational
resources. These negotiations burden the resource manager for each application
(to set the quality level) as well each processor (monitoring and quality settings).
We therefore expect that future MPSoC systems that enable QoS will profit even
more from our distributed resource managers, which are optimized for scalability.

We propose two versions of the distributed resource managers that are moti-
vated to address the scalability issues. The first type of resource manager is called
Credit-based resource manager. Here the central admission controller distributes
credits among the processors and they enforce these credits. This type of man-
ager is useful where the throughput of applications has to be kept at a certain
level. The second distributed RM is called Rate-based resource manager. This
RM uses the same admission controller as used by the credit-based manager, but
differs in the budget enforcement mechanism. This type of manager is useful for
those applications which allow more than a certain level of performance. In the
following section we explain both of these RMs in detail. Our resource managers
are more scalable with increasing number of application and processors.
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5.3 Proposed Resource Managers

Application admission control and budget enforcement are two parts of resource
management. We first describe the admission control and credit calculation mech-
anism. The same mechanism is used in both types of RMs. In both versions of
distributed resource managers, there is a central admission controller connected
with the processing cores through a NoC. The central admission controller is an
interface to the user and calculates the credits and these credits are distributed
to the processors. The arbiters at the processors locally enforce these credits such
that the throughput constraints of the applications are satisfied.

Algorithm 6 shows the method of calculating the credits. Each processor has
a large replenishment interval of time with in which all tasks have to execute. The
central controller finds the processing load imposed by each task on each processor.
This load is calculated by multiplying the repetition vector of each actor with its
execution time and the ratio of desired to predicted throughput. The size of the
replenishment interval should be greater than the total processing load. This
process is repeated for all the processors and an application is only admitted
if all processors satisfy this condition. The credits are calculated as shown in

Algorithm 6 Admission Control and Credit calculation
Input: Applications Aj ∈ G and processor pi ∈ P

Output: Credits(ak ∈ G)
1: for all pi ∈ P do

2: load(pi)=0;
3: for all Aj ∈ G do

4: processing load=0;
5: for all ai ∈ G do

6: if (mapping(Aj ,ak) == pi) then

7: processing load(ak) = γ(ak) × α(ak) × desired throughput
8: load(pi)+=processing load(ak)
9: if (load(pi)/size of replenishment interval(pi)>1) then

10: remove load(Aj ,pi)// admission not possible, remove all actors of the appli-
cation from all processors

11: end if

12: end if

13: end for

14: end for

15: end for

16: for all applications do

17: for all actors(application) do

18: credits(ak)=γ(ak) × desired throughput
19: send(credits,ak ,pi)
20: end for

21: end for

line number 17 in Algorithm 6. Here γ(actor) and α(actor) are the repetition
vector entry and execution time of the actor, respectively. We explain the credit
calculation mechanism with the help of an example. Assume that we want to find
the credits for the inverse quantization actor (IQ) from JPEG decoder. The JPEG
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decoder graph used for this example decodes one macro-block in a single iteration.
The IQ actor has to be called 6 times (4 times for luminance data and 2 times for
chrominance). If the desired throughput constraint for JPEG decoder is set at 1
QCIF picture/sec then it is equivalent to 99 macro-blocks of JPEG encoded data
and the number of credits for IQ are 6 × 99 = 594. Assuming a replenishment
interval of one second the processing load imposed by IQ is 6 × 2400 × 99 =
1,425,600 clock cycles. Here, we assume that 2400 clock cycles are required by
the IQ actor to perform inverse quantization function on one macro-block.

5.3.1 Credit-Based Resource Manager

The central admission controller sends the credits to the processors according to
the mappings of actors onto processors. To enforce these credits, each processor
has a kernel which loads these credits into counters. Each actor is repeated the
number of times as specified in its counter in one replenishment interval. After
completion of the interval, the counters are reloaded with their values as received
by the central controller and this process continues. During the execution, if an
actor is not ready then it is skipped and the processor is assigned to another actor
so that the processor time can be used more efficiently.

Note that in contrast to TDMA, the replenishment interval of credit-based
RM is not necessarily always equal to maximum replenishment interval. It might
be possible that some applications are stopped by the user so the length of that
replenishment interval will be smaller than the maximum replenishment interval.

Algorithm 7 Credit-based RM
Procedure: Credit Based RM()

1: while (size of replenishment interval(pi) > 0) do

2: if (ak == ready ∧ (credits(ak) > 0)) then

3: execute(ak )
4: credits(ak)- -
5: end if

6: ak=next actor in list
7: end while

5.3.2 Rate-Based Resource Manager

The dependence of the credit-based RM on the size of replenishment interval can
be removed by the Rate-based RM. In the rate-based RM each processor has a
local arbiter. The admission controller of the rate-based RM calculates the credits
in the same way as the credit-based RM. The admission controller sends these
credits to each distributed arbiter located at each processor. This arbiter receives
these credits and executes these actors in such a way that the actor having the
least achieved-to-desired execution ratio is given the highest priority. Note that
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the rate-based RM allows the applications to execute continuously so long as the
ratio is maintained. This means that applications can have more throughput than
the desired throughput. To implement such an arbiter, a data structure for each
actor is defined which contains the information required during the operation of
the arbiter. This data structure contains registers to store the desired rates Rdai

(credits), achieved rates Raai
and ratio of achieved-to-desired rates Rrai

for each
actor ai. The ratios of the achieved-to-desired rates are stored in non-decreasing
order. Each time an actor executes, it achieved execution rate is incremented by
one.

Algorithm 8 Rate-based distributed Manager
Procedure: Rate Based RM()

1: for all actors ak do

2: Receive rates()// Receive rates from admission controller
3: init(Rdak

, Raak
, Rrak

)
4: end for

5: loop

6: for all actors ak do

7: if (ak == ready && Rrak
== min rate) then

8: Execute the actor
9: Raak

++
10: Rrak

= Raak
/ Rdak

11: min rate = find min rate()
12: end if

13: end for

14: end loop

Each time a processor needs to execute an actor it finds the actor having least
ratio and executes that actor if it is ready as shown in line 11 of algorithm 8. In
SDF semantics, an actor is ready when its input data is available and there is
space in its output buffer.

We explain the mechanism of rate-based RM by an example. Assume two
applications a JPEG decoder and an H.63 decoder are to be executed on the
platform. We assume that two actors, the inverse quantization actor (IQ) from
JPEG, and the IDCT actor from H.263 decoder, are mapped onto a single pro-
cessor. The constraint for JPEG decoder is 1 QCIF frame/sec as described in
the previous example. We assume that the H.263 decoder has a performance
constraint of 20 frames/sec then the credit for IDCT actor is 40. Assume that
both actors have been executed twice then the achieved-to-desired ratios of IQ
and IDCT are 2/594=0.003 and 2/40=0.05 respectively. The achieved-to-desired
ratio of IQ is lower than that of IDCT so the IQ actor has the higher priority to
use the processor as compared to IDCT. The platform will execute IQ actor and
will update the achieved execution count of IQ (line 9-10 of Algorithm 8) and will
calculate the priorities again.

Note that both RMs are very simple so a software/hardware implementation
is not expensive in terms of run-time overhead. This makes them suitable for
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Figure 5.4: Overview of the system setup

run-time resource management of embedded systems.

5.4 Comparison Between the Resource Managers

In this section, we compare the centralized and two distributed resource managers.
The bases of comparisons are different kinds of scenarios which are possible during
run-time. These scenarios include:

• run-time admission of a new application

• run-time stoppage of an application

• run-time variation in execution time of the actors

• run-time variation in application throughput constraint

Figure 5.4 shows the overview of the experimental setup. It consists of a user
interface, local application managers (one for each application), a resource man-
ager, and the computation platform. The user-interface simulates input from and
output to the user; for example, in case of mobile phone, input can come from a
keypad, while the output can be in the form of screen display or sound. The sim-
ulation models of our distributed resource managers have been developed using
the modelling language POOSL [vdPV97].

