
Predictable Performance in SMT Processors:
Synergy between the OS and SMTs

Francisco J. Cazorla, Peter M.W. Knijnenburg, Rizos Sakellariou,

Enrique Fernández, Alex Ramirez, and Mateo Valero, Fellow, IEEE

Abstract—Current Operating Systems (OS) perceive the different contexts of Simultaneous Multithreaded (SMT) processors as

multiple independent processing units, although, in reality, threads executed in these units compete for the same hardware resources.

Furthermore, hardware resources are assigned to threads implicitly as determined by the SMT instruction fetch (Ifetch) policy, without

the control of the OS. Both factors cause a lack of control over how individual threads are executed, which can frustrate the work of the

job scheduler. This presents a problem for general purpose systems, where the OS job scheduler cannot enforce priorities, and also for

embedded systems, where it would be difficult to guarantee worst-case execution times. In this paper, we propose a novel strategy that

enables a two-way interaction between the OS and the SMT processor and allows the OS to run jobs at a certain percentage of their

maximum speed, regardless of the workload in which these jobs are executed. In contrast to previous approaches, our approach

enables the OS to run time-critical jobs without dedicating all internal resources to them so that non-time-critical jobs can make

significant progress as well and without significantly compromising overall throughput. In fact, our mechanism, in addition to fulfilling

OS requirements, achieves 90 precent of the throughput of one of the best currently known fetch policies for SMTs.

Index Terms—Multithreaded processors, simultaneous multithreading, ILP, thread-level parallelism, performance predictability, real

time, operating systems.

Ç

1 INTRODUCTION

CURRENT processors take advantage of Instruction Level
Parallelism (ILP) to execute several instructions from a

single stream in parallel. However, there is only a limited
amount of parallelism available in each thread, mainly due
to data and control dependences. As a result, hardware
resources added to exploit this limited amount of ILP may
be utilized only occasionally, thus significantly degrading
the performance/cost ratio of these processors. A solution
to overcome this problem is to share hardware resources
among different threads. There exist different approaches to
resource sharing, ranging from multiprocessors (MPs) to
high performance SMTs. In the former case, mostly only the
higher levels of the cache hierarchy are shared. Examples of
such processors include the Power4 [4]. In the case of SMTs
[18], [23], like the Pentium4 [17] or the Power5 [12], many

more hardware resources (instruction queue (IQ) entries,
physical registers, etc.) are shared among threads. Thus,
SMTs have a better cost/performance trade-off [15].
Current trends in processor architecture indicate that many
future microprocessors will have some form of SMT. This
includes both general-purpose processors, like the Power5,
which combines two 2-context-SMT processors on a single
chip, and embedded processors, like the Meta [15].

The current collaboration between the OS and the SMT is
inherited from the traditional collaboration between the OS
and MPs: The OS perceives the different contexts of an SMT
as multiple, independent virtual processors. As a result, the
OS schedules threads onto what it regards as independent
processing units operating. However, in an SMT, threads
share many resources. Hence, these virtual processors are
not truly independent as threads scheduled at any given
time compete with each other for the resources of a single
processor. The way that these resources are allocated at the
microarchitectural level clearly affects their performance.

On the other hand, current SMTs are designed with the
main objective of increased throughput, lacking flexibility in
providing other objectives. An Ifetch policy decides how
instructions are fetched from the threads, thereby implicitly
determining the way internal processor resources, like
rename registers or IQ entries, are allocated to the threads.
The common characteristic of many existing fetch policies is
that they attempt to maximize throughput [22] and/or
fairness [16], possibly by stalling or flushing threads that
experienceL2misses [5], [6], [7], [21], or reducing theeffects of
misspeculation by stalling on hard-to-predict branches [13].

Although objectives such as throughput or fairness
might be acceptable in many systems, one can easily
imagine situations where the Operating System (OS) may

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006 785

. F.J. Cazorla is with the Barcelona Supercomputing Center, Jordi Girona 29,
Edificion Nexus II, Despacho 112, 08034 Barcelona, Spain.
E-mail: francisco.cazorla@bsc.es.

. P.M.W. Knijnenburg is with the Computer Systems Architecture Group,
Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands. E-mail: peterk@science.uva.nl.

. R. Sakellariou is with the School of Computer Science, University of
Manchester, Oxford Road, Manchester M13 9PL, UK.
E-mail: rizos@cs.man.ac.uk.

. E. Fernández is with the Institute for Cybernetic Sciences, Universidad de
Las Palmas de Gran Canaria, Edificio de Informatica y Matematicas,
Campus Universitario de Tafira 35017, Las Palmas de Gran Canaria,
Spain. E-mail: efernandez@dis.ulpgc.es.

. A. Ramirez and M. Valero are with the Barcelona Supercomputing Center
(BSC) and the Computer Architecture Department, Universitat Politecnica
de Catalunya, Jordi Girona 1-3, D6 105, 08034 Barcelona, Spain.
E-mail: {aramirez, mateo}@ac.upc.edu.

Manuscript received 13 July 2004; revised 23 July 2005; accepted 7 Dec. 2005;
published online 22 May 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0235-0704.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

need to impose additional objectives. These may relate only
to some of the threads and may get priority over generic
objectives such as fairness and/or throughput. For instance,
in order to meet some (soft) real-time requirements, the OS
may require that a designated thread run at a certain
percentage of the maximum speed it would get if it had the
machine alone. In a conventional uniprocessor system, an
easy way to achieve such a requirement would be to
guarantee that, over a period of time, the designated thread
would be allocated an amount of CPU time, which is equal
to the percentage of speed requested. However, this
approach would not be useful in an SMT. When the
designated thread is running, it will typically be sharing
processor resources with other threads (if it was running on
its own, it would clearly underuse the SMT and defy the
whole point about having SMTs). As a result, the
designated thread’s performance requirement cannot be
guaranteed because the fetch policy used for resource
sharing would assign resources in order to meet its own
objectives rather than those of the OS. If it would serve its
purpose to allocate fewer resources to the designated
thread, it would do so.

To deal with this situation, the OS should be able to
exercise more control over how threads are executed and
how they share the processor’s internal resources. In other
words, the hardware should provide the OS with some kind
of Quality of Service (QoS) that can be used by the OS to
better schedule jobs. Thus, if we want to be able to control
the speed of a particular thread on an SMT, both the
traditional OS-level job scheduler and current SMT ap-
proaches to resource sharing by means of Ifetch policies are
no longer adequate and a closer interaction is required.

In this paper, we present novel architectural support for
OSs on SMT processors that enables a close interaction
between both. This is used to guarantee that jobs in a
workload can achieve a certain performance requirement.
As opposed to traditional monolithic approaches, where the
OS has no control over the resource sharing of an SMT
architecture, our approach is based on a resource sharing
policy that is continuously adapted as it needs to be to take
into account OS requirements. The advantages of the
proposed approach are twofold.

First, the OS can control the execution of jobs at any
given time. The OS selects a workload consisting of several
threads and indicates to the processor that certain threads
should be considered as Predictable Performance Threads
(PPTs) and must execute at a certain percentage of their full
speed, that is, the speed that a thread can achieve when it is
run alone on the processor. We have experimented with up
to two PPTs using our mechanism. When one thread is
required by a given IPC, we obtain successful results, with
an error lower than 2 percent, for target percentages
ranging from 10 percent to 80 percent. When there are
two PPTs, we run both jobs exactly at the required
percentage for a broad range of percentages. For another
broad range of required percentages, our mechanism can
realize the target for the thread with the highest priority
and give a close approximation of the required speed for
the thread with the second highest priority. This degrada-
tion only arises when there are insufficient number of

resources inside the processor to meet both requirements at
the same time.

Second, we show that the remaining Unpredictable
Performance Threads (UPTs) can make good use of the
resources that are not needed by the PPTs. As a result, our
prioritization mechanism not only maintains total through-
put, but is in fact capable of outperforming traditional fetch
mechanisms in this respect. Thus, a resource conscious
scheduler, by using our resource allocation mechanism, can
perform better than a traditional OS job scheduler using a
fetch policy as a single solution for all cases. In fact, our
mechanism achieves at least 90 percent of the performance
of one of the best currently known fetch policies for SMTs,
like FLUSH++ [5].

This paper is structured as follows: Section 2 describes
related work and our novel approach to an OS-SMT
collaboration is placed in context. Section 3 defines the
problem we solve in this paper as well as our approach to
solve it. Section 4 elaborates the mechanism used to achieve
this collaboration. Section 5 shows the experimental setup
used for evaluation. Section 6 shows the results obtained
when prioritizing jobs using our mechanism. Finally, we
draw some conclusions in Section 7.

2 BACKGROUND AND PROBLEM STATEMENT

As illustrated in the introduction, the approaches currently
employed for resource sharing in SMTs, I-fetch policies,
may disregard any target set by the OS. This is a
consequence of the additional level of scheduling decisions,
introduced by resource sharing inside the SMT, which has
been largely examined independently of the more tradi-
tional OS level coscheduling phase.

In [3], the authors conclude that current fetch policies
that attempt to maximize throughput, like icount, should be
“balanced” for minimum forward progress of real-time
tasks; otherwise, real-time tasks may miss their deadline. In
Fig. 1a, we show an example of how the performance of an
application varies depending on the workload it is executed
in when it is run in an SMT. Fig. 1a shows the IPC of the
gzip benchmark when it is run alone (full speed) and when
it is run with other threads using two different fetch
policies, icount [22] and flush [21]. We can see that its IPC
varies a lot, depending on the fetch policy as well as the
nature of the other threads running in the context. This is
caused by the fact that management of resources (IQ entries,
registers) is not explicit. This shows that the current
collaboration between the OS and the SMT hardware, in
which the OS has no control over the resource sharing of an
SMT architecture, does not provide control over the
execution of applications.

To the best of our knowledge, only a few papers have
identified the need for a closer interaction between
coscheduling algorithms and the resource sharing made in
SMT processors in order to force priorities. In [20], an
extension to the icount fetch policy is proposed by including
handicap numbers that reflect the priorities of jobs. This
approach suffers from the same shortcomings as the
standard icount policy, namely, that resource management
is implicitly done by the fetch policy. Therefore, although
this mechanism is able to prioritize threads to some extent,

786 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

the running times of jobs are still hard to predict, rendering
this approach unsuited for real-time constraints. For
example, in Fig. 1b, we show the IPC of the gzip

benchmark for different handicap numbers and workloads.
We observe that running gzip with the same handicap
leads to different IPC values, with a variation of up to
60 percent, depending on the workload. Hence, even when
the icount handicap prioritization mechanism achieves
some prioritization of threads, it is still far from the
objective of this paper, namely, ensuring that several
threads in a workload run at a given target IPC.

Finally, the Power5 [12] processor uses a mechanism to
control the decode bandwidth. In our architecture, this
control provides the same results as controlling the fetch
bandwidth. However, given that no information on the
internal resource allocation of the Power5 has been released,
wecannot compare theefficiencyof thismechanismandours.

3 QOS PROBLEM DEFINITION

In this paper, we move a step further than existing work
and we propose a novel approach for a dynamic interaction
between the OS and the SMT which allows the former to
pass specific requests onto the latter. In particular, we focus
on the following challenge: Given a workload of N jobs1

and one or two Predictable Performance Threads (PPT0 and
PPT1) in this workload, where PPT0 has higher priority
than PPT1, find a resource sharing policy to:

. Ensure that PPT0 runs at (at least) a given target IPC
that represents X percent of the IPC it would get if it
were to be executed alone on the machine.

. Second, ensure that PPT1 (if PPT1 is given) runs at a
given target IPC that represents Y percent of the IPC
it would get if it were to be executed alone on the
machine or as close as possible to this Y percent
when there are insufficient resources to realize the
targets for both PPT0 and PPT1 at the same time.

. Third, maximize the throughput for the remaining
N � 1 (or N � 2 if a PPT1 is given) Unpredictable
Performance Threads (UPTs) in the workload.

To tackle a challenge such as the one described above, we
propose a generic approach to resource sharing for SMTs
which addresses such challenges as a QoS problem. This
approach is inspired by QoS in networks in which processes
are given guarantees about bandwidth, throughput, or
other services. Analogously, in an SMT, resources can be
reserved for threads in order to guarantee a required
performance. Our view is that this can be achieved by
having the SMT processor provide “levers” through which
the OS can finetune the internal operation of the processor
as needed. Such levers can include prioritizing instruction
fetch for particular threads, reserving parts of the resources
like IQ entries, etc.

In order to measure the effectiveness of a solution to a
QoS problem, we have proposed the notion of QoS space.
We observe that, on an SMT processor, each thread, when
running as part of a workload, reaches a certain percentage
of the speed it would achieve when running alone on the
machine. Hence, for a given workload consisting of
N applications and a given instruction fetch policy, these
percentages give rise to a point in an N-dimensional space,
called the QoS space.2 For example, Fig. 2 shows the QoS
space for two threads, eon and twolf. In this figure, both
the x and y-axis span from 0 to 100 percent. We have used
three fetch policies: icount [22], flush [21], and data gating
(dg) [9] in our baseline configuration. Theoretically, if a
policy leads to the point ðx; yÞ, then it is possible to reach
any point in the rectangle ð0; 0Þ; ðx; yÞ by judiciously
inserting empty fetch cycles. Fig. 2 shows a more general
picture in which the dashed curve indicates points that
intuitively could be reached using some fetch policy.
Obviously, by assigning all fetch slots and resources to
one thread, we reach 100 percent of its full speed.
Conversely, it is impossible to reach 100 percent of the

CAZORLA ET AL.: PREDICTABLE PERFORMANCE IN SMT PROCESSORS: SYNERGY BETWEEN THE OS AND SMTS 787

Fig. 1. Motivation of this paper. From top to bottom: (a) gzip IPC for

different contexts. (b) gzip IPC for different handicap values.

1. We assume throughout the paper that the workload is smaller than or
equal to the number of hardware contexts supported by the SMT.

2. As shown in Section 6, the notion of QoS space is applicable to other
quantities, not only a percentage of IPC.

Fig. 2. QoS space for three fetch policies and important QoS points.

speed of each application at the same time since they share

resources.
In Fig. 2, we see that the representation of the QoS space

also provides an easy way to visualize other metrics used in

the literature. Points of equal throughput lie on a single line

whose slope is determined by the ratio of the maximum

IPCs of each thread (in this case, �1:2=3:8 ¼ �0:32). Such a

point with maximum throughput is also indicated in the

figure. Finally, points near the bottom-left top-right diag-

onal indicate fairness, in the sense that each thread achieves

the same proportion of its maximum IPC. In either case,

maximum values lie on those lines that have a maximum

distance from the origin.
Each point or area (set of points) in the reachable

subspace entails a number of properties of the execution of

the applications: maximum throughput, fairness, real-time

constraints, power requirements, a guarantee, say 70 per-

cent, of the maximum IPC for a given thread, any

combination of the above, etc. In other words, each point

or area in the space represents a solution to a QoS

requirement. It is the responsibility of the OS to select a

workload and set a QoS requirement and it is the

responsibility of the processor to provide ways to enable

the OS to enforce such requirements. The processor should

dynamically adjust the resource allocation and attempt to

converge to a point or area in the QoS space that

corresponds to a QoS requirement.

4 SOLUTION OF THE QOS PROBLEM

The notion of QoS implies the existence of hardware

mechanisms in the SMT processor that can offer effective

control over the execution of threads. It also implies that the

OS should have some knowledge of the full speed of jobs in

order to be able to give requirements to the hardware, such

as “execute this job at a certain percentage of its full speed.”

That is, our mechanism requires that all instances of an

application have more or less the same IPC. This assump-

tion does not hold in general as the IPC of applications can

change depending on the input data. Fortunately, it has

been shown [11] that the IPC of media applications is

roughly the same between frames. Hence, our proposal can

be applied to emerging multimedia applications.

4.1 Overview/Concept

In the challenge considered in this paper, we want to
guarantee a certain speed for the PPTs. We obtain this by
reserving the proper resources for them, proceeding
hierarchically. First, we reserve resources for PPT0 as it
has the highest priority. Then, we reserve resources for the
subsequent lower in priority, PPT1, from those resources
not used by PPT0, and so on. Finally, the remaining
resources are given to the UPTs.