We have used two application models: JPEG decoder and H.263 decoder,
as shown in Figure 5.5. The JPEG decoder consists of 6 actors namely, Variable
Length Decoding (VLD), Inverse Quantization (IQ), Inverse Zigzag (IZZ), Inverse
Discrete Cosine Transform (IDCT), Reorder (Re-order) and Color Conversion
(CC). The H.263 decoder has four actors namely Motion Compensation (MC),
IDCT, IQ, and VLD. The computation platform consists of 6 processors. The
figure also shows the mapping of actors onto processors. The experiments in this
section are performed to observe dynamic behaviour of our distributed resource
manager. The behaviour of different resource managers is compared in these
experiments. We also compare the buffer requirement and processor utilization
of these RMs.
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platform

In the experiments, the monitoring period for centralized RM is 40 million
clock cycles. The processors in both credit-based and rate-based RM are executing
at 40 MHZ. The replenishment interval for credit-based RM is 1 second so that
the RMs are matched.

5.4.1 Admission of a New Application

In this experiment, a new application enters the MPSoC platform and requests for
resources at (simulation) time 700 million clock cycles. The applications already
executing on the platform are a JPEG decoder at 1 QCIF/sec and a H.263 decoder
at 40 frames/sec. Another instance of H.263 decoder enters the platform and
requires executing at 20 frames/sec.

Figure 5.6(a) shows the behaviour of a centralized RM against this dynamic
situation. The centralized RM can handle this situation and the applications al-
ready executing do not show any impact on their performance. The jitter in the
application execution is significant in case of a centralized RM. The reason for this
jitter is the fact that the applications remain enable/disable across the monitoring
period. The throughput of applications gets more than the desired throughput in
monitoring period where they remain enabled. Similarly the application through-
put decreases in the monitoring period where they remain disabled.

Our admission controller evaluates the resources needed for the application
according to Algorithm 6 and allows it to execute. Figure 5.6(b) shows robustness
of our credit-based RM. The applications already executing on the platform do
not have any adverse effect on their performance due to virtualization of the
resources. Moreover, the jitter in application execution is very small as compared
to the centralized RM.

Figure 5.6(c) shows the response of the rate-based RM. The performance of
JPEG and H.263 decoders decrease immediately as soon as the second instance
of H.263 decoder is accepted by the RM. This is because of the fact that when
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Figure 5.6: Example of runtime application admission at simulation time of 700

million clock cycles

the second instance of H.263 decoder enters, it has the lowest achieved to desired
ratio so it gets preference and quickly gains the required performance level. As
the time goes by other applications also get the compute resources and the system
very quickly converges towards the new steady state.

5.4.2 Application stopped by the User

Run-time dynamism includes stopping of an application by user. This experiment
starts with three applications executing on the platform. The JPEG decoder is
executing at 1 QCIF/sec and two H.263 decoders are executing at 40 frames/sec
and 20 frames/sec respectively. The JPEG decoder is stopped by the user at
simulation time of 700 million clock cycles.

The behaviour of centralized RM under this dynamic condition is shown in
Figure 5.7(a). The centralized RM can handle this situation and there is no effect
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Figure 5.7: JPEG application stopped by the user at 700 million clock cycles

on other applications because of virtualization of resources. Figure 5.7(b) shows
the behaviour of our credit-based RM. There is no effect on other applications as
our credit-based distributed resource manager provides virtualized platform for
each application. The applications execute concurrently but do not interfere with
others for the resources.

Figure 5.7(c) depicts the response of our rate-based RM in the event of ap-
plication stoppage. After the JPEG decoder has stopped, the second instance of
H.263 gets the processor more often as its ratio is the lowest. The system goes
into steady state and both H.263 decoders share the resources freed by the JPEG
decoder. The performance of one of H.263 decoder is twice of the second instance
of H.263 decoder and both are above their specified throughput constraints.
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5.4.3 Variation in Actor Execution Times

The execution time of actors may vary due to different execution paths through
the code. In this experiment, the execution time of the actors is varied randomly
between 1 clock cycles to the actual execution time of the actor. We use uniform
random number generation for this experiment. Figure 5.8(a) shows that the
variation in the execution time has no effect on the throughput for centralized RM.
Similarly our credit-based RM has no effect on the throughput of the applications
as shown in Figure 5.8(b). The reason for this result is the fact that the credits in
our distributed resource managers are calculated as the number of iterations each
actor has to execute for satisfying the application throughput constraints. This
property makes it independent of the variations in the actor execution times.
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Figure 5.8: Variation in actor execution times

However, the rate-based distributed RM is slightly affected by the variation
in actor execution times. The variation in execution time affects the achieved-
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to-desired ratios and consequently the throughput of applications observe some
variation but the magnitude of this variation is pretty small as shown in Fig-
ure 5.8(c).

5.4.4 Variation in Application Throughput Constraint

In this experiment, the H.263 decoder is required to decode 40 frames/sec and
the constraint for the JPEG encoder is 2 QCIF frames/sec. The distributed
credit-based resource manager finds the credits based on this information. The
arbiters in the processors enforce these credits as shown in Figure 5.9(b). Now
at 700 million clock cycles, the distributed resource manager receives a request
from the user to decrease the frame rate of H.263 decoder from 40 frames/sec
to 20 frames/sec. This implies that the distributed resource manager has to re-
calculate the credits based on the new application constraints and it re-sends them
to the processors. Figure 5.9(b) shows that the new credits are enforced by the
processors and the new throughput constraint is met successfully. Further, there
is no effect on the throughput of the other application.

For the same experiment with the centralized RM, there is performance degra-
dation for the JPEG decoder when the throughput constraint of H.263 decoder
is varied. The reason for this degradation is the monitoring period of centralized
decoder. Figure 5.9(a) shows the throughput of both applications. It is clear that
the response of centralized RM is slow as compared to that of credit-based RM.
Figure 5.9(c) shows the same experiment with rate-based RM. The response for
application constraint variation is quite fast for rate-based RM. The resources
freed by the second instance of H.263 are consumed by the H.263 decoder execut-
ing at higher rate and the system achieves steady state.

5.4.5 Buffer Requirement

The throughput constraints for this experiment have been assumed to be 2 QCIF
frames/sec for JPEG decoder and 40 frames/sec for H.263 decoder. This trans-
lates to 4.95×10−06 iterations/clock cycle for JPEG and 1.0×10−06 iterations/clock
cycle for H.263 decoder. In this experiment, we study the jitter in application
execution introduced by the RMs. The jitter results in large buffers at the output
of the applications to store the frames/macro-blocks decoded by the applications.
The desired buffer space shown in the Figure 5.10 is the ideal buffer space required
in order to remove all jitter in application execution.

The monitoring period for centralized RM is 40 million cycles. The central
resource manager continuously monitors the throughput of all the applications
and sends messages to disable the applications having more throughput than
the desired throughput. Figure 5.10(a) shows that the control is not as smooth
and the platform needs higher buffer space because when an application achieves
more throughput than the desired throughput then the frames decoded are to be
stored in a buffer memory. The jitter in the application execution is introduced
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Figure 5.9: Runtime change in application constraints of H.263 decoder

due to monitoring period. Figure 5.10(a) shows the buffer requirement of both
applications. The JPEG decoder has to decode 198 macro-blocks in one second
e.g. 2 QCIF frames/sec. H.263 decoder has to decode 99 × 40 macro-blocks/sec
e.g. 40 frames/sec. This is equal to almost 3 Mbytes of buffer space. The extra
buffer space needed for centralized RM is quite large as compared to ideal buffer
space requirement.

Figure 5.10(b) shows the budget requirement for credit-based RM. The pro-
cessors are operating at clock frequency of 40 MHZ and the size of replenishment
interval is 1 sec. The actors from the applications are executed according to their
budgets and this process repeats each second. It is evident that our credit-based
RM requires only a very small amount of extra buffer space as compared to the
ideal buffer space.