The QoS mechanism we propose combines three key
ideas. First, we monitor the characteristics and execution
progress of each thread and give feedback to the OS.
Second, we employ resource administration and allocation,
guided by the demands of threads and the external
objective given by the OS. Third, we shield the PPTs against
the destructive interference of the other threads.

Another key point in our mechanism is that programs
experience different phases in their execution in which their
IPC varies significantly. Hence, if we want to realize a
certain percentage of the full speed of a program, we need
to take into account this varying IPC. We illustrate this by
an example. Fig. 3 shows local IPC values for gap for a
period of 4.5 million cycles in which each value has been
determined over an interval of 15,000 cycles. Assume that
the OS requires the processor to run this thread at 70 percent
of its full speed. The solid line is the average IPC for this
period and the dashed line represents the value to be
achieved by the processor. It is easily seen that, during some
periods, it is impossible to achieve this 70 percent of the
global IPC, even if the thread were given all the processor
resources. Moreover, if the processor achieves this 70 per-
cent of the global IPC during the first part of the interval
and subsequently gives all resources to this thread to
achieve full speed during the second part, then the overall
IPC value it would realize would be lower than 70 percent
of the global IPC.

The basis of our mechanism for dynamic resource
allocation rests on the observation that in order to realize
X percent of the overall IPC for a given job, it is sufficient to
realize X percent of the maximum possible IPC at every
instant throughout the execution of that job. This is
illustrated in Fig. 3 by the boldfaced curve labeled “80%
of local IPC.” Hence, the mechanism needs to determine the
variations in IPC of the PPT. In order to do this, we
distinguish two phases in our proposed mechanism that are
executed in alternate fashion, as shown in Fig. 4.

. Sample phase: During this first phase (60,000 cycles), all
shared resources are given to a PPT and the other
threads are temporarily stopped. As a result, we

788 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

Fig. 3. Local IPC of the gap benchmark.

Fig. 4. The Sample and Tune phases used in our mechanism.

obtain an estimate of the current full speed of that PPT
during this phase which we call the local sampled IPC.

. Tune phase: During this phase (1.2M cycles), UPTs
are allowed to run. Our mechanism dynamically
varies the amount of resources given to both PPTs to
achieve the local target IPC. It is given by the local
sampled IPC computed in the last sample period
times the required percentage given by the OS,
which we call target percentage.

Clearly, if we are able in the sample phase to measure,
reasonably accurately, the full speed of a given PPT and in
the tune phase to realize a percentage X percent of that
sampled IPC, then we obtain an overall IPC that is about
X percent of the IPC of that PPT would have when executed
alone in the processor. In the next two subsections, we
discuss the sample phase and the tune phase in more detail.

4.2 Sample Phase: Determining the Local IPC
of a PPT

During the sample phase, we determine the local IPC of a
PPT by giving it all shared resources and, hence, suspend-
ing the others momentarily. Note that the longer the sample
phase, the longer the time that the SMT is dedicated to only
one thread, reducing its overall performance and starving
the Unpredictable Performance Threads. Hence, we have to
determine the local IPC of the PPT thread as fast as possible.
Our mechanism dedicates only 5 percent of the total
execution time to the sample phase.

4.2.1 Shared Resources

In our simulated architecture, as given in Section 5, there
are the following shared resources: fetch and issue slots,
IQ entries, physical registers, caches, TLBs, and the branch
predictor. Our mechanism takes into account the following:
L2 cache, IQs, physical registers, and the fetch and issue
bandwidth. The rest are freely shared among all threads.
These resources are allocated in the following way:

First, the allocation of the IQs and the physical registers
is as follows: Depending on the particular needs of the PPTs
during their execution, the number of resources allocated to
them is changed. When a shared resource is partitioned, one
part is dedicated to PPT0, another part to PPT1, and the
remaining part is dedicated to the UPTs.

Second, fetch and issue bandwidth is shared hierarchi-
cally. The PPT0 has priority to use it and, when PPT0 cannot
use the entire bandwidth, it is given to the PPT1. The
remaining bandwidth is used by UPTs, breaking ties with
icount.

Third, unlike previous resources, caches, TLBs, and the
branch predictor can suffer destructive interference because
an entry given to one thread can be evicted by another
thread. In order to get more insight into this interference,
we show in Fig. 5 how many interthread conflicts the PPT
suffers during a 100,000 cycle-long sample phase, averaged
over the entire run of a workload consisting of twolf as
PPT and mcf, equake, and swim as UPTs. We observe that,
as the sample phase progresses, the number of conflicts
goes toward zero for the instruction cache, data cache, TLB,
and BTB. From the figure, we conclude that, after a warm-up
period of 50,000 cycles, most interference in these shared

resources is removed. The branch predictor (PHT) takes
much longer to clear: We have measured that it takes more
than 5,000,000 cycles before interthread misses have
disappeared. However, we have also measured that this
interference is mostly neutral, giving a small loss in the
branch predictor hit rate of less than 1 percent. Hence, we
ignore the interference in the branch predictor. The
interference in the L2 cache is more serious: It extends for
about 1.5 million cycles and gives rise to a significant
performance degradation (more than 30 percent for some
benchmarks). This high number of cycles shows that we
cannot deal with the interference in the L2 by simply
extending the warmup phase. We address this problem
below.

The solution we propose to erase the conflicts in all
shared resources, except the L2 cache, consists of splitting
each sample period into two subphases. During the first
subphase, the warmup phase, that consists of 50,000 cycles,
the PPT is given all resources, but its IPC is not yet
determined. In the second subphase, the actual-sample phase,
the PPT keeps all resources and, moreover, its IPC is
determined. The duration of this subphase is 10,000 cycles
and it was determined empirically and is in accordance
with the results published in [24]. In this study, the authors
present a statistical study showing how to sample the trace
of a given thread in order to obtain an accurate measure of
its IPC.

4.2.2 Reducing L2 Cache Misses Due to Interthread

Interference

The L2 cache is an important source of unpredictability
because the effects of threads interferences remain for a
long time and because they affect the critical path
processor-memory.

Our solution to interthread interference in the L2 cache
consists of partitioning this cache into several parts. One part
is dedicated to each PPT and the other part can be used by
the entire workload, UPTs and PPTs. In order to meet the
demands for varying workloads and program behavior, we
employ dynamic cache partitioning. We assume that the
L2 cache is N-way set associative, where N is not too small:
In our simulator, L2 is 8-way set associative. We use a bit
vector of N bits that indicates which “ways” or elements in
the set are reserved for each PPT. The cache behaves like a
“normal” cache, except in the placement and replacement of

CAZORLA ET AL.: PREDICTABLE PERFORMANCE IN SMT PROCESSORS: SYNERGY BETWEEN THE OS AND SMTS 789

Fig. 5. Misses suffered by the PPT due to the UPTs interference.

data. The PPT0 is allowed to use the entire L2, the PPT1 is
allowed to use the entire cache except the ways reserved for
the PPT0. Finally, the UPTs are restricted to using the
remainding subset of all the ways that exist in a set. An
extra, most significant, LRU bit is required for each way.
This bit is set to one for the reserved ways and to zero for
the other ways so that the lines reserved for a PPT always
have a higher access count than the lines in the shared part
of the cache. The bit of the PPT0 is more significant than the
bit of the PPT1.

Let us assume that a load/store instruction misses in the
L2 cache and causes a replacement/eviction. If that
instruction was issued by a UPT, then only lines belonging
to the shared part of the cache are selected for replacement
using the LRU algorithm. If it was issued by the PPT1, then
we mask this extra bit and we first select a victim line that
belongs to an UPT, if possible. If there does not exist such a
line, the LRU line from the lines belonging to the PPT1 and
in the shared part is selected as the victim. If that instruction
was issued by the PPT0, then we first select a victim that
belongs to a UPT. Next, to the PPT1 and, finally, if all data
in the set belong to the PPT0, the LRU line of the entire set is
selected as victim.