Table 5.1 compares the jitter (clock cycles) in application execution for the
three type of RMs. The maximum jitter for centralized RM is the highest. This
is due to the fact that the applications in centralized RM can be executing or dis-
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Figure 5.10: Comparison of buffer requirement

Table 5.1: Comparison of Jitter (in clock cycles) between three RMs

App. Centralized based Credit-based Rate-based

Avg. max. Avg. max. Avg. max.

jitter jitter jitter jitter jitter jitter

JPEG 256,528 1.59 × 108 43,200 123,600 355 93,600

H.263 281,766 2.79 × 108 1.72 ×105 1.98 ×106 730 1.72 ×105

abled for longer periods of time. Hence the time difference between two successive
executions of applications can be very large. In Credit-based RM, the maximum
jitter is smaller than the centralized RM. This results in low buffer requirement.
The maximum jitter for Rate-based is the lowest. The average jitter of distributed
RMs is also lower than the centralized RM. Low jitter is also an indication for
low buffer requirement.

5.4.6 Processor Utilization of Resource Managers

Table 5.2: Processor utilization of RMs.

Centralized Credit-Based Rate-based

0.1672 0.1625 0.8074

The processor utilization of the three RMs is shown in Table 5.2. The appli-
cations and their constraints are the same as used in the experiment of subsec-
tion 5.4.5. The processor utilization is the ratio of time spent on the applications
to the total processor time. The platform consists of 6 processors and the table
shows the average processor utilization of the RMs. The processor utilization of
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Figure 5.11: Scalability of RMs with increasing number of applications and proces

sors

Rate-based RM is highest of all RMs. This is due to the fact that the applications
execute continuously and try to use the compute resources to the maximum.

5.4.7 Scalability of RMs

The scalability of our RMs is evaluated with increasing number of processors and
applications. Two platforms models consisting of 10 and 20 processors are built.
The platform with 10 processors is used to simulate up to 30 applications and
from 40-70 applications, the platform with 20 processors is used. Figure 5.11(a)
shows that both RMs are scalable with number of applications and processors.
The figure also shows that the deadline miss rate of Rate-based RM are lower
than Credit-based RM. Figure 5.11(b) shows the poor scalability of centralized
RM with same experiment settings. The deadline misses for centralized RM are
more than rate and credit-based RMs.

5.5 Related Work

Research on multi-processor real-time scheduling has mainly focused on pre-
emptive systems [DD86, BCPV96]. Non-pre-emptive scheduling has received
considerably less attention. It was shown by Jeffay et al. [JS91] and further
strengthened by Cai and Kong that the problem of determining whether a given
periodic task system is non-pre-emptively feasible even for a single processor is al-
ready intractable [CK96]. Recently, more work has been done on non-pre-emptive
scheduling for multi-processors. S. Baruah [Bar06] presented sufficient conditions
for a periodic task system to be feasible on multi-processor platform. In short,
non-pre-emptively scheduling periodic and non-periodic tasks on multi-processor
systems is NP-hard. There are many heuristic based solutions to this problem.
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There are a number of budget schedulers [MMB07, SBW09, MST94] described
in the literature. These schedulers assign a fixed time for each task in a replenish-
ment interval. Steine [SBW09] has added priorities on top of the budgets (PBS).
The priorities of all tasks have to be defined at design time and one task can
have its priority defined during run-time. Their technique can be used at de-
sign time whereas our technique is for run-time resource management. The work
by [MST94] is for single processor scheduling.

TDMA is also considered as budget based scheduler. Computing worst-case
waiting time taking resource contention into account for round-robin [Hoe05]
and TDMA [SBGC07] (requires pre-emption) scheduling has also been analyzed.
However, a potential disadvantage of these approaches is that the analysis can
be very pessimistic. In [CM08], internal and external contention in communi-
cation streams is considered, but their region forming approach is targeted at
homogeneous meshed platforms, and is not suitable for heterogeneous or irregu-
lar architectures. In [MMB07], an architecture driven approach is used to map
tasks first on virtual tiles, which are in turn clustered on elements connected
to the same router. They use TDMA schedulers at the processors for budget
enforcement. Task switching in TDMA is pre-emptive while our RMs use non-
pre-emptive scheduling. The distributed approach of [AFKH08] uses a static
mapping algorithm inside its clusters. This approach requires hardware support
for cluster management, while it poses more constraints on the size and structure
of applications.

In [KMT+08], a resource manager has been proposed which shifts the bur-
den from compile time analysis to run-time monitoring and intervention. They
advocate the fact that compile-time analysis of all possible use-cases can provide
performance guarantees, but the potentially large number of use-cases in a real
system makes such analysis infeasible [KMT+08]. However their resource manager
is centralized and not scalable. We have shown this with the help of experiments
in Section 5.2. We studied the factors affecting the scalability of resource manager
and proposed two distributed resource managers aimed to be more scalable with
increasing number of applications and processing elements.

StarSs [BPBL06] is a programming model and run-time manager from Barcelona
Super Computing Center. It is an extension of OpenMP [CDK+01]. It consists
of a “C” to “C” compiler which converts a sequential C-code into a C-code that
can execute on the PPE and SPEs of the Cell processor. The run-time manager
executes on the PPE and distributes the jobs between the SPEs whenever it finds
a free SPE. The run-time manager is centralized and communicates with the SPEs
using the mailboxes. Nanos++ [ABC+09] is another centralized resource manager
that consists of a CPU manager and a scheduler. The CPU manager acts as an
admission controller and all applications send requests to the CPU manager. The
CPU manager selects a scheduling policy and computes the required number of
processors for each application and assigns them. The CPU manager monitors the
performance of applications through file systems of the processors. Both StarSs
and Nanos++ monitor the performance of applications centrally, in contrast to
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the resource managers presented in this chapter; they monitor the performance
of the tasks of applications locally to increase the scalability of distributed RMs.

5.6 Conclusions

We have presented two versions of a distributed resource manager (RM) for multi-
processor Systems-on-Chip, and compared them to a centralized resource man-
ager. Experiments show that the credit-based RM is very effective for enforcing
throughput constraints, and the rate-based RM is effective for obtaining high
resource utilization in the context of applications that can profit from the avail-
ability of more resources. Both distributed RMs can cope with a large number
of processors as well as large number of concurrently executing applications com-
pared to a centralized RM. Furthermore, our experiments demonstrate that they
deal better with application and user dynamics, and require less buffering. We
conclude that our approach is effective for controlling the computational resources
in a multi-processor platform, can deal with data dependencies and dynamically
varying execution times that characterize modern media applications, without
requiring support for pre-emption. We can therefore fill the gap left by existing
techniques like rate-monotonic scheduling that cannot satisfy the abovementioned
requirements.

In the next chapter, a simulation framework is presented that can provide
average-case performance results of multiple applications executing on an MPSoC
platform.



CHAPTER 6

Distributed Simulation on FPGA

MPSoC platforms for real-time applications are designed for worst-case task exe-
cution time estimates. It has been shown by Kumar that the average-case perfor-
mance is often two fold better than worst-case estimated performance [Kum09].
Kumar performed the experiment by assuming virtualized resources for each ap-
plication and then executing the applications onto a platform and measured their
performance. This effect becomes more evident with increasing number of appli-
cations. Therefore, knowing the average-case performance is also important for
the system designer. In chapters 3 and 4, we presented a design approach which
can synthesize MPSoC platforms to meet the throughput constraints of multiple
applications in all use-cases using worst-case execution time estimates. This chap-
ter describes a simulation framework that can report average-case performance of
applications executing on these synthesized MPSoC platforms.

Simulation in software is often used for performance evaluation. Unfortu-
nately, the accuracy of simulation is often directly proportional to the time spent
on it. Further, existing techniques for performance evaluation are limited to
single-application designs [Stu07, HPB08]. Hardware acceleration is sometimes
also used to speed simulation. However, it generally requires a high design-time
effort to build a simulation model in hardware. Some techniques do exist that
provide automated flows, but they only simulate the system from the perspective
of architecture (functional units) and not that of applications [BI+95, DRCO05,
CWB05]. Therefore, an automated hardware simulation design synthesis ap-
proach is needed that can deal with the large number of applications and use-cases
in modern multi-processor systems.

103
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Further, the applications share the MPSoC platforms with the help of schedul-
ing polices. Dynamic arbitration methods are used as schedulers and it is very
difficult to analyze the effect of these arbiters on the performance of these con-
currently executing applications. Simulation can be employed to predict the per-
formance of applications under dynamic arbitration polices.