Note that this extension allows the cache to be used
normally when the SMT does not execute a workload with a
designated PPT: The extra bit is always masked. In [8], a
different cache partitioning technique, called column cach-
ing, has been proposed. However, this technique addresses
a much more general problem of cache partitioning.
Therefore, that technique is too heavily weighted to be
used for our purposes where the simple mechanism
described below suffices.

We propose an iterative method that dynamically varies
the number of ways reserved for the PPT. The control is
local to the cache and only receives from the processor
information about how many, if any, PPTs there are. It also
receives information about which phase, sample, or tune
these PPTs are currently in.

During each actual sample phase, every time a PPT
suffers an intrathread miss, a per-thread-counter is incre-
mented. We consider that a thread has experienced an
intrathread miss when it is going to use a cache position
used by other thread. At the end of the sampling period, if
the value of the counter is higher than a threshold3 of 8,
then the number of ways reserved for the PPT is increased
by 1. If, on the contrary, the counter is lower than the
threshold, this number is decreased by 1.

In this way, if PPTs experience few L2 misses due to
interference, we reduce the number of ways reserved for
them. Likewise, if they experience many misses, then we
increase the number of reserved ways. The maximum
number of ways that each PPT can reserve is an empirically
derived value that depends on the configuration and on the
relative order of priorities. Of course, the higher the number
of ways in the L2 cache, the better this algorithm works.
This is not a limiting factor, as current trends in computer
architecture show that the number of ways in the outer

cache level of processors is increasing. For example, the

Sparc64 VI [14] has a 12-way L2 cache. The L2 of the Power5

[12] is 10-way. The AMD K8 has a 16-way L2 cache [1].
In our configuration, we can reserve up to 4 ways for the

PPT0 and up to 2 for the PPT1.

4.3 Tune Phase: Realizing the Target IPC

After each sample phase of 60,000 cycles, there is a tune phase

wherewe try to achieve the target percentage of the local IPC

measured in the previous sample period, that is, the local

target IPC. As stated in Section 4.1, wewant the sample phase

to be at most 5 percent of the total execution time. For this

reason, each tune phase takes 1.2 million cycles.
We proceed as follows: First, we adjust the partitioning

of the L2 cache that remains the same for the entire tune

phase. This adjustment has been described in the previous

section. Second, the amount of the other shared resources

(IQ entries and the physical registers) dedicated to each PPT

is dynamically varied as follows: Each tune phase is split

into 80 subphases of 15,000 cycles. At the end of every

subphase, the average IPC of the PPTs in this subphase is

computed. If the IPC of the PPT0 is lower than its local

target IPC, then the amount of resources given to it is

increased. We proceed similarly with the PPT1. Otherwise,

if this IPC is higher than the local target IPC, then the

amount of resources given to this PPT is decreased.
We vary the number of instances of each resource

dedicated to a PPT by a fixed amount that equals the total

number of instances of that resource divided by a

granularity factor, which has been empirically set to 16. For

example, for the 32-entry issue queues, this amount is

32=16 ¼ 2. Our results show that this factor does not affect

the final result much as long as its value is not too low. In

that case, our mechanism would need many tuning phases

to increase the amount of resources given to the PPTs so

that their IPC converge to the targetIPC.
Finally, we have observed that the local sampled IPC

values are sometimes lower than they should be due to

interference from LPTs, mainly in the L2 cache. This results

in local target IPCs that are lower than they should be and,

thus, the final IPC obtained for the PPTs is also lower than

the target IPC given by the OS. In order to counteract this

effect, we also take into account the global IPC of the PPT: At

the end of each subphase, we check whether the total IPC of

the PPT under consideration up to this cycle is lower than

the target IPC given by the OS. We introduce a compensation

term C for this effect, as shown in (1). This term artificially

increases the local target IPC so that the final IPC of that

PPT converges to the target IPC given by the OS. In this

formula, X is the target percentage.

local target IPC ¼
ðX þ CÞ

100
� local IPC: ð1Þ

Initially, C is zero. If the total IPC is smaller than the target

IPC, we increase C by 5. Conversely, if the global IPC is

larger than the target IPC, we decrease C by 5. However, we

stipulate that C does not become smaller than zero or

greater than 100�X.

790 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

3. The value of this threshold was determined empirically based on the
memory latency and the duration of the sample phase. A change of any of
these parameters requires an adjustment of this value.

4.4 Hardware Implementation

The implementation of our mechanism involves two main

parts: tracking the resources used by each thread and

tracking the phase and subphase the mechanism is in. The

implementation we propose is valid for any number of

PPTs. For simplicity, we explain our implementation when

there is one PPT.

4.4.1 Hardware to Track Resource Usage

The objective of this hardware is to track the amount of

resources given to each thread and avoid having a thread

use more resources than given to it. It has three main blocks

of logic.
Track: We need a resource usage counter for each resource

under control, both for each PTT and the UPTs. Each

counter tracks the number of slots that each thread has of

that resource. Fig. 6 shows the counters required for a

2-context SMT with one PPT if we track the issue queues.

Resource usage counters are incremented in the decode

stage (indicated by (1) in Fig. 6). Issue queue usage counters

are decremented when the instruction is issued (2). We also

control the occupancy of the physical registers. Hence, two

limit resources and two queue usage counters are required,

one for each register file (integer and fp). Register usage

counters are decremented when instructions are committed.
All extra registers are special purpose registers. This has

a twofold implication. First, they do not belong to the

register file. The design of the register file is left unchanged

with respect to the baseline architecture. Second, these

counters are changed implicitly by our mechanism. These

counters are not visible to the OS.

The implementation cost of these counters depends on
the particular architecture. However, we believe that it is
low due to the fact that current processors have tens of
performance and event counters, e.g., the Intel Pentium4
has more than 60 performance and event counters [2].

Compare: We also need two registers, called limit
registers, that contain the maximum number of entries that
each PPT and the UPTs are entitled to use. In the example
shown in Fig. 6, we need six counters: one for each type of
issue queue (integer, fp, and load/store) for both each PPT
and the UPTs. Every cycle we compare the resource usage
counters of each thread with the limit registers (3). If a
thread is using more slots than given to it, then a signal is
sent to the fetch stage to stall instructions fetch from this
thread (4).

Stall: If this signal is activated, the fetch mechanism does
not fetch instruction from that thread until the number of
entries used for this thread decreases. Otherwise, the thread
is allowed to compete for the fetch bandwidth as
determined by the fetch policy.

4.4.2 Tracking Phases

At any given time, we have to track the phase/subphase
our mechanism is in. We use a Finite State Machine (FSM)
to do this, as shown in Table 1. This FSM has only six states
and is quite simple and can be implemented with four
counters and simple control logic.

The FSM starts by establishing the PPT whose full speed
we are going to sample in this sample phase, PPTcurrent

(S0). All resources are given to that PPT. This is done by
simply setting its IQ and physical register limit registers to
the maximum number of resources, and resetting the other
entries. Next, at the end of the warm-up phase (S2), we
begin to compute the IPC of the PPTcurrent. At the end of
the actual-sample phase (S4), we compute the local target
IPC and set the resource allocation to converge to the local
target IPC. We also vary the number of ways reserved for
the PPTs. At the end of each tune su-phase (S6), we vary the
resource allocation again. After 80 tune subphases, we
restart the process by changing the PPT.

5 EXPERIMENTAL SETUP

In this section, we describe our baseline architecture and the
benchmarks we use to evaluate our proposal.

CAZORLA ET AL.: PREDICTABLE PERFORMANCE IN SMT PROCESSORS: SYNERGY BETWEEN THE OS AND SMTS 791

Fig. 6. Hardware required to implement our mechanism.

TABLE 1
FSM to Track Phases

5.1 Simulation Tool

In this paper, we use a trace driven SMT simulator derived
from smtsim [23]. The simulator consists of our own trace
driven front-end and an improved version of smtsim’s back-
end. The simulator allows executingwrong path instructions
by using a separate basic block dictionary that contains all
static instructions. Table 2 shows the main parameters of the
simulated processor, which has a 12-stage pipeline. We use a
2.8 fetch mechanism, which means that we can fetch eight
instructions per cycle from up to two threads.

5.2 Benchmarks

The present paper is a “proof of concept” of how controlling
SMT internal resource can enable SMTs to execute real-time
applications. Our purpose is to show the robustness of our
method. For this reason, we have used benchmarks that
have high resources demands, which makes it difficult to
ensure a minimum IPC for a given PPT.

MediaBench benchmarks have a lower cache miss rate
than SPEC CPU2000 benchmarks. Our results show that, on
average in our baseline architecture, SPEC CPU bench-
marks experience one L2 miss every 126 committed
instructions, while MediaBench benchmarks experience a
miss every 19,400 committed instructions. As shown in [25],
MediaBench benchmarks are mainly CPU bounded rather
than memory bounded. Given that SPEC CPU benchmarks
experience more L2 misses, their resource demands are
higher. The present paper is a “proof of concept” of how
controlling SMT internal resources can enable SMTs to be
used in real-time systems. Our purpose is to show the
robustness of our method. For this reason, we have used
SPEC benchmarks that have high resource demands, which
makes it difficult to ensure a minimum IPC for a given PPT.
It is clear that, if our mechanism works with applications
with high resource requirements, like SPEC CPU bench-
marks, it will work with applications with fewer resource
requirements, like MediaBench benchmarks.

Traces of SPEC benchmarks were collected of the most
representative 300 million instruction segment, following an
idea presented in [19]. The workloads consist of integer and
fp programs from the SPEC2000 benchmarks. Each program
was compiled using the DEC Alpha AXP-21264 C/C++
compiler with the -O2 -non_shared options and executed
using the reference input set. Programs are divided into two

groups based on their cache behavior (see Table 3): Those
with an L2 cache miss rate higher than 1 percent are
memory bounded (MEM) programs. The others are ILP
programs. The L2 miss rate is calculated with respect to the
number of dynamic loads.

6 RESULTS

In this section, we show the results obtained with our
strategy. We first analyze results when there is only one
PPT. After that, we discuss results when there are two PPTs
at the same time. The results focus on three main points.
First, we show the average performance obtained for the
PPT(s) for each workload type. Second, we show the
throughput of the UPTs. And, third, we show the total
throughput obtained.

6.1 One PPT

In this experiment, we consider all combinations in which
the PPT is ILP or MEM and the UPTs are ILP or MEM also.
A workload is identified by two parameters: the type of the
PPT and the type of the UPTs. For example, a workload of
type IM means that the PPT is ILP and the UPTs are MEM.
For each of the four workload types, we create four different
sets of threads to avoid having our results be biased toward
a specific set of threads by taking all possible combinations
from Table 4. That is, we vary the PPT, but keep the UPTs
fixed in order to not create a prohibitively large number of
workloads to examine. We selected as MEM benchmarks
those with the highest L2 miss rate (twolf and mcf for

792 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

TABLE 2
Baseline Configuration

TABLE 3
L2 Cache Behavior of Benchmarks

TABLE 4
Workloads for 1-Thread Prioritization

integer benchmarks and art, swim, lucas, and equake for
FP). ILP benchmarks have been selected randomly. In this
section, we present average results for each group in each
workload. For example, the II set with 3 threads (II3) is the
average results of workloads gzip+(gcc+wupwise),
bzip2+(gcc+wupwise), mesa+(gcc+wupwise), and
fma3d+(gcc+wupwise). For all workloads, the simulation
ends when the PPT finishes. Any UPT in the workload that
finishes earlier is reexecuted.

6.1.1 PPT Performance

In Fig. 7, we show, for the different workloads and different
target percentages, the overall percentage of full program
speed that we have obtained using our mechanism. On the
x-axis, the target percentage of the full speed of the PPT is
given, ranging from 10 percent to 90 percent. For each size
of the workload (two, three, or four threads), the achieved
IPC for the PPT as a percentage of its full IPC is given. We
see that, over the entire range of different workloads and
target percentages, we achieve this target or a little bit more
(approximately 3 percent). Only on the two extreme ends of
the range of targets are we somewhat off target. We discuss
the discrepancies for the 10 and 90 percent cases since they
give the most insight into how our mechanism works.

Ten percent case: If the target IPC should be 10 percent
of the full speed, we achieve percentages between 13 and
21. To explain this, first consider the II2 workload in which
two ILP threads are running. Suppose both threads have a
full speed of four IPC. Then, during 5 percent of the time
during the sample phase, the PPT reaches this full speed.
During the remaining 95 percent of the time, it reaches
0.4 IPC. Hence, in total, it reaches 0:05� 4þ 0:95� 0:4 ¼
0:58 IPC, which is 15 percent of its full speed of four IPC.
From Fig. 7, it is also clear that, for the workloads II3 and
II4, the achieved percentage is closer to 10. This can be
explained because, as the number of threads increases, the

IPC value of the PPT in the sampling period is lower due to
more interference from the other threads. As a result, the
overall IPC of the PPT drops a little.

Next, in the case of the IM workload, the memory
bounded UPTs causes L2 cache pollution, more than in the
case for the II workloads. Hence, the measured IPC of the
PPT during the sample phase is lower than it should be and,
during the tune phases, the PPT also suffers from
interference. Hence, the effects described for the II case
above do not show up as profoundly in the MI case and the
overall throughput is closer to 10 percent, as it should be.

For the MI workload, the mcf benchmark has a full
speed of 0.15 IPC. Hence, 10 percent of this full speed is
only 0.015 IPC. Due to the duration of the sample phase, we
reach a slightly higher overall IPC than this. However, the
absolute numbers are so small that such a minimal
deviation causes a high relative error: Ee measured a
30 percent deviation. Hence, the error in the IPC of mcf

dominates the average results shown in the figure and,
therefore, the large difference is due to this benchmark.
Moreover, in general, MEM benchmarks have low IPC
values and when they are used as PPT, small differences in
their IPCs again cause large relative errors. For the MM
workload, the same explanation holds as for the
MI workload.

Ninety percent case: At the other end of the spectrum,
when the required percentage is 90, the realized percentage
is 2 to 5 percent lower than it should be. To explain these
differences, if the UPTs are memory bounded, then they
cause much pollution in the L2 cache. Hence, the IPC of the
PPT we measure during the sample phases is lower than it
should be. Moreover, during the tune phase, memory
bounded UPTs cause much interference in the L2 cache
also. Therefore, the relative IPC of the IM workloads is
lower than the IPC of the II workloads and, during the tune
phase, we achieve an IPC value that is too low also.

CAZORLA ET AL.: PREDICTABLE PERFORMANCE IN SMT PROCESSORS: SYNERGY BETWEEN THE OS AND SMTS 793

Fig. 7. Realized IPC values for the PPT. The x-axis shows the target percentage of full speed of the PPT and size of the workloads. The four different

bars represent the four different types of workload discussed in Section 5.

However, in case the UPTs are ILP, this pollution is much
less and, therefore, achieved IPC values are higher than for
the previous case. We can conclude that, when the required
percentage is 90, it can be more preferable to run the PPT in
isolation and reach 100 percent of its full speed.

Thirty percent to eighty percent case: In more common
situations where target percentages range from 30 to 80, we
already achieve these percentages almost exactly, being less
than 1 percent over target on average.

6.1.2 Total Performance

In Fig. 8, we show a small variation of the QoS space
presented in Section 2. In this case, the y-axis indicates the
relative IPC of the unique PPT and the x-axis the
throughput obtained by our mechanism with respect to
flush++ [5]. This fetch policy is an improved version of the
flush policy proposed in [21]. Results are averaged for
workloads with two, three, and four threads. The legend
shows different workload types as well as the relative IPC
required for the PPT. For example, the point II20 is the
average result when the PPT is ILP and the UPTs are ILP
(workload sets II2, II3, and II4), for which the PPT is run at
20 percent of its full speed. For clarity, we only show those
percentages that are a multiple of 20. However, we also
show the case of 90 percent because this high percentage
poses particular problems.

In the II workloads (the triangles in Fig. 8), all threads are
ILP and have a high throughput and do not occupy
hardware resources for a long time. That means that both,
the PPT and the UPTs highly profit resources. As a result,
for intermediate target percentages, overall performance
does not drop much compared to flush++. Only for the
extreme target percentages is this performance slightly less.
On average, our mechanism achieves 90 percent of the
throughput obtained with flush++ for the II workloads. In
addition, we should take into account that this slowdow is
also due to stopping the UPTs during the sample phases.