In this chapter, an automated FPGA-based simulation methodology (MAMP-
SIM) for performance evaluation of multiple applications executing concurrently
on multi-processor systems is presented. The architecture description is specified
including the desired mapping of tasks to processors, and the arbiter type for each
processor. The target multi-processor platform is generated where each processor
is simulated using a Xilinx Microblaze processor in the hardware. The properties
of each task are preserved during software generation for each processor. The
desired arbiter for each processor is also generated automatically.

Further, it is observed that dynamic arbiters in a processor may lead to causal-
ity errors in simulation. In order to prevent this, parallel discrete event simulation
(PDES) principles are used [CM79b]. Typically, PDES is used to accelerate se-
quential program execution on parallel machines. In our approach, PDES is used
for simulating multiple applications – each consisting of parallel tasks – executing
on multiple processors. Most PDES approaches fall under one of the two cate-
gories – conservative and optimistic. It is proposed to use a smart conservative
approach that is intelligent to figure out when the sequential program execution
can be set aside for improved efficiency. A mechanism has been developed which
on every simulation step checks whether proceeding with the simulation on in-
complete information can result in a causality error. By default, conservative
PDES is used and as soon as it is found that causality errors can be avoided with
non-sequential execution, the simulation proceeds and does not follow sequential
execution. This mechanism is called as smart conservative.

This chapter is organized as follows. In the next section, we describe our sim-
ulation platform generation methodology. Section 6.2 extends PDES for multiple
applications. In Section 6.3, the implementation of the methodology on Xilinx
FPGA and a case study is discussed. Section 6.4 presents a case study of simu-
lation of dynamic scheduling polices.Section 6.5 explores the related work in this
domain and Section 6.6 discusses the conclusions inferred from this work.

6.1 Simulation Platform Generation

In a refined MPSoC architecture, where processors are already selected and hard-
ware and software components have been defined, a global simulation model can
be used for performance analysis. MPSoC architectures are composed of multiple
processors, hardware IPs, memories, and peripherals. Evaluation of individual
components is not sufficient to analyze the system performance. The situation is
further complicated if the platform has to support multiple applications.

Our simulation platform is a network of nodes/processors connected to each
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other through First-in-First-out (FIFOs) buffers. The nodes mimic the behaviour
of SDF actors and continuously check their input ports and wait for arrival of
data units called “tokens”. The nodes then process these tokens and forward the
results to connected nodes. FIFOs are placed between the nodes so that synchro-
nization signals between the producing and consuming nodes are not required.
Our simulation methodology is shown in Figure 6.1.

A system of K applications having NK actors is simulated. For example
“a0, a1, ..., aNa−1

” are “NA” actors from application A and “b0, b1, ..., bNb−1
” are

“NB” actors from application B. Actors from the same application communicate
with each other exclusively through messages going through edges “c”. We assume
that the execution times of the actors on the target processors are known by pro-
filing or by static analysis. Along with the application information, the platform
information including the number of processors, their interconnect topology, and
communication delay is also required. At present the implementation supports
point-to-point networks only but the methodology also supports shared networks.
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Table 6.1: ProcessorActor Assignment.

Processor H263 JPEG Scheduling policy

ARM7 VLD CC FCFS
ARM9 IQ,Re-const VLD,IQ,IZZ RRWS

TI IDCT IDCT,Re-order FCFS

Figure 6.2 shows an example of our simulation technique. H263 and JPEG are two
applications to be simulated on a three processor platform. Assume that ARM7,
ARM9 and a micro-controller from TI constitute a multi-processor platform. The
task graphs of applications are shown in Figure 6.2(a) and Figure 6.2(b). Table 6.3
shows mapping of tasks from the two applications on each processor and the task
scheduling policy at each processor. The platform is simulated on a 3-Microblaze
system which has one to one correspondence with the target platform as shown
in Figure 6.2(c). Each processor can have actors from different applications and
maintains a local time-stamp “tsp” of its progress. In addition each actor also
carries with it its own time-stamp “tsa”. The time-stamps indicate how far in
simulation time the processor or the actors have progressed. For a processor, the
time-stamps are updated when it executes an actor or when it is idle. The same
goes for actors. The time at which an actor is ready, is determined by the time-
stamp of the latest available token from all input edges of an actor. Following are
important definitions used in our approach.

Definitions:

• The time-stamp of a processor tsp is equal to the finishing time of the last
actor executed on the processor.

tspnew
= max(tsp, tsa) (6.1)

• Before an actor can fire, it has to ensure that no other inputs can cause
any change in the decision to execute the actor. This is also called safe
to execute. When an actor executes, its execution time α(a) is added to
maximum of the processor and actor time-stamp.

tsanew
= max(tsa, tsp) + α(a) (6.2)

• For processors having a single-actor, the processor can fire the actor when
it is ready.

• Each FIFO buffer has a time-stamp associated with it indicating the mini-
mum time to which it has progressed. When empty, it is the time-stamp of
the last data item read from the FIFO.
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Theorem 1 (S)uccessive time-stamps tspi, i ∈ N, on a FIFO (edge) are guar-
anteed to be non-decreasing i.e. tspi ≥ tspj for i > j.

Proof. Let p0 and p1 be two processors connected to each other through a FIFO
edge. Let tp1 and tp2 be time-stamps of successive tokens sent from p0 to p1. We
know that the token received by the FIFO is the processor time of the processor
producing this token, and according to Equation 6.1 it is obtained by taking the
maximum value of processor time and actor time, so tp2 ≥ tp1. Hence time-stamps
on a FIFO edge are guaranteed to be non-decreasing.

Algorithm 9 achieves the time update for each actor. The algorithm reads
the input tokens from all the incoming edges of the actor. Since we are only
simulating the performance, we are only interested in the time-stamps of the data
when it was produced. The actor is ready to fire at the time the last token is
available. Since we are sure the tokens in any FIFO are in non-decreasing time-
stamps, we can simply check the time-stamp of the last token read on all the
edges to determine the ready time of the actor.

Algorithm 9 Determining the ready time-stamp of all the actors.
1: // tsa is ready time-stamp of an actor a.
2: for all Incoming edges c where sinkc = a do

3: Read required input tokens on c

4: Let tsc be the time-stamp of the last token on c

5: tsanew
= max(tsa, tsc)

6: end for

The same is illustrated by means of an example in Figure 6.3. The actor has
two incoming edges and the number of tokens needed from each edge is shown
on the respective FIFO. The time-stamps of the last tokens read on the left and
on the top edge are 10 and 9 respectively. This implies that the actors can only
start executing at time 10. Since the actor needs 3 time-units to execute, the
tokens produced on the edge have the time-stamp of 13. Right side of Figure 6.3
shows the state of the FIFO buffers after the execution of actor a0. This assumes
that there is no contention on the processing node and that the actor can start
execution as soon as it is ready.

Every processor contains software scheduler, responsible for selecting the next
actor according to the scheduling policy. For static scheduling methodologies like
Round Robin (RR) and static order [KMT+08], the actor execution order is fixed
and does not depend on the arrival of actor time-stamps. In such deterministic
cases, there is no problem of ordering of actor execution in a simulation model.
For Dynamic arbitration schemes like FCFS and Round Robin with Skipping
(RRWS), the simulation model should behave the same way as the physical sys-
tem. However, this can lead to deadlock in the system. To remove deadlocks, we
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have implemented the well-known technique used in PDES. More details are in
the next section.

6.2 PDES For Multiple Applications

PDES is often used to accelerate the simulation with the help of a parallel com-
puter. In this work, we employ PDES to simulate the execution of multiple
applications on an MPSoC platform. Simulation on a single processor is easy, as
the global information is available. When simulation is distributed, it is difficult
to decide which data should be transmitted globally so that there is no deadlock
situation.