For the IM workloads (the squares in Fig. 8), the UPT
threads are MEM and experience many loads that miss in
the L2 cache. Hence, these threads have low IPC and tend to
occupy resources for a long time, which has an adverse
effect on the speed of the other threads in standard fetch
policies. When the PPT is required to run at a low speed, the
UPTs receive many resources and run at a speed that is
close to the speed they would obtain under flush++.
However, since the total throughput for flush++ mainly

derives from the speed of the PPT, total throughput is
degraded. On the other hand, when we require a high
relative IPC for the PPT which is ILP, total throughput
increases because the PPT runs at a higher speed than it
would under flush++. When the relative IPC of the PPT is
80 percent or higher, throughput is higher than with flush++
because, although flush++ is designed to deal with this
situation by flushing a thread after an L2 miss, it also needs
to refetch and reissue all flushed instructions, degrading its
performance.

The MI workloads (the diamonds in Fig. 8) present the
opposite situation of the previous one. In this case, the total
throughput in flush++ comes largely from the UPT. When
the PPT is required to run at a low speed, the UPTs get
many resources and can run faster than they would under
flush++. Hence, total throughput is higher than under
flush++. When the relative IPC of the PPT is 40 percent or
less, throughput is higher than with flush++. Conversely,
when the PPT runs at a high relative IPC, it is allocated
many shared resources to achieve this. As a result, total
throughput drops since the full speed of the PPT is low and
also because the UPTs are denied many resources so that
their speed becomes less than under flush++.

For the MM workloads (the circles in Fig. 8), neither the
PPT nor the UPTs can make efficient use of resources.
Hence, given that the PPT and the UPTs use resources in a
similar way, there is not a significant variation in
throughput when varying the target relative IPC of the
PPT and it is almost the same as under flush++. Only for the
extreme ends does total throughput drop since, in these
cases, resources are occupied by either PPT or UPTs when
some of these resources would have been used better under
flush++.

6.1.3 Summary

We can draw two main conclusions from these results. The
first and most important one is that our QoS mechanism is
capable of realizing a target IPC for a particular PPT within
an error margin of less than 2 percent on average for
relative IPCs from 10 percent to 80 percent. Another
conclusion is that, at the same time, it maximizes total
throughput, achieving relative IPCs of over 90 percent
compared with the throughput obtained using flush++. In
fact, flush++ can be improved up to 40.2 percent, for the
IM4 workload (gzip as the PPT and (mcf + equake +

swim) as the UPTs), when the PPT requires 90 percent of its
full speed. The OS level job scheduler could take advantage
of the trends shown in Fig. 8 in order to improve
throughput. For example, if the scheduler needs to deal
with a workload consisting of a nontime critical MEM
thread and a number of ILP threads, it can be advisable to
run this MEM thread as an PPT with a low target
percentage of its full IPC: The overall throughput can be
larger than for flush++.

6.2 Two PPTs

In our experiments with two PPTs, we vary the required
target IPC for both High Priority Threads from 10 percent
to 80 percent with a step of 10 percent. Hence, we study
our mechanism for target IPCs for PPT0 and PPT1 of
10=10; 10=20; . . . ; 80=80, a total of 64 different combinations

794 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

Fig. 8. QoS space where the y-axis shows the target percentage of full

speed of the PPT and the x-axis the throughput obtained by our

mechanism with respect to flush++. The legend shows different
workload types as well as target percentages required for the PPT.

of target percentages. Furthermore, we consider combina-

tions where the PPT0, the PPT1, and the UPTs can all be

either ILP or MEM; this leads to eight possible types of

workload. We also study the situation when there are both

one and two UPTs. Hence, there are 8� 2 ¼ 16 types and,

for each type, 64 combinations of target percentages, hence

64� 16 ¼ 1; 024 experiments.
A complete study of all benchmarks is not feasible due to

excessive simulation times. We have used the benchmarks

shown in Table 5. For each type of workload, we use two

different sets of threads to minimize any bias toward a

specific set of threads. Hence, a total of 1; 024� 2 ¼ 2; 048

experiments have been carried out. Table 6 shows the

composition of each of the eight types of workload. Since

we want to have two workloads for each type, we also use

the workloads obtained by replacing gzip and twolf as

PPT0 by mesa and art, respectively. In this table, the “key”

column denotes the type of the workload, i.e., III means that

the PPT0, the PPT1, and the UPT(s) are ILP.

6.2.1 Speed of PPT0 and PPT1

Fig. 9a and Fig. 10b show the resulting QoS spaces for each

type of workload.4 In these figures, the x-axis shows the

relative IPC of PPT0 and the y-axis the relative IPC of PPT1.

The legend shows the target percentage required for the

PPT0 and for the PPT1, respectively. For clarity, we only

show those percentages that are multiples of 20. The main

conclusions we can draw from these charts are the

following:

. In all cases, we achieve the required percentage for
the PPT0 or with an error lower than 2 percent on
average. This indicates us that we are effectively
isolating the execution of the PPT0 from the other
threads. Furthermore, the addition of PPT1 does not
affect PPT0.

. There are almost no differences when the type of the
UPTs is changed (parts (a) and (b) in each figure).
This indicates that, in our mechanism, the UPTs do
not affect the execution of PPT0 and PPT1.

. For the PPT1, we do not always achieve the required
percentage.5 We differentiate three cases.

- When PPT0 is ILP (the IXX workloads), the
combinations that fail are 40/80, 60/80, 80/40,
80/60, and 80/80.

- When PPT0 is MEM (the MXX workloads), the
combinations that fail are 60/80, 80/40, 80/60,
and 80/80.

- If both PPT0 and PPT1 are MEM (the MMX
workloads), the combinations 60/60 and 40/80
also fail.

As a rule of thumb, we can realize the required
percentages X and Y for PPT0 and PPT1, respectively, for
all types of workload if X þ Y � 100.

That we fail in some cases to realize the target
percentages for both PPT0 and PPT1 is not due to
incorrectly isolating PPT1, but to an insufficient amount of
resources inside the processor. Fig. 11 shows the amount of
shared resources (IQ entries and physical regs) and ways of
the L2 cache required to achieve a given percentage of the
relative IPC of the PPT0. Obviously, the higher the required
percentage, the higher the amount that needs to be
reserved. It is interesting to observe that, when PPT0 is
ILP and a relative percentage higher than 70 percent is
required, then the amount of reserved resources is
50 percent or higher. This means that we cannot run both
PPT0 and PPT1 at a relative IPC of 70 percent or higher. The
same happens when the PPT is MEM when the required
percentage is 60 percent or more.

Concerning the number of ways in the L2 cache, we
observe that, as we increase the required percentage of the
full speed of PPT0, the amount of ways that need to be
reserved decreases for both types of PPT0. This is because,
as we increase the percentage to achieve, the number of
conflicts in the tune periods due to the other threads
decreases since these threads are given fewer opportunities
to run.

For the MEM threads, four ways of the 8-way cache need
to be reserved in order to avoid significant performance
degradation and failure to achieve the given target
percentage. Only when the target IPC for the PPT is
70 percent or more do fewer ways need to be reserved. This
shows that, when both threads are MEM, the conflicts in the
L2 cache can slow down the PPT1 because it can only
reserve up to two ways. For the ILP threads, the number of
reserved ways required is much lower and this number
decreases as the target IPC increases.

6.2.2 Total Throughput

In this section, we take a closer look at the throughput
obtained by our mechanism for each of the different
workload types and target percentages in turn. In all cases,
two main observations characterize the obtained perfor-
mance. First, better results are achieved if more resources
are given to ILP threads than when these resources are
devoted to MEM threads. Second, when we have to divide
resources between threads with similar characteristics (all
threads are MEM or ILP), then nonextreme target percen-
tages lead to better performance results.

Fig. 12a to Fig. 13b show, for each workload type and
required percentages for the PPT0 and the PPT1, the
performance obtained with our policy with respect to the
performance obtained with flush++. The results depending
on the workload type are the following: As before, we only

CAZORLA ET AL.: PREDICTABLE PERFORMANCE IN SMT PROCESSORS: SYNERGY BETWEEN THE OS AND SMTS 795

TABLE 5
Subset of Threads for 2-Thread Prioritization

4. Due to lack of space, we only show the IXX workloads. The trends for
MXX workloads are the same that for IXX workloads

5. In Fig. 9 and Fig. 10, the shadowed area represents, approximately,
those points which our mechanism is not able to accomplish with the OS
requirements

show the result for IXX workloads. The conclusions for

MXX workloads are the same.
Type III. Given that all threads have similar behavior,

the best results are achieved for intermediate percentages,

that is, for percentages between 30 and 70 percent. The best

result is achieved when the PPT0 requires 50 percent of its

full speed and the PPT1 60 percent, obtaining 91 percent of

the throughput obtained with flush++. This small drop in

throughput is due to the fact that flush++ is implemented on

top of icount. icount achieves good results for ILP threads

and the division of resources disrupts its behavior. In some

cases, resources are reserved for threads that are stalled

when these resources could have been used by the other

threads. However, our mechanism obtains 82.4 percent of

the performance obtained with flush++ on average, showing

that our mechanism does not need to pay too high a price in

order to meet OS requirements.
Type IIM. In this case, the higher the rIPC of both the

PPT0 and the PPT1, the higher the throughput. This is

caused by the fact that, in these cases, a lower number of

resources is given to the UPTs that are MEM and that have a

low IPC by themselves. Hence, under flush++, the UPTs

tend to occupy resources for a long time which degrades the

performance of the ILP threads. In our situation, the UPTs

are not given the opportunity to hold many resources and,

796 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

TABLE 6
Workloads for 2-Thread Prioritization

Fig. 9. Quality of Service (QoS) space for IIX workloads: (a) III workloads and (b) IIM workloads.

Fig. 10. Quality of Service (QoS) space for IMX workloads: (a) IMI workloads and (b) IMM workloads.

Fig. 11. Shared resources required to achieve a given relative IPC.

as a result, the PPTs reach a higher speed than under
flush++ and total throughput increases.

Type IMI. Better results are achieved as the rIPC of the
PPT0 increases, excluding the extreme cases of 20/80 and
40/80. For a given rIPC of the PPT0, better results are
achieved when the rIPC of the PPT1 is small because this
PPT1 is MEM and then receives fewer resources. Since the
UPTs are ILP, they obtain a high speed under flush++.
Using our mechanism, they reach a much lower speed since
many resources are dedicated to the PPTs and they cannot
use these resources, even if they would be idle. Hence,
throughput is degraded compared to flush++ since PPT1 is
allocated many resources.

Type IMM. The higher the rIPC of the PPT0, the better

the results since more resources are given to this ILP thread.

For a given rIPC of the PPT0, better results are obtained for

intermediate values of the PPT1. Using flush++, PPT0 would

obtain a speed that is larger than 20 percent of its full speed.

Hence, fixing the required speed of PPT0 at 20 percent,

many resources go to slow MEM threads. This increases

their throughput, but, since this throughput is small to start

with, total throughput is less than for flush++. Conversely, if

PPT0 receives many resources in order to realize a high

target percentage, it runs much faster than under flush++.

Since the type of the workload is IMM, this implies that

total throughput is much higher than for flush++.

6.2.3 UPTs Throughput

Fig. 14a shows the performance of the UPTs when they are

ILP, that is, the average of the III, IMI, MII, and MMI

workloads (XXI). Fig. 14b shows the UPTs performance

when they are MEM. In these figures, rIPC denotes the

target percentage (or relative IPC) of a thread requested by

the OS. As expected, as the sum of the target percentages

becomes less, UPTs receive more resources and their IPC

increases. Conversely, if this sum becomes larger, the

throughput of the UPTs decreases. However, their through-

put never becomes zero and, even in the cases where a high

CAZORLA ET AL.: PREDICTABLE PERFORMANCE IN SMT PROCESSORS: SYNERGY BETWEEN THE OS AND SMTS 797

Fig. 12. Total throughput with respect to the flush++ instruction fetch policy for IIX workloads: (a) III workloads and (b) IIM workloads.

Fig. 13. Total throughput with respect to the flush++ instruction fetch policy for IMX workloads: (a) IMI workloads and (b) IMM workloads.

Fig. 14. UPTs throughput: (a) XXI workloads and (b) XXM workloads.

target percentage for both PPT0 and PPT1 is to be reached,

the UPTs still have some throughput. This shows that our

mechanism reserves a minimal amount of resources for the

PPTs to realize the required target throughput for them and

can successfully use the remaining resources for the UPTs,

even when there are only a limited number of fetch slots, IQ

entries, etc., that are not claimed by the PPTs.

6.2.4 Summary

The results have shown that our mechanism always
achieves the required target IPC for the PPT0 with an error
less than 2 percent on average. The addition of a minimum
required IPC for a second thread, PPT1, does not affect the
behavior of PPT0. For PPT1, the target is not achieved when
the amount of resources is too small to realize both
percentages at the same time.

Compared to a traditional superscalar processor and
previous SMT fetch policies, our mechanism enables one
degree of freedom more in scheduling jobs on an SMT
processor: Jobs can be given a certain share of the available
resources. Our experiments show that a resource conscious
job scheduler, by using this level of freedom, could
significantly improve a traditional one on top of a fetch
policy. On average, our mechanism achieves 90.4 percent of
the performance achieved by flush++. For some workloads,
we achieve an improvement of 228 percent: For the IMM3
workload (mesa as PPT0, twolf as PPT1, and mcf as UPT),
flush++ achieves an IPC of 1.782, whereas our mechanism,
when the target percentage for the PPT0 and the PPT1 is
80 percent, leads to an IPC of 4.074.

7 CONCLUSION

Current Operating Systems view the different contexts of an
SMT as multiple independent virtual processors. As a
result, the OS schedules threads onto what it regards as
processing units operating in parallel. However, in an SMT,
those threads are competing with each other for the
resources of a single processor. On the other hand, in
current SMT processors, resource allocation is done
implicitly as determined by the fetch policy. Both factors,
lead to performance unpredictability as the OS is not able to
guarantee priorities or time constraints on the execution of a
thread if that thread is to be run concurrently with other
threads. As a result, we need to run time-critical applica-
tions in isolation, degrading overall performance. We have
proposed a novel strategy that enables a bidirectional
interaction between the OS SMT processors, allowing the
OS to run up to two time-critical jobs at a predetermined
IPC, regardless of the workload that these threads are
executed in. As a consequence, this enables the OS to run
time-critical jobs without dedicating all internal resources to
them and, so, other low priority jobs can make significant
progress as well.

We have tested our mechanism in a 4-context SMT with
up to two time-critical jobs (PPT0 and PPT1), for which we
require a minimum IPC. When one thread is prioritized, our
mechanism achieves, for the entire range of workloads and
target percentages, up to 80 percent, the required percen-
tage or a little more. When two threads are to be prioritized

at the same time, we always reach the target percentage for

the PPT0 with an error less than 2 percent on average. The

addition of a minimum required IPC for a second HPT, the

PPT1, does not affect PPT0. For the PPT1, the target is not

achieved only when the amount of resources is too small to

accomplish this. This allows the OS, by designating pme or

two PPTs as well as their target percentages, to control the

execution of these threads regardless of the workload they

are executed in. As an additional advantage, in some cases,

our mechanism improves throughput compared to flush++,

achieving 90 percent of the performance of flush++. This

shows that, if the target were to maximize performance,

then the synergy of the OS job scheduler and our workload

and resource conscious policy could significantly outper-

form the best currently known fetch policies for SMT.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Science

and Technology of Spain under contract TIN-2004-07739-

C02-01 and grant FP-2001-2653 (Francisco J. Cazorla), the

HiPEAC European Network of Excellence, an Intel fellow-

ship, and the EC IST program (contract HPRI-CT-2001-

00135). The authors would like to thank Oliverio J. Santana,

Ayose Falcón, and Fernando Latorre for their work in the

simulation tool and the reviewers for their helpful

comments.