6.2.1 Deadlocks

An important issue in distributed simulation is deadlock. According to [CM79a],
a deadlock condition is defined as

1. Not all the processes in a network of processes have terminated and

2. No process is executable.

In dynamic scheduling like FCFS, the ready actor with the lowest time-stamp
is executed. However if one of the input FIFO of the actor having lowest time-
stamp is empty; the actor blocks. If a cycle of interdependent empty FIFOs arises
that has lowest time-stamps, then each actor in that cycle must block and the
simulation deadlocks. Figure 6.4 shows one such situation. In this example, both
processors P0 and P1 have two actors each from different applications A and B.
Their respective actor execution times (2 units each) are also shown in the figure.
We assume that at the beginning of simulation, actors a0 and b1 execute due
to initial tokens at their inputs queues. Processor times of both P0 and P1 are
incremented to 2 as shown in Figure 6.4. Now assume actors a0 and b1 receive
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time-stamps 8 and 5 at their queues, respectively. Note that tokens removed from
the queues during previous execution are shown beside the queues (Figure 6.4).
Actors a1 and b0, both have data in their input queues and their time-stamps
are lower than that of a0 and b1 (2 each for a1 and b0 against time-stamps 8 and
5 of a0 and b1, respectively). So both a1 and b0 fire resulting time stamps of
4 each, as shown in their output queues (Figure 6.4). The time-stamps of the
tokens at input FIFOs of actor a1 and b0 are lowest (2 each for a1 and b0 against
8 and 5 of a0 and b1 respectively) but they are waiting for their data. There
is a cycle of dependencies between all four actors and the simulation deadlocks
and cannot proceed any further. To rectify this problem, we forward the expected
arrival time of tokens to the next processor. We call these tokens “control tokens”.
These control time-stamps require the system to be predictable, i.e. we are able
to predict the time-stamp values of an actor from the knowledge of its previous
executions. In case of SDF graphs we can predict the finishing time of an actor
execution by Equation 6.3. These deadlocks can be avoided by a mechanism of
look ahead (in our case we call them “control tokens”) described in [CM79b].
Readers can read [CM79b] for further details and proofs.

tcntrl(a) = α(a) + max(tsp, tsa) (6.3)

where tcntrl is the time-stamp of the control token to be sent to the next proces-
sor. The execution time of actor is represented by α(a). This time-stamp is a
message to the receiving processor that it will not receive any output from sending
processor before time tcntrl.

In case of above example, if actor b1 forwards control token (encircled in Fig-
ure 6.4) having time-stamp of 7 and actor a0 forwards control token of time-stamp
10 (according to Equation 6.3)), the deadlock resolves and simulation continues.
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Control time-stamps are forwarded only if their sent time is less than the processor
time.

6.2.2 Smart Conservative PDES

PDES, also called distributed simulation, refers to the execution of a single dis-
crete event simulation program on a parallel computer. All algorithms for parallel
simulation fall into two class, either conservative or optimistic.

• Parallel simulations are conservative if they satisfy the property that no pro-
cess receives information from any other process that predates the current
simulation time of the receiving process [Fuj89].

• They are optimistic if the processes can act on incomplete information thus
admitting the case where messages may arrive in the past.

Optimistic methods exploit more parallelism; however they require some sort of
roll back mechanism to an earlier valid state. To achieve this synchronization, each
process must checkpoint its state and event information, which requires storage
space [Fuj89]. In multi-application systems for which dynamic schedulers are used,
an optimistic approach generates a lot of correction traffic due to close dependence
of time-stamps on the successive actors in an application. This increased traffic
will affect performance monitoring of the application.

So we propose a new PDES approach which we name as smart conserva-
tive PDES. Our approach is different from conservative PDES as we develop a
mechanism to find out those cases for which violation of event list order cannot
produce the causality errors. In these cases we proceed with the simulation and
do not wait unnecessarily for information which will not affect the simulation
order. If our mechanism determines that there is a possibility of causality error,
we switch to conservative PDES. An example in the next subsection will further
clarify our approach. Our approach borrows many concepts from PDES work
by Chandy [CM79b] as we are using event driven simulation. PDES simulates a
single program onto a multi-processor platform. However, we have used PDES to
simulate multiple applications modelled as SDFGs. So not only the actors of an
application are to be executed in a sequence, scheduling of actors from different
applications should also follow some scheduling policy. Our methodology does not
require any central scheduler to synchronize the processing nodes, which makes
our approach more scalable than those one with a central scheduler.

6.2.3 Motivating Example

In this subsection, we show that for multi-application simulation, our smart con-
servative PDES provides an efficient solution. Figure 6.5 shows two actors from
two applications mapped onto one processor P0. Their corresponding SDF graphs
are shown on top of the figure. Actor a has two incoming edges and actor b has
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one. Rate at all edges is 1. Figure 6.5(a) shows the case when actor b has a lower
time-stamp than actor a and second edge of actor a is empty (so the token X in
queue Q2 has not yet arrived). For this case, if these actors are scheduled using
the FCFS, the token at Q2 can be ignored as actor time of a is tsa = max(5, X)
(according to Algorithm 9). Even if the time-stamp of the received token at Q2

(which is X), is lower than 3, b should be executed (as for FCFS we are looking for
the actor having minimum time-stamp value given by min(max(5, X), 3). This
property of not waiting for the arrival of token “X” at Q2 is an example of a
smart conservative scheduling decision.

Figure 6.5(b) shows the case, when one of the queues of a has a lower time-
stamp than that of b and the other queue of a is empty. Let “Y” be the expected
time-stamp value of token at Q2. The value of Y can effect the scheduling decision
by the relation min(5, max(3, Y ). It can be lower or higher than 5, in this case
we use conservative approach and wait for the arrival of time-stamp at Q2.

6.2.4 Dynamic Actor Arbitration

Algorithm 10 shows our smart conservative FCFS arbitration. The algorithm
waits for any actor to get ready for execution (line 4). Then it checks the minimum
time of the actors. Next, the algorithm verifies that the processor time is not less
than the minimum actor time. This can happen if all the actors get ready during
the time the processor was idle. In this case we increase our processor time to
minimum actor time (line 12). The actor with smallest time stamp is executed
if it is ready. Control time-stamps are sent only if the actor is not ready or its
time-stamp is not the minimum.

Algorithm 11 shows the pseudo code for RRWS arbitration under PDES. Like
FCFS, the algorithm ensures that if the processor time is less than all the actor
times then it sets the processor time to minimum actor time. Then it picks an
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Algorithm 10 FCFS arbitration algorithm for PDES.

Procedure: Check FCFS()
Input: actors a ∈ Application A and Execution time of actor a α(a)
Output: FCFS
1: min time = 1
2: // Check which of the actors are ready to execute.
3: for all actors a do

4: actor ready[a] = is actor ready(a)
5: end for

6: for all actors a do

7: if (tsa[a] < min time) then

8: min time = tsa[a]; actor = a; flag min time = 1;
9: end if

10: end for

11: // If all the actors get ready after the processor was last idle then we set the //tsp equal
to the minimum time of the actors.

12: tsp=min time
13: if (actor ready[a] && flag min time == 1) then

14: execute(a)
15: else

16: send control tokens(max(tsp, tsa) + α(a)); return Check FCFS()
17: end if

actor from list of actors and checks if it is ready (line 9). If the actor is ready
then it determines if it is safe to execute this actor; e.g. if the processor time is
less than the actor time, then we cannot execute this actor, because there is a
possibility that an actor from other application may arrive before the ready time
of this actor; so we skip the actor (line 12). If this is not the case, we execute
the actor and pick the next actor from the list. On the other hand if the actor is
not ready yet and processor time is more than this actors’ ready time, then we
will have to wait for the arrival of tokens for this actor and we cannot skip it, as
shown on line 19 of Algorithm 11. Similarly, if the actor is not ready and its time
is greater than the processor time then the tokens for this actor will arrive in the
future and we can safely skip to the next actor (line 22).

6.3 FPGA implementation, Experiments and Results

The simulation platform has been implemented onto a Xilinx FPGA board (XUP).
The tasks are mapped to Microblaze processors. The FIFO links are mapped
to FAST Simplex Links (FSL). Additional peripherals such as timer, UART,
and SysAce are also used in the design. UART is useful for printing debugging
information of the system. Performance results of each use-case are stored in the
SysAce Compact Flash card. A Timer is used for profiling the application.

Our implementation platform is the Xilinx XUP Virtex II Pro Development
Board with an xc2vp30 FPGA on-board. Xilinx EDK 8.2i and ISE 8.2i were
used for synthesis and implementation. All tools run on a Pentium dual core at
2.0GHZ with 2.0GB of RAM.
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Algorithm 11 RRWS arbitration algorithm for PDES.

Procedure: Check RRWS()
Input: actors a ∈ Application A and Execution time of actor a α(a)
Output: RRWS
1: min time=1
2: for all actors a do

3: if (tsa[a] < min time) then

4: min time = tsa[a]
5: end if

6: end for

7: // If all the actors get ready after the processor was last idle then we set the //tsp equal
to the minimum time of the actor

8: tsp= min time.
9: // Check the next actor from the list if it is ready

10: if (is actor ready(a)) then

11: if (tsp < tsa[a]) then

12: Skip the actor; return Check RRWS();
13: else

14: Execute(a)
15: end if

16: else

17: if (tsp >= tsa[a]) then

18: send control tokens(max(tsp, tsa[a]) + α(a));
19: Wait for the actor to get ready;
20: Check RRWS()
21: else

22: Skip the actor; return Check RRWS();
23: end if

24: end if

6.3.1 DSE Case Study

To predict the performance of applications for different buffering options, time
spent during hardware synthesis is the limiting factor. The solution is to synthe-
size a super-set hardware for all use-cases in a typical design space exploration
problem, and only change the software for each point in the design space as shown
in Figure 6.6. Interested readers are requested to read [KFH+08] for more details
about this technique.

We present a case-study to use our simulation methodology for performing a
design space exploration to compute the optimal buffer requirement for two ap-
plications running concurrently on a multi-processor platform. Minimizing buffer
size is an important objective when designing embedded systems. We explore the
trade-off between the buffer-size used and throughput obtained for multiple ap-
plications. Increasing buffer space exploits more parallelism in the platform. For
single applications, the analysis is easier and has been presented earlier [SGB06b].
For multiple applications it is non-trivial to predict resource usage and perfor-
mance because multiple applications cause interference when they compete for
resources [KFH+08].

The case study is performed for JPEG and H.263 applications. Both applica-
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Figure 6.6: Software for each usecase is loaded one by one

tions are mapped onto a 3-processor platform. Figure 6.2 showed the task graphs
and actor mappings of both applications. The actors are mapped on processors
by equally distributing the computation load. In this case study the buffer size
has been modelled by the initial tokens present on the incoming edge of the first
actor. The higher this initial-token count, the larger the buffer needed to store the
output data. In case of H.263, each token corresponds to an entire decoded frame,
while for JPEG, it is the complete image. The design space consists of 25 points,
e.g. for both applications the number of initial tokens are varied from 0 to 4.
Figure 6.8(b) shows how the throughput of JPEG decoder varies with increasing
number of tokens in the SDF graph. When the number of tokens (i.e. buffer-size
in the real application) is increased, the throughput also increases until a certain
point after which it saturates. When the JPEG decoder is the only application
executing (obtained by setting the initial tokens in H.263 to zero), we observe that
its throughput increases almost linearly till 3 initial tokens. We further observe
that increasing the initial tokens of H.263 worsens the performance of JPEG.
Hardware synthesis time of the whole design on the FPGA was about 35 minutes.
This is a one-time overhead and after that we only compile the software for each
design point and download that to get the results. We compare the performance
of our tool with a POOSL [vdPV97] model. POOSL is a very expressive modelling
language with a small set of powerful primitives and completely formally defined
semantics. It furthermore serves as a basis for performance analysis.

In [KMT+08], authors have created a tool to find application throughput and
buffer requirements using POOSL. We compare our FPGA simulation platform
results with this POOSL model. Total time taken for POOSL simulation is 95
minutes whereas the FPGA simulation took 41 minutes only (including the hard-
ware synthesis time). The speed up gained for FPGA simulation platform for two
applications is 16 (excluding the hardware synthesis time, 41-6 = 35 minutes) as
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shown in Figure 6.8(a) .
Figure 6.7 presents results from this case-study. Figure 6.7(a) shows the time

taken by smart conservative approach at each design point. Smart conservative
approach is 15% faster than the conservative PDES. This seems a small improve-
ment. However in DSE problems, the user has to perform thousands of such tests
and improvements like these are evident in overall results. For example, if we have
to perform same DSE for 4 applications, the design space will contain 625 points.
To explore this huge design space, our smart conservative saves 15% simulation
time. Figure 6.7(b) shows the number of control tokens per simulation step at
each DSE point. Techniques like [PVA+08] require one control token at each sim-
ulation step whereas in our case the required number of control tokens/simulation
step is very low. Figure 6.7(b) shows a decrease in number of tokens with each
DSE point. This is because from use-case 1-5, initial H263 tokens are zero so
only one application is executing in the platform. This results in more control
tokens. As the number of tokens of H263 is increasing from use-case (6-25), both
applications are active and fewer control tokens are required due to the increased
exploitable parallelism.

6.3.2 Scalability

Figure 6.9(b) shows the scalability of our FPGA simulation as compared to
POOSL. In this experiment, we increased the number of processors in a single
application by one processor at each experiment step. We simulated 500,000 iter-
ations of each resulting graph. It is evident from Figure 6.9(b) that for fewer pro-
cessors, POOSL simulation is faster than our FPGA implementation. It should
be noted that our FPGA platform is operating at 50MHz and POOSL at 2.0
GHz. However, as we increase the number of processors, POOSL simulation gets
slower and the simulation time keeps on increasing. On the other hand, FPGA
simulation takes almost the same time, as we keep on increasing the number of
processors. We increased the number of processors up to 14. This is the high-
est number of Microblaze processors which can be synthesized on Xilinx xc2vp30
FPGA used for our experiments. FPGA hardware synthesis time is not included
for the scalability results.

Figure 6.9(a) shows the normalized processor cycle speedup of FPGA simula-
tion against the POOSL simulation. POOSL and FPGA simulation is running at
different frequency using different type of processors, so to have a comparison we
convert their simulation time to normalized processor cycles. Our POOSL simu-
lation is running on Intel dual core 2.0 GHZ processor (only one of the processor
being used) and our FPGA simulation is mapped on 6 Microblaze processors
running at 50 MHz each, as shown in Table 6.2. Normalized processor cycles
are obtained by first multiplying the simulation time, number of processors, and
processor frequency for both FPGA and POOSL simulation and then dividing
the corresponding products of POOSL by the FPGA products. Our normalized
processor cycle speed up for 6 applications is as high as 218.
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Figure 6.9: Figures showing scalability of our simulation technique.

Table 6.2: Normalized processor cycles.

# of cycles cycles # of proc. # of proc. Tot. Cycles Tot. Cycles Speed
Appl. POOSL FPGA POOSL FPGA POOSL FPGA up in

×1012 ×109 ×1012 ×109 FPGA

1 0.28 0.73 1 6 0.28 4.39 64
2 0.83 .90 1 6 0.83 5.45 153
4 1.12 1.125 1 6 1.12 6.75 165
6 1.71 1.307 1 6 1.71 7.84 218
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6.4 Simulation of Dynamic Scheduling Policies

We perform DSE to find the throughput of applications for different actor-to-
processor mappings and scheduling policies i.e. FCFS, RRWS, and RR. The case
study is performed for JPEG and H.263 decoder applications. Figure 5.5 shows
the SDF models of these applications. H.263 is mapped on 4 processors and JPEG
on 6. So in total we use 6 processors for mapping these two applications. Four
processors are shared by H.263 and JPEG where as two processors have actors
from JPEG only.

Our tool is provided with one set of mappings and mapping constraints. It
automatically generates the possible combinations from the mapping constraint.
The mapping constraint assumes that each processor can have at most two ac-
tors. This assumption limits the search space to 28 possible mappings. These
28 different mappings of actors onto processors are simulated. We generate the
hardware for all these mappings only once and the software is generated for each
mapping individually. At least 500,000 iterations of each graph are executed to
find the processor utilization (PU) and application throughput.