REFERENCES

[1] http://www.cpuid.org/k8/index.php, 2006.
[2] IA-32 Intel Architecture Software Developer’s Manual. Volume 3:

System Programming Guide, 2006.
[3] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F. Mueller,

“Virtual Simple Architecture (VISA): Exceeding the Complexity
Limit in Safe Real-Time Systems,” Proc. 30th Int’l Symp. Computer
Architecture (ISCA), pp. 350-361, June 2003.

[4] D.C. Bossen, J.M. Tendler, and K. Reick, “Power4 System Design
for High Reliability,” IEEE Micro, vol. 22, no. 2, pp. 16-24, 2002.

[5] F.J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero, “Improving
Memory Latency Aware Fetch Policies for SMT Processors,” Proc.
Fifth Int’l Symp. High Performance Computing (ISHPC), pp. 70-85,
Oct. 2003.

[6] F.J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero, “DCache
Wam: An I-Fetch Policy to Incrase SMT Efficiency,” Proc. Int’l
Parallel and Distributed Processing Symp. (IPDPS 2004), Apr. 2004.

[7] F.J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero, “Dynami-
cally Controlled Resource Allocation in SMT Processors,” Proc.
37th MICRO, pp. 171-182, 2004.

[8] D. Chiou, P. Jain, S. Devadas, and L. Rudolph, “Dynamic Cache
Partitioning via Columnization,” Proc. Design Automation Conf.,
June 2000.

[9] A. El-Moursy and D.H. Albonesi, “Front-End Policies For
Improved Issue Efficiency in SMT Processors,” Proc. Ninth Int’l
Symp. High Performance Computer Architecture (HPCA), pp. 31-42,
Feb. 2003.

[10] S. Hily and A. Seznec, “Contention on 2nd Level Cache May Limit
the Effectiveness of Simultaneous Multithreading,” Technical
Report 1086, IRISA, 1997.

[11] R. Jain, C.J. Hughes, and S.V. Adve, “Soft Real-Time Scheduling
on Simultaneous Multithreaded Processors,” Proc. Fifth Int’l Symp.
Real-Time Systems Symp., Dec. 2002.

[12] R. Kalla, B. Sinharoy, and J. Tendler, “SMT Implementation in
POWER 5,” Proc. Hot Chips, Aug. 2003.

[13] P.M.W. Knijnenburg, A. Ramirez, J. Larriba, and M. Valero,
“Branch Classification for SMT Fetch Gating,” Proc. Sixth Workshop
Multithreaded Execution, Architecture, and Compilation (MTEAC),
pp. 49-56, 2002.

798 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

[14] K. Krewell, “Fujitsu Makes SPARC See Double,” Microprocessor
Report, Nov. 2003.

[15] M. Levy, “Multithreaded Technologies Disclosed at MPF,”
Microprocessor Report, Nov. 2003.

[16] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Throughput
and Fairness in SMT Processors,” Proc. Int’l Symp. Performance
Analysis of Systems and Software (ISPASS), pp. 164-171, Nov. 2001.

[17] D.T. Marr, F. Binns, D.L. Hill, G. Hinton, D.A. Koufaty, J.A. Miller,
and M. Upton, “Hyper-Threading Technology Architecture and
Microarchitecture,” Intel Technology J., Feb. 2002.

[18] M.J. Serrano, R. Wood, and M. Nemirovsky, “A Study on
Multistreamed Superscalar Processors,” Technical Report #93-05,
Univ. of California Santa Barbara, 1993.

[19] T. Sherwood, E. Perelman, and B. Calder, “Basic Block Distribu-
tion Analysis to Find Periodic Behavior and Simulation Points in
Applications,” Proc. 10th Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT), Sept. 2001.

[20] A. Snavely, D.M. Tullsen, and G. Voelker, “Symbiotic Job
Scheduling with Priorities for a Simultaneous Multithreaded
Processor,” Proc. Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS-9), pp. 234-244, Nov.
2000.

[21] D. Tullsen and J. Brown, “Handling Long-Latency Loads in a
Simultaneous Multithreaded Processor,” Proc. 34th Int’l Symp.
Microarchitecture, pp. 318-327, Dec. 2001.

[22] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm,
“Exploiting Choice: Instruction Fetch and Issue on an Implemen-
table Simultaneous Multithreading Processor,” Proc. 23rd Int’l
Symp. Computer Architecture (ISCA), pp. 191-202, Apr. 1996.

[23] D.M. Tullsen, S. Eggers, and H.M. Levy, “Simultaneous Multi-
threading: Maximizing On-Chip Parallelism,” Proc. 22nd Int’l
Symp. Computer Architecture (ISCA), pp. 392-403, 1995.

[24] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe, “SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical
Sampling,” Proc. 30th Int’l Symp. Computer Architecture (ISCA),
pp. 84-97, June 2003.

[25] Z. Xu, S. Sohoni, R. Min, and Y. Hu, “An Analysis of Cache
Performance of Multimedia Applications,” IEEE Trans. Computers,
vol. 53, no. 1, pp. 20-38, Jan. 2004.

Francisco J. Cazorla received the PhD
degree from the Polytechnic University of
Catalonia (UPC) in 2005. He is currently a
full-time researcher in the Barcelona Super-
computing Center (BSC). He was a summer
student intern with IBM’s T.J. Watson Re-
search Laboratory in New York for six month.
His research interests include high-perfor-
mance architectures with emphasis on multi-
threaded architecture.

Peter M.W. Knijnenburg received the PhD
degree of computer science from Utrecht Uni-
versity in 1993. He is currently an assistant
professor in computer science with the Compu-
ter Systems Architecture Group at the University
of Amsterdam, The Netherlands. He has been a
visiting researcher at the University of Illinois at
Urbana-Champagne, Edinburgh University, IN-
RIA Rennes, and UPC Barcelona. His main
research interests are in adaptive and iterative

compilation and the interaction of compilers and computer architectures.

Rizos Sakellariou received the PhD degree in
computer science from the University of Man-
chester in 1997. Since January 2000, he has
been a lecturer in computer science at the
University of Manchester. Prior to his current
appointment, he was a visiting assistant profes-
sor at the University of Cyprus (fall 1999) and a
postdoctoral research associate at Rice Univer-
sity (1998-1999) and the University of Manche-
ster (1996-1998). His primary area of research is

in parallel and distributed systems, but his research interests also
include compilers, computer architecture, performance modeling and
evaluation, scheduling, and the interactions between them.

Enrique Fernández received the Industrial
Engineering degree from the Polytechnic Uni-
versity of Las Palmas in 1983 and the PhD
degree in computer science from the University
of Las Palmas de Gran Canaria (ULPGC) in
1999. He is an assistant professor in the
Informática y Sistemas Department at ULPGC.
His current research interests are in the field of
high-performance architectures.

Alex Ramirez received the PhD degree in
computer science from the Universitat Politècni-
ca de Catalunya (UPC), Spain, in 2002. He is an
associate professor in the Computer Architec-
ture Department of UPC and leader of the
Computer Architecture Group at the Barcelona
Supercomputing Center. His research interests
focus on high performance embedded processor
architectures, including multithreading and vec-
tor architectures. Currently, he is involved in

research and development projects with Intel and IBM.

Mateo Valero received the PhD degree from the
Universitat Politècnica de Catalunya (UPC),
Spain, in 1980. He is a professor in the
Computer Architecture Department at UPC. His
research interests focus on high-performance
architectures. He has published approximately
300 papers on these topics. Dr. Valero has been
honored with several awards, including the King
Jaime I by the Generalitat Valenciana and the
Spanish national award “Julio Rey Pastor” for his

research on IT technologies. In 2001, he was appointed a fellow of the
IEEE, in 2002, an Intel Distinguished research Fellow, and, in 2003, a
fellow of the ACM. Since 1994, he has been a foundational member of
the Royal Spanish Academy of Engineering. In 2005, he was elected a
correspondent academic of the Spanish Royal Academy of Mathe-
matics, Physics, and Natural Sciences. In 2006, he was elected an
academic of the Royal Academy of Science and Arts.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CAZORLA ET AL.: PREDICTABLE PERFORMANCE IN SMT PROCESSORS: SYNERGY BETWEEN THE OS AND SMTS 799