Figure 6.10(a) shows the plot of processor utilization and application through-
put for each mapping point under FCFS scheduling. Processor utilization (PU)
is defined as “the time during which the processing node is doing computation as
compared to the total time”.

PU =

N∑

a=1

(α(a) × iters(a)× rep(a))/Sim time (6.4)

Equation (6.4) is used to calculate the processor utilization for each processor.
Here iters(a) is number of times an actor a is executed. rep(a) is the repetition
vector entry for actor a , N is the total number of actors per processor and Sim-
time is the total simulation time. The throughput graphs suggest that throughput
of the applications is highly dependent on their mappings, in case of FCFS. FCFS
lacks fairness in distribution of resources between the actors. On the other hand,
RR scheduling distributes the compute resources more evenly as shown in Figure
6.10(b).

Figure 6.10(c) shows processor utilization and application throughput results
for RRWS. Processor utilization and application throughput are highest for RRWS.
In RRWS, if an actor is not ready the processor moves to the next actor and ex-
ecutes it if it is ready. So waiting time is reduced for RRWS scheduling. Where
as in case of FCFS, the processor may keep on waiting for minimum time-stamp
actor to get ready and then execute, so processor utilization for FCFS is lower
than RRWS. Highest processor utilization for RRWS is 0.4421. Highest processor
utilization for RR and FCFS are 0.4301 and 0.4254 respectively. The bars in the
figures also show the mapping points where JPEG has the highest throughput.
The user can choose the mapping point according to desired throughput from
each application. Processor utilization guides us about the application load on
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Figure 6.10: Processor utilization and application throughput plotted against map

ping number for different schedulers.
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the processor and how many actors from other applications can be mapped onto
the processors.

Table 6.3 shows the actor to processor mappings, which resulted in maximum
performance for JPEG. Mapping number 17 achieves highest JPEG throughput
for both FCFS and RRWS. Table 6.3 also shows the corresponding scheduling
scheme responsible for the desired application performance. The table also shows
the actors mapped on to the corresponding processors P0-P5.

Table 6.3: ActortoProcessor mappings, resulting in higher JPEG performance.

Application Mapping # Scheduling P0 P1 P2 P3 P4 P5

Policy

H.263 17 FCFS & IDCT Reconst. VLD IQ
JPEG RRWS re-order CC VLD IQ IZZ IDCT
H.263 10 RRWS IQ IDCT Reconst. VLD
JPEG IDCT re-order CC VLD IQ IZZ
H.263 27 RR VLD IQ IDCT Reconst.
JPEG IQ IZZ IDCT re-order CC VLD

6.5 Related Work

FPGAs are often used as simulation platforms; the reason being their flexibility,
relatively low cost, and their property of being re-configurable. Today, FPGAs
are fast and big enough to provide scalable alternative to software simulation.
FPGA simulation efforts such as RPM [BI+95] have produced a system level
multi-processor emulator. Designers can choose from a library of architectural
components and evaluate their performance. FAST [DRCO05] is an FPGA-based
platform for modelling multi-processor system with MIPS cores. It is suitable for
MPSoC memory system research. RAMP [CWB05] is a cycle accurate, distributed
concurrent event simulator. It claims to provide the user with the flexibility
to configure all components of multi-processor systems like processing elements,
communication infrastructure, programming model etc. ATLAS [WCN+07] uses
the BEE2 boards from RAMP and its main emphasis is software research for
transactional memory. The prototype runs the GNU/linux operating system and
runs multi-threaded applications that use transactional memory.

All the above mentioned platforms simulate architectural components inside a
processor/multi-processor. On the contrary, our platform performs performance
evaluation of multiple applications on a multi-processor fabric. There are also
some analysis tools like SDF3 [Stu07] for single applications, and they use heuris-
tics to find the actor-processor mappings. In [HPB08], authors have presented
a scheduler for SDF graph simulation on multi-processor platforms; however, it
does not support multiple applications. As far as we know, our approach is the
first to use FPGAs as simulation platform for performance evaluation of multiple
applications running concurrently on MPSoC platforms.
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In [KMT+08], the authors have presented a simulation model for multiple ap-
plications. The tool helps in finding the throughput of applications, but it is not
scalable and like any software simulation environment it gets slower and slower as
we increase the number of simulated processors. Simflex [WWF+06] is a micro-
architectural simulator for multi-processors. It accelerates simulation by exploit-
ing homogeneity of application behaviours that repeat millions of times. It ana-
lyzes the application and chooses the size of sample in such a way to capture the
behaviour of the model completely. This technique has a very high overhead due
to creation of complete state before execution of each sample. MAMPS [KFH+08]
is a tool flow for mapping multi-media applications on FPGA. It evaluates the per-
formance of applications by executing their models on the FPGA fabric, however
we only forward the time-stamps of execution. Forwarding time stamps takes
fewer cycles as compared to execution of the program model. This makes our
approach faster than MAMPS.

A-ports [PVA+08] is another architectural simulator on FPGA. Like our ap-
proach, it is also a graph of connected nodes. A node may execute a simulation
cycle when all of its inputs are ready. However, there are some key differences.
A-Ports nodes are required to send a message every cycle, even if the message
indicates that no change in the state of node has happened while we only forward
the control tokens if there is a chance of deadlock in simulation.

MPARM [BBB+05] is an environment for MPSoC design space exploration
using SystemC. It is complete platform solution for MPSoc simulation composed
of processor models (ARM), bus models (AMBA), memory models, hardware
support for SMP (hardware semaphores), and a software development toolset in-
cluding a C compiler and an operating system. It provides several performance
statistics, such as cache miss/hit rate and bus contention and average waiting
time. In [OWB+07] authors have presented a methodology for performance analy-
sis of processor at different abstraction levels, offering different trade-offs between
estimation speed and accuracy. Neural networks are used to provide software
performance estimation. The neural networks are first trained on benchmarks of
specific processors. The methodology is targeted towards processor selection.

6.6 Conclusions

In this chapter, a novel technique has been presented that accelerates simulation
of multiple applications on FPGAs. The technique can be used to measure the
average-case performance of applications executing onto an MPSoC platform.
The technique is scalable as larger FPGAs are available to simulate designs with
a large number of applications and use-cases. The largest Virtex-4 device [Xil11b]
from Xilinx can be configured to have about 97 Microblaze processors. Support
for such a large number of processors makes our approach very attractive. It
is also shown that for two applications the simulation technique is at least 16
times faster than an efficient software solution. This speedup further increases by
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increasing the number of applications, use-cases, and processors.
Another contribution of the work is highlighting and solving the problems

identified during the PDES simulation for multiple applications. Efficient algo-
rithms for three scheduling policies –RRWS, RR and FCFS have been presented,
in combination with a new smart PDES simulation. In the future, we intend to
extend the work by supporting more scheduling techniques. It is also planned to
include hardware synthesis and performance evaluation options to the framework.
This will allow evaluating performance of hardware modules like accelerators for
multi-media applications. HDL descriptions will be integrated in the simulation
platform to get feedback on performance of hardware modules.



CHAPTER 7

Conclusions and Future Work

In this chapter, the major conclusions from this thesis are presented, together
with several issues that remain to be solved.

7.1 Conclusions

The role of modern multimedia systems has changed considerably since their
emergence. These systems have to support large number of applications. The
applications come from different domains and hence exhibit contrasting compute
requirements. Beside functional requirements, the embedded systems also have
to meet non-functional constraints like energy and hardware area. Both these
constraints affect the cost of the system. These applications execute in different
combinations. Further, the market of these systems is expanding all the time.
The average life for these devices can be as low as 1 year since a new device
with advanced features becomes available in the market. The designers of these
systems have to come up with new design techniques so that these systems can
be designed in cost effective and efficient way.

Predictability in design techniques shortens the design cycle. We presented
a communication assist that introduces predictability in MPSoC platforms. The
CA relives the processor from transferring data duties and the processor has to
perform the computation only. This decouples the communication from compu-
tation. The CA assumes that the interconnect can provide guarantees on the
transfer. This assumption is quite valid as most of interconnects provide timing
guarantees on their operations. The CA implements the input/output semantics

123
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of SDFGs e.g. checking of available space in the output edges and then verifying
the presence of the tokens at input edges, before the actual execution of the actor.
We presented the SDF model of the CA so that the performance of applications
can be predicted on MPSoC platforms containing CA.

We also developed an MPSoC platform generation technique that generates
CA-based predictable platforms. The heuristics based technique presented in this
thesis generates MPSoC platforms that can support multiple applications and
their use-cases. The technique analyzes the use-cases and shares the resources so
that the MPSoC platform can be dimensioned to consume minimum resources.
The platforms generated consist of processors interconnected with point-to-point
interconnect. Further in the thesis, a platform synthesis technique (CA-MPSoC)
is presented that can synthesize the generated platforms onto FPGAs with the
help of commercial synthesis tools. The platform synthesis technique automati-
cally writes the communication APIs for CAs in the platform. The application
functions are automatically inserted the processor codes. The software is gener-
ated for each use-case of the applications.

The synthesized platform needs resource managers to handle dynamism in
applications. Traditionally centralized resource managers are used in MPSoC
platforms. Centralized resource managers monitor application performance at
regular intervals and take corrective measures. If an application is not achieving
its desired performance then more compute resources are allocated to this appli-
cation so that it meets its performance constraints. These centralized resource
managers do not scale with increasing number of applications and processing el-
ements. The thesis presents two distributed resource managers. The budgets are
calculated centrally and distributed to the processing elements. The processing
elements enforce these budgets locally. The distributed resource managers are
scalable with the number of applications and processing elements.

Simulation is extensively used for knowing the difference between average-case
and worst-case performance. In many design problems, simulation is inevitable
and the designers are interested in fast simulation techniques. In this thesis,
we have presented a fast parallel simulation technique that is used to accelerate
the speed of simulation. We have employed the principles of Parallel Descrete
Event Simulation (PDES). PDES is used to simulate multiple applications on
FPGA platforms. A simulation methodology (MAMPSIM) is presented which
automatically generates a simulation platforms consisting of Microblaze processors
connected through FSL links. The methodology also implements the scheduling
policy for the platform as selected by the user. Efficient algorithms for three
scheduling policies –RRWS, RR and FCFS have been presented, in combination
with a new smart PDES simulation. It is also shown that for two applications the
simulation technique is at least 16 times faster than an efficient software solution.
This speedup further increases by increasing the number of applications, use-cases
and processors. Another contribution of the work is highlighting and solving the
problems identified during the PDES simulation for multiple applications.

Using above contributions, a designer can quickly design and implement pre-
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dictable multi-processor based systems capable of satisfying throughput con-
straints of multiple applications in given set of use-cases, and employ resource
management strategies to deal with dynamism in applications.

7.2 Future Work

The thesis presents solutions to design of MPSoC platforms. There are still issues
which should be addressed. These issues are summarized below.

SDF Model Extraction

Throughout this thesis, we assume that the SDF model of an application is al-
ready provided. This modelling is mostly done manually and can be very time
consuming. There is no significant work on automatic extraction of SDF models
from a given source code. SUIF [HAA+96] is a compiler that is used to extract
parallelism from the application C-code. The tools Compaan [KRD00] and PN-
gen [VNS07] automatically convert an application into a parallel KPN. These
tools require a lot of tweaking from the user to get any kind of performance from
them. The result of this problem is a very slow extraction process and Design
Space Exploration strategies become even more slower. A possible future work
can be a fully automatic SDF model extraction tool from C-code.

Other Models of Computation

All of the techniques developed in this thesis work on SDF. SDF is considered
as a static model of computation although CSDF [Bil96] and SADF [TGB+06a]
have been developed to model dynamism in applications. It would be interesting
to apply the techniques developed in thesis to other models of computation like
CSDF, SADF, and KPN, which can express the dynamic behaviour of applications
in more efficient way.

Support for NoC Based Platform

In this thesis, the techniques presented do not place any constraint on the type of
interconnect between the processors and the experiments have been performed on
point-to-point interconnects. The techniques assume that the interconnect can
provide guarantees on the transfer and this is a valid assumption as there are
NoCs and buses available in the literature which provide bounds on their data
transfer. An extension of this work can be to apply these techniques on platforms
where the communication network does not provide guarantees on the transfer. It
will be interesting to think how the CA will handle such communication networks.
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MPSoC Parallel Simulation

A possible extension to this work can be to extend the work by supporting more
scheduling techniques like EDF. It is also a possibility to include hardware module
(accelerators) synthesis and performance evaluation options to the framework.
This will allow to evaluate performance of hardware modules like accelerators for
multi-media applications. HDL descriptions will be integrated in the simulation
platform to get feedback on performance of hardware modules.

Distributed Resource Managers

The distributed Resource Managers presented in this thesis relieve the central
controller in centralized resource managers from the responsibilities of monitor-
ing. The central controller only distributes the credits to the processors which
are locally enforced by each processor. This removes the bottle neck created by
the monitoring. One extension to the work can be to perform the admission
control operation also in a distributed fashion. This will make the resource man-
agement more scalable with the number of processors and applications. Further,
the resource management techniques presented in this thesis cannot guarantee
the performance of applications which are not analyzed during design time. The
resource manager will try its best such that the application meets its constraints
but cannot provide guarantees. A possible extension to this work can be devel-
opment of a technique which can guarantee the performance of a newly added
application in the MPSoC platform which was not statically analyzed.
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Glossary

Acronyms and abbreviations

ASIC Application specific integrated circuit
ILP Integer Linear Programming
CF Compact flash
CSDF Cyclo static dataflow
DCT Discrete cosine transform
DSE Design space exploration
DSP Digital signal processing
FCFS First-come-first-serve
FIFO First-in-first-out
FPGA Field-programmable gate array
FSL Fast simplex link
HSDFG Homogeneous synchronous dataflow graph
IDCT Inverse discrete cosine transform
IP Intellectual property
JPEG Joint Photographers Expert Group
KPN Kahn process network
LUT Lookup table
MAMPS Multi-Application Multi-processor Simulation
MB Microblaze
MoC Models of Computation
NoC Network-on-chip
MCM Maximum cycle mean
MPSoC Multi-processor system-on-chip
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POOSL Parallel object oriented specification language
QoS Quality-of-service
RAM Random access memory
RISC Reduced instruction set computing
RM Resource manager
RR Round-robin
RRWS Round-robin with skipping
APG Acyclic precedence graph
SADF Scenario aware dataflow
SDFG Synchronous dataflow graph
SMS short messaging service
TDMA Time-division multiple access
VLC Variable length coding
VLD Variable length decoding
VLIW Very long instruction word
WCET Worst case execution time
WCRT Worst case response time
XML Extensible markup language
DMA Dynamic Memory Access

Terminology and definitions

Actor A program segment of an application modeled as a vertex
of a graph that should be executed atomically.

Control token Some information that controls the behaviour of actor. It
can determine the rate of different ports in some MoC (say
SADF and BDF), and the execution time in some other
MoC (say SADF and KPN).

Multimedia sys-
tems

Systems that use a combination of content forms like text,
audio, video, pictures and animation to provide information
or entertainment to the user.

Output actor The last task in the execution of an application after whose
execution one iteration of the application can be said to
have been completed.

Rate The number of tokens that need to be consumed (for input
rate) or produced (for output rate) during an execution of
an actor.

Response time The time an actor takes to respond once it is ready i.e. the
sum of its waiting and its execution time.

Scenario A mode of operation of a particular application. For exam-
ple, an MPEG video stream may be decoding an I-frame or
a B-frame or a P-frame. The resource requirement in each
scenario may be very different.
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Scheduling When multiple objects share a resource, a mechanism is
required that shares the resource between the objects. This
mechanism is called scheduling.

Task A part of program that is executed atomically.
Token A data/control element that is consumed or produced dur-

ing an actor-execution.
Use-case/mode This refers to a combination of applications that may be

active concurrently.
Work-
conserving
schedule

This implies if there is work to be done (or task to be ex-
ecuted) on a processor, it will execute it and not wait for
some other work (or task). A schedule is work-conserving
when the processor is not idle as long as there is any task
waiting to execute on the processor.
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